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ABSTRACT. In this note, necessary and sufficient conditions are
given for the existence of an equitable partial Steiner triple
system (S,T) on n symbols with exactly ¢ triples, such that
the leave of (S,T) contains a 1-factor if n is even and a near
1-factor if » is odd.

1 Introduction

A partial Steiner triple system of order n (ST'S(n)) is an ordered pair (S, T)
where T is a set of edge-disjoint copies of K3, or triples, that together
form a subgraph G(S) of K, with vertex set S. The leave of (S,T) is the
complement of G(S) in K,. For each s € S let r(s) be the number of
triples in T containing s. A partial ST'S(n) (S,T) is said to be equitable
if |r(s1) — r(s2)] £ 1 for all 51, s2 € S. A mazimum partial STS(n) is a
STS(n) (S,T) in which T is as large as possible among all partial ST'S(n)s.
If (S, T) is a maximum partial ST'S(n) then let u(n) = |T|. A near 1-factor
is a graph on n vertices consisting of (n — 1)/2 independent edges (so n is
necessarily odd).
Schénheim has shown (6] that:

_J llr-1)/2|n/3] =1 ifn=>5 (mod 6), and
wn) = { [[(n—1)/2)n/3] otherwise.

Furthermore, the leave of any maximum STS(n):
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(a) has no edges if n =1 or 3 (mod 6),

(b) is a 1-factor if n =0 or 2 (mod 6),

(c) has its edges forming one 4-cycle if n = 5 (mod 6), and
(d) is the spanning subgraph F U K 3 if n = 4 (mod 6),

where F consists of (n — 4)/2 independent edges.

It has been shown by Andersen, Hilton and Mendelsohn [1] that for all
t(n) < p(n) there exists an equitable partial STS(n) (S,T) containing
exactly t(n) triples (see [5] for a generalization to triple systems of higher
index). Here we present a variation of their result where the leave of (3, T)
is required to contain a 1-factor or a near 1-factor. This result is very useful
in embedding partial totally symmetric quasigroups [4]. While Theorem 2.2
can be proved directly by making use of several different constructions, here
it is proved using an extension of the proof used by Andersen, Hilton and
Mendelsohn [1].

It is worth noting some related results. Necessary and sufficient condi-
tions have been found [3] for the existence of partial triple systems (S, T)
of order n and index A with ¢(n) triples whose leave has a 1-factorization
(so G(S) must be regular). Also, Colbourn and Rosa [2] have characterized
the graphs in which all vertices have degree 0 and 2 that are the leave of a
partial ST'S.

2 The Main Result

We begin with a result that can be applied with any matching (not neces-
sarily 2 maximum matching) in the leave.

Theorem 2.1 If there exists a partial STS(n) with t(n) triples that con-
tains a matching M in its deave, then there exists an equitable partial
STS(n) with t(n) triples whose leave contains M.

Proof: Suppose that (S = {1,2,...,n},T") is a partial ST'S(n) that con-
tains ¢(n) triples, and whose leave contains a matching M. If (S,T") is
equitable then we are finished. Otherwise let /(i) be the number of triples
in T" that contain symbol 4, and assume that r'(1) < 7/(2) < --- < 7'(n),
and that r'(n) — /(1) > 2. If vertex 1 is incident with an edge in M then
let the edge be {1, £}. Form a simple graph H on the vertices 2,...,n — 1
by joining i to j if and only if either {1,4,;} € T’ or {i,4,n} € T”, and color
{2, 7} with 1 or n respectively. Clearly this is a proper 2-edge-coloring of H
in which for each z € {1,n} r'(x) edges are colored z if there is no triple in
T’ that contains both 1 and =, and r'(z) — 1 edges are colored z otherwise.
Since r'(n) — /(1) > 2, at least 2 components of H consist of a path in
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which the first and last edges are colored n. Clearly at least one of these
paths, say P = (s1, s2,..., 52x) does not begin or end with the vertex £. So
the edges {1, s1} and {1, s2x } occur in no triple in 77, nor in M. Therefore
if we define T = T' U {{1,s2i—1,52:} | 1 <% < k}U {{s2,52i+1,n} |1 <i <
k—11\({{s2i-1,82i,m} | 1 i < k}U{{1, 82, 52841} | 1 < i < k—1}), then
(S,T) is a partial ST'S(n) that contains ¢(n) triples, whose leave contains
M, and in which »(1) = »'(1) + 1, r(n) = r'(n) — 1, and r(i) = r'(3) for
2 < i < n — 1. Repetition of this process produces the required equitable
partial STS(n). O

Now we can apply Theorem 2.1 to the most interesting case where the
matching in the leave is a (near) 1-factor.

Theorem 2.2 There erists an equitable partial STS(n) (S,T) with t(n)
triples such that its leave contains a 1-factor if n is even and a near 1-
factor if n is odd if and only if t(n) < T(n), where

u(n) =n(n—2)/6 ifn=0 (mod 6),
pn)—(n-1)/3 =n-1)(n-2)/6 ifn=1 mod 6),
T(n) = uln) =n(n-2)/6 z:fn =2 (mod 6),
p(n) —n/3 =n(n-3)/6 if n=23 (mod 6),
p(n) -1 (n+2)(n—4)/6 ifn=4 (mod 6), and

u{n) — (n—5)/3 (n-1)(n—-2)/6 ifn=25 (mod 6).
Proof: The necessity when n is even is obvious once one notes that when
n = 4 (mod 6) the leave of any maximum partial STS(n) is F U K1 3 (see
(d) above) which does not contain a 1-factor, so in this case T(n) < u(n).
The necessity when = is odd follows directly from the leave of (S, T') having
all vertices of even degree, so since the leave contains a near 1-factor, at
least n — 1 vertices in the leave have degree at least two, so the leave has
at least n — 1 edges.

To prove the sufficiency, we first show the result is true if we set ¢(n) =
T(n). Secondly, if t(n) < T'(n) then by starting with a partial STS(n) with
T(n) triples whose leave contains a (near) 1-factor, clearly we can throw
away triples to form a partial ST S(n) (S,T’) with ¢(n) triples whose leave
contains a (near) 1-factor. The result then follows from Theorem 2.1.

To obtain the result when t(n) = T'(n) proceed as follows. If n = 0 or
2 (mod 6) then define (S,T) to be a maximum partial ST'S(n), since its
leave is a 1-factor (see (b) above). If n = 4 (mod 6) then let (S,T”) be a
maximum partial STS(n), in which the K, 3 (see (d) above) in the leave
consists of the edges {1,2}, {1,3} and {1,4} and let {3,4,z} € T’; then
(S,T = T'\{{3,4,z}}) has T(n) triples, and its leave contains the 1-factor
Fu{{1,2},{3,4}}. If n is odd then let (S’,T) be a maximum partial
STS(n +2). Let s1, s; € S, where if n+2 = 5 (mod 6) then {s;,s2}
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is an edge in the leave (the edges in the leave form a cycle of length 4 if
n+2 = 5 (mod 6)). Let t(s;) be set of the triples in T’ containing s;.
Then (S = S'\{s1,s2}, T = T'\(¢(s1) U ¢(s2)) is a partial triple system
with |[T| = T(n) and with leave containing the near 1-factor consisting of
the edges in {{x,y} | {s1,z,y} € T’} (this could also be obtained from
results in [2], for example). In any case, the leave contains a near 1-factor
as required. a
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