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Abstract
A catalogue is presented which contains the graphs having
order at most 10 which are critical with respect to the total
chromatic number. A number of structural properties which

cause these graphs to be critical are discussed, and a number
of infinite classes of critical graphs are identified.

A total colouring of a graph G is a function assigning colours to
the vertices and edges of G in such a way that no two adjacent or
incident elements are assigned the same colour. The total chromatic
number, x”(G), is the minimum number of colours which need to be
assigned to obtain a total colouring of the graph G.

A longstanding conjecture, made independently by Behzad [3]
and Vizing [17], claims that

AG)+1<X"(G) < A(G)+2
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where A(G) is the maximum degree of G. The lower bound is sharp,
the upper bound remains to be proved. A graph G is said to be Type
1if x"(G) = A(G) +1 and is said to be Type 2 if x"(G) > A(G) +2.

We define a graph G to be critical with respect to the total chro-
matic number if G is connected and x”(G—¢) < x”'(G) for every edge
e in G. In Section 1 of this paper we identify all small order critical
graphs, the catalogue of graphs is presented as a table of diagrams.
In Section 2 we study structural properties of these graphs in order
to identify features which cause a graph to be Type 2.

1 A Catalogue of Critical Graphs

In this section we present a catalogue of the critical graphs having
order at most ten. Associated with each graph is a triple (n, A, m),
where n is the order, A is the maximum degree and m is the size of
the graph. The graphs are listed in increasing order of n, then A,
then m. The catalogue is complete up to and including the graphs
of order eight, and is believed to be complete up to and including
the graphs of order ten.
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2 Classification of the Critical Graphs

In this section, we try to give short (structural) reasons why the
critical graphs listed in the catalogue are Type 2. Certain graphs
will fall into more than one of the categories (for example graph 2 is
both a cycle and a Chen and Fu graph). We have, however, simply
listed such graphs in the first category which applies to them.

2.1 Nonconformability

A graph G is conformable if it has a vertex colouring
¢:V(G) — {1,2,...,A(G)+ 1}

for which at most def(G) = ¥,cv(g)(A(G) — dg(v)) colour classes
have parity different from that of [V(G)]|. It is easily seen (for exam-
ple [7]) that a being conformable is a necessary condition for a graph
to be Type 1, or equivalently if a graph is non-conformable, then it is
Type 2. The following graphs in the catalogue are non-conformable

'1,3,7, 10, 14, 16, 27, 28, 29, 30, 31, 44, 45, 46, 48, 49 and 50.

2.2 Cycles

It is well known (see for example [4]) that a cycle which has an order
which is not a multiple of 3 is critical. The following graphs fall in

this class: 2, 4, 8, 11 and 32.

2.3 Graphs having maximum degree three

These graphs are presented, and their structure discussed, in an
earlier paper by Hamilton and Hilton [10]. They will not be dis-
cussed in detail in this section. The following graphs are in this
class: 9,12,17,18, 19, 20 and 33 to 40.

2.4 Chen and Fu graphs

Chen and Fu [9] showed that any graph obtained from an odd or-
der complete graph by subdividing one edge is critical even though
the graph (and all subgraphs with the same maximum degree) is
conformable. This class contains graphs numbers 6, 15 and 47.
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2.5 Non-biconformability

In [12] Hilton showed that if J is a subgraph of K, ,, with e = |E(J)|
and j independent edges in J, then G = K, ,\E(J) has total chro-
matic number n + 2 if and only if e + j < n — 1. This explains
graphs numbers 5, 13, 42 and 43. Later in this section we will give
a necessary condition for a bipartite graph to be Type 1, namely bi-
conformability. The graphs 5, 13, 42 and 43, and also graph number
41, are not biconformable.

2.6 ‘Same and different’ graphs

A number of graphs are Type 2 because they have the following
structure: The graph G possesses a two edge-cutset {e;, e;} and two
(connected) subgraphs, G; and G, say, such that E(G) = E(G,) U
E(Gz), E(Gl) n E(Gz) = {61, 82} and V(Gl) n V(Gz) comprisés the
endvertices of e; and e;. Furthermore, any A + 1-total colouring of
G assigns the same colour to both e; and e,, while any A + 1-total
colouring of G, assigns different colours to e; and e,. Since a total
colouring of G induces a total colouring of G; and a total colouring
of G2, it follows that G must be Type 2. Graph number 21 has this
structure. A number of graphs having maximum degree three also
fall into this class.

2.7 Further critical graphs

The graphs numbered 22, 23, 24, 25 and 26 are not included in any
of the above categories. These graphs seem to fit in two general
groups: Graphs 23, 25 and 26 are constructed by taking the union of
two complete even order graphs with an additional isolated vertex,
then matching some corresponding vertices in the complete graphs.
Graphs 22 and 24 are complete equibipartite graphs from which a
matching has been removed and to which one further vertex has been
added; these graphs appear to be similar to graph number 41.

The following lemma explains why graph number 25 is Type 2
(graphs numbers 23 and 26 appear to be close variants of graph
number 25, so we can expect to find explanations why these graphs
are Type 2 based on similar ideas). The lemma actually gives an
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infinite family of critical graphs of which graph number 25 is the
smallest (order) member.

Lemma 1 Let G be a graph having order 2n+1, wheren > 4 and n
is even, formed from two vertez disjoint K, ’s by adding a matching
of size n — 2 joining n — 2 vertices from each K,,, and by joining
the remaining two vertices in each K, to a new vertez. Then G is
critical.

Proof Suppose that G is Type 1 and consider a A(G) + 1 total
colouring of G. Since A(G) = n, at most n + 1 colours can be used
in the colouring. Each of the n+41 colours must be present at each of
the vertices of degree n. Suppose, without loss of generality, that the
vertices of one of the subgraphs isomorphic to K,,, subgraph H, say,
are assigned colours ¢;, ¢z, . .., ¢,. By counting, it follows that in H,
there are § edges coloured c,.41, and 3 —1 edges coloured with each of
€1, ..., cn. Consequently each of the n edges of G, which are incident
with exactly one of the vertices in H;, must be assigned a distinct
colour from ¢, ¢y, ..., c,. Repeating this argument with the second
complete subgraph, H, say, we deduce that each of the n edges of G,
which are incident with exactly one of the vertices in Hz, must be
assigned a distinct colour from ¢y, ¢a, ..., ¢y, Cny1. Since n — 2 of the
colours from ¢y, ¢, . . ., Cp, Cnt1 are assigned to edges of the matching
joining H; and Hy, it follows that the remaining four edges (each of
which is incident with the vertex not in V(H;) U V(H32)) must be
assigned one of three remaining colours. Thus G cannot be Type 1.

To show that G is critical, we must show that the removal of any
edge gives a Type 1 graph. In this section we assume for convenience
that n > 8; the cases n = 4 and n = 6 are easily checked. Notice
that there are five types of non-isomorphic edges in E(G).

Let H; be one of the subgraphs of G isomorphic to K,, and let
H,; have vertices 2,,23,...,2,. Let H2 be the other subgraph of G
isomorphic to K,, and let H, have vertices y1,¥2,...,¥n. Let z be
the vertex of degree four. Let z1y1,22y2, ..., Zn—2Yn—2 be the edges
joining vertices in H; to vertices in H; and let 2,12, 2,2, Yn—12, Yn2
be the edges joining vertices in H; or H to z.

Consider G; = G — yp—_12. Colour the vertices of H; with colours
€1,C2,...,Cn and the vertices of Hs with ¢;,¢3,...,¢5-1 and ¢cpyy. It
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is possible (provided the vertex-colourings are chosen appropriately)
to colour the edges of H; and H; with ¢;,cz,...,cn41 in such a way

that colour ¢; is missing at z; for ¢ = 1,2,...,n, colour ¢; is missing
at y; for j =1,2,...,n—1, and colour ¢, is missing at y,. Colour
z;y; witheg; fori=1,2,...,n -2, 2,12 with ¢,—1, 2,2 with ¢, and

Ynz with ¢c,41. Finally colouring the vertex z with a colour ¢; not
used on an adjacent vertex or incident edge gives a total colouring
of G; using A + 1 =n+1 colours.

The other cases are all similar to this. If Go = G — z2,_2¥Yn-2,
colour H; as above, and modify the colouring of H; so that all the
missing colours are as before, except that colours c,—3, ¢,—2 and
Cn+1 are missing from yn_2, Yyn—1 and yn, respectively. Then a total
colouring of G is obtained in the obvious way.

If G3 = G — Yn-1Yn, colour H; as before, and colour all of H,
with the same colours missing at the vertices as in Gy, but with
Yn-1Yn coloured c,, and y,—; coloured ¢;. Then remove the edge
Yn-1¥n, recolour y,,_; with c,, and extend the colourings of H; and
Hy\yn-1Yn to all of G5 in the obvious way, with zy,_, and zy,
coloured ¢; and ¢,y respectively.

If G4 = G — Yn—-2Yn—-1, colour H; as before, and colour all of
H, with the same colours missing at the vertices as in Gy, but with
Yn—2Yn—1 coloured ¢,, and y,_; coloured ¢;. Then remove the edge
Yn—-2Yn—1, Tecolour y,_; with ¢,, and extend the colourings of H;
and Hz\yn—2¥n—1 to all of G4 in the obvious way, with 2y,-; and
2Yn coloured ¢; and c,4; respectively.

Finally, if G5 = G — yn—3Yn-2, colour all of H, with the same
colours missing at the vertices as in G, but with y,_3¥n—2, Yn—1¥n-2,
Y1Yn-1 and y1Yn-3 coloured ¢, ¢1, ¢, and c,-1, respectively. Since
the existence of such a colouring is a little more complicated than
for the earlier cases, we provide a detailed argument: Note that an
edge colouring of K, 4, using n + 1 colours is equivalent to a total
colouring of K,4; using the same n + 1 colours, and that a total
colouring of K, using n + 1 colours induces a total colouring of
K,, using the same n + 1 colours. Let H;* be a complete graph on
K2 vertices constructed from H; by adding two new vertices y*
and y**. A result of Andersen and Hilton [2] (Corollary 4.3.9) states
that any edge colouring of K a3 with n 4+ 1 colours can be extended
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to an edge-colouring of K, ;2 with the same set of colours. Thus it
is possible to find an edge colouring of H;* with the edges y,—3yn-32,
Yn—1¥n—2, Y1¥n—1, Y1¥n-3, ¥"¥1, ¥Y*¥Yn-38, ¥*Yn-2, and y*yn_1 coloured
€ny €1y Cny Cn—1, €1, Cn-3, Cn—2, and c,_;, respectively. Deleting y*
and y** and assigning the colour of the the edge y**y; to the vertex
y; for 1 < i < n, we obtain a total colouring of H, with edges
Yn-3Yn—2) Yn—-1¥n-2, Y1Yn—1 and y1yn—3 coloured cy, ¢1, ¢, and ¢pg,
respectively, and with the colours ¢;, ¢q—3, cn—2, and c,—; missing
at the vertices y;, Yyn—3, Yn—2, and yn_1, respectively. By permuting
the remaining colours (if necessary) we can obtain a total colouring
of H, with ¢; missing at y; for 1 < 7 < n — 1 and ¢, missing at
Yn. This is the desired colouring of H,. Next choose a colouring of
H, with the same colours missing at the vertices as in G; and with
the colour of z; distinct from that of y;. Finally remove the edge
Yn-3Yn-2, recolour y1y,—1 with ca_1, Yn_2¥n-1 with ¢, and y1yn-3
with c¢,. Then extend the colourings of H; and H\y,_syn—2 to all
of G5 in an obvious way, with zy,—; and 2y, coloured ¢; and ¢4,
respectively.

Since the removal of any other edge leaves a graph isomorphic to

one of the five graphs considered above, it follows that G is critical.
(W]

In the remainder of this section we present a lemma which ex-
plains why graph number 41 is not biconformable, and also why it is
critical. Once again an infinite family of critical graphs is identified
having graph number 41 as the smallest (order) member. Since the
graphs described in the lemma are bipartite, it is worth mentioning
that there is a vertex-colouring condition for bipartite graphs which
plays a role similar to that of conformability for general graphs. If
G is a bipartite graph, we call G equibipartite if it has bipartition
(A, B) of the vertex-set such that |A| = |B|, and each edge joins a
vertex of A to a vertex of B.

Given an equibipartite graph G and given a vertex-colouring
which assigns the colours ¢, ¢g,.. ., CA(G)+1, let A; be the set of ver-
tices of A coloured c; and let B; be the set of vertices of B coloured
c;. Let a; = |A;| and b; = |B;|. If W is a subset of V(G), let Vea (W)
denote the set of vertices in W which have degree less than A in the
graph G. Call G biconformable if G has a vertex-colouring such that
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for1<i<A(G)+1,
[Vea(A\4S)| > b; ~ a;,

[V<a(B\B:)| 2 a; - b;,
and
A(G)+1
def(@)2 Y. - bi.
i=1

If G is not equibipartite, we say that G is not biconformable. Note
that this definition of biconformability differs from that proposed by
Chetwynd and Hilton in [7] by the inclusion of the inequalities for
[V<a(A\A4;)| and |Vca(B\B;)|. A modification to the original def-
inition of biconformability was suggested by J. Wojciechowski. A
further modification was then suggested by L. Andersen to give the
current definition. Further modifications may be necessary, if bi-
conformability is to play the actual role for bipartite graphs that
conformability plays for general graphs. The following lemma shows
that like conformability for general graphs, biconformability is a nec-
essary condition for a bipartite graph to be class 1:

Lemma 2 Let G be an equibipartite graph which is not biconformable.
Then G is Type 2

Proof Suppose that G is Type 1. Consider a total colouring
of G with colours ¢, ¢z,...,ca(G)+1- Recall that if v is a vertex
of maximum degree, then each colour ¢; is used to colour v or an
2dge incident with v. Suppose that a; > b; for some i. Then a; — b;
vertices of B must have colour ¢; missing at them. These vertices are
in B\B;, and have degree less than A. Consequently, |V¢a(B\B;)| >
2; — b;. Similarly |Vca(A\A;)| > b; — a; for each i. Furthermore, for
2ach i, |a; — b;| vertices have colour ¢; missing at them, so def(G) >
Z,AJIG )+l |a; — b;]. Thus G is biconformable and the lemma follows.

a

Lemma 3 LetG be a graph of order 2n+2, where n > 4, which is ob-
tained by removing n — 2 independent edges z,y;, Z2Y2, - . ., Zn-2Yn—2
from a K, ,, and joining a new vertez y* to z,%2,..., Tn—2 and a
second new vertez z* to Y1,¥2,. . ., Yn—2- Then G is not biconformable
and is critical.
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Proof Let the independent vertex-sets of the bipartite graph G
be A= {z*,21,25,...,2,} and B={y",41,92,..., %}

We show first that G is not biconformable. Suppose G has a
vertex-colouring with colours {1,2,...,A + 1}. Let A;, B; denote
the set of vertices of A, B, respectively, coloured i. Suppose the
vertex-colouring satisfies the two conditions

[V<a(A\A)| 2 b —ai  (Vd)

and

V<a(B\B:)| > a;i = b;  (Vi).

Let ¢ be an arbitrary colour. If ¢ is the colour of either z,,_; or
Z,, then the only vertex in B which can be coloured c is y*. If y* is
not coloured ¢, then b, = 0 so

IV<A(B\Bc)I = 1 Z ac - bc = ac - 0’

so a. = 1, and so no other vertex in A is coloured c. If y* is coloured
¢, then b, =1 and so

|V<A(B\Bc)| =02>a —-b-=a.—1;

therefore a, = 1, so no other vertex in A is coloured ¢. Thus if z,,_;
or z, is coloured c then the only other vertex which can be coloured
c is y*. Similarly, if y,_; or y, is coloured ¢, the only other vertex
which can be coloured c is z*.

If z; is coloured ¢ for some j € {1,2,...,n—2}, the only vertex of
B which can be coloured c is y;. If y; is not coloured ¢, then b, = 0,
so

[V<a(B\B:)| =12 ac — b. = a. - 0,

0 a; = 1, and so no other vertex in A is coloured ¢. If y; is coloured
¢, then again no other vertex in A is coloured ¢. Thus if z; is coloured

c for some j € {1,2,...,n — 2}, then only one other vertex can be
coloured ¢, namely y;.
Thus n—2 colours are needed for the vertices z,, z,, ..., £,_2 and

Y1, Y2y - - - Yn—2, and a further four colours are needed to colour z,,1,
Zpn, Yn-1 and y,. Thus at least n + 2 colours are needed altogether,
and so G is not biconformable. Since G is not biconformable, it
follows that G is Type 2.
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Next we show that G is critical. We give a formal proof which
is valid only for n > 10. The remaining cases were checked on a
computer, but we do not give the details here. To show that G is
critical we have to show that G\e can be totally coloured with n+1
colours for each edge e of G. There are exactly four non-isomorphic
graphs which can be obtained from G by removing a single edge;
they can be obtained by removing the edges z,_2y*, 1y2, Tn—2¥n-1
and z,,_1Y,_1 respectively.

Let G* be the complete bipartite graph K, ; n+1 obtained from
G be adding the edges z*yn—1,2*¥n, ¥*Tn-1, ¥*2n, 2*y* and z;y;
for 1 < i < n—2. In each case we shall give G* an appropriate
edge-colouring with colours ¢y, ¢, ..., ca+1, and then derive from it
a total colouring of G\e.

First consider the graph G; = G—2,_2y*. In G* colour the edges
z'Y", 'Yn—1, Yn, ¥V Tn-2, ¥ Tn-1, ¥ Zn, Tn_2Yn-2, Tn—2Yn—1 With
colours Cn—2, €1, Cnt1y €1y Cny Cn—1y Cn-2, Cntl, respeCtiveIY‘ Now
extend this partial edge-colouring of G* to an edge-colouring of all
of G* with colours ¢,...,¢n41 in such a way that the edge z;y;,
for 1 < ¢ < n — 3, receives colour ¢;. Bearing in mind the corre-
spondence between an edge-coloured K,4)n41 and a latin square
of side n + 1 (where the two maximal independent vertex-sets in
the Kpn41,n41 correspond to the row and column labels of the latin
square, and the coloured edges correspond to the symbols in the
latin square), it follows from [1] that such an extension of the par-
tial edge-colouring exists for all n > 10. We can now obtain the
required total colouring of G; as follows. We remove the edges of
G* which are not in G;. All the edges of G; are coloured. We re-
colour the edge z,_2y,—1 with colour ¢;, and we colour the vertices
2%, Y", Zn-2, Zn-1, Zn, Yn-2, Yn-1, Yn With colours ¢n 41, ¢n_2, Cn_3, Cn,
Cn—1, Cn—2, Cn+1, Cnt1 respectively, and colour z; and y; with colour
¢; for 1 <7 < n-3. It is easy to see that this yields a total colouring
of G 1.

Next consider the graph G = G — z1¥2. In G* colour the
edges z1y1, Z2¥2, Z1Y2, Z1Yn-1, 'Yn—-1, T"Yn, ¥ Zn-1, ¥"2, with
colours ¢;, ¢2, €3, Cnt1, €3, Cnt1, Cn—1, Cn, respectively and, for
3 < i < n -2, colour the edge z;y; with colour ¢;. Then extend
this partial edge-colouring of G* to an edge-colouring of all of G*
with colours cy,...,cn+1. For n > 10 this can be done by [1]. Now
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we obtain the required total colouring of G as follows. We remove
the edges of G* which are not in G2. We recolour the edge z;yn—;
with colour c3. Then we colour z*, y*, 21, 22, Zn—1, Zn, ¥1, ¥2) ¥n—1, Yn
with colours Cn+1y Cny €1y €24y Cn—1, Cn, C1, €2, Cni1, Cntl respectively,
and colour z; and y; with ¢; for 3 < i < n — 2. It is easy to check
that this yields a total colouring of G.

Next consider the graph G3 = G — 2,,_2y,_1. In G* colour the
edges z*yn, ¥ Zn-1, ¥*Zn, Zn—2¥n-2, Zn-2¥n—1 With colours c,4i,
Cn—1, Cn, Cn—2, Cn+1 respectively, and for 1 < i < n — 3, colour the
edge z;y; with ¢;. Then extend this partial edge-colouring of G* to an
edge-colouring of all of G*. This can be done for all n > 6 by [1]. Now
obtain a total colouring of G5 as follows. Remove the edges of G*
which are not in G3. Then colour vertices 2*, ¥*, n-1, Zn, Yn—1, ¥n
with colours ¢p41, €ny €n-1, Cny Cn41, Cn41 respectively, and colour
z; and y; with ¢; for 1 <7 < n — 2. This yields a total colouring of
Gs.

Finally consider the graph G4 =G — z,,_1¥n—1. In G* colour the
edges 2*yn, ¥*2,, n—1Yn—1 With colours c,1, ¢,, ch—1 respectively,
and, for 1 < 7 < n — 2, colour the edge z;y; with ¢;. Then extend
this partial edge-colouring to an edge-colouring of all of G. This can
be done for n > 6 by [1]. Now obtain the required total colouring of
G4 as follows. Remove the edges of G* which are not in G4. Then
colour the vertices z*,¥*, 2n—1, Zn, Yn—1, Yn With cni1, n, Cn-1, Cn,
Cn-1, Cn41 respectively, and, for 1 < ¢ < n — 2, colour z; and y; with
colour ¢;. This yields a total colouring of G.

Since all subgraphs of G which can be obtained by removing one
edge are isomorphic to one of Gy, G2, G3 or Gy, it follows that G is
critical. o

There seems to be considerable similarity between graph 41 and
graphs 22 and 24, even though the latter graphs are not bipartite. It
seems probable that results like Lemma 3 could be proved for general
classes of graphs which include graphs 22 or 24.
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