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ABSTRACT. An SOLS (self orthogonal latin square) of order
n with n; missing sub-SOLS (holes) of order h; (1 < i <
k), which are disjoint and spanning (i.e. E:;]hn,-h; = n), is
called a frame SOLS and denoted by FSOLS(hT!h32 ... hL¥).
In this article, it is shown that an FSOLS(3"u!) exists if and
onlyifn >4andn > 1+ 339, with seventeen possible ex-
ceptions (n,u) = (5,1) and (n,u) = (n, [_ﬂ'iz'—llj) for n €
{6,10, 14,18, 22, 30, 34, 38, 42, 46, 54, 58, 62, 66, 70, 94}

1 Introduction

A self-orthogonal latin square of order v, or SOLS(v), is a latin square of
order v which is orthogonal to its transpose. It is well known [4] that an
SOLS(v) exists for all values of v, v # 2, 3 or 6.

Let S be a set and H = {S1,52,...Sn} be a set of subsets of S. A holey
latin square having hole set H is a |S| x |S| array, L, indexed by S, which
satisfies the following properties:

1. every cell of L is either empty or contains a symbol of S,
2. every symbol of S occurs at most once in any row or column of L,

3. the subarrays S; x S; are empty for 1 < i < n (these subarrays are
referred to as holes),
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4. symbol s € S occurs in row or column ¢ if and only if (s,t) € (S x
SY\ UL, (Si x S;).

The orderof L is |S|. Two holey latin squares on symbol set S and hole set
H, say Ly and L, are said to be orthogonal if their superposition yields
every ordered pair in (S x S) \ UL, (S; x S;). We shall use the notation
IMOLS(s; 51, 82, ..., 8,) to denote a pair of orthogonal holey latin squares
on symbol set S and hole set H = {5,855,...,5,}, where s = |S| and
si = |S;| for 1 <i < n. If H =40, we obtain an MOLS(s). If H = {S}, we
simply write IMOLS(s, s,) for the orthogonal pair of holey latin squares.

If Ly and Ls form an IMOLS(s; 51, s2, . - ., 8») such that L, is the trans-
pose of Ly, then we call L, a holey SOLS, denoted by ISOLS(s; 51, 2, ... ., 8n).
If H =0, then a holey SOLS is an ISOLS(s, s).

If H = {5,85,,...,5n} is a partition of S, then a holey SOLS is called
a frame SOLS. The type of the frame SOLS is defined to be the multiset
{IS:]: 1 € i < n}. We shall use an “exponential” notation to describe
types: so type hy'h3?...h:* denote m; occurrences of ki, 1 < i < k,
in the multiset. We briefly denote a frame SOLS of type hT'h32...hJ*
FSOLS(hT Ry ... hig*).

We observe that the existence of an SOLS(n) is equivalent to the existence
of an FSOLS(1"), and the existence of an ISOLS(n, ) is equivalent to the
existence of an FSOLS(1*~?h!).

FSOLS has been very useful in recursive constructions of various com-
binatorial designs, such as 2 perfect m-cycle systems [16], intersection of
transversal designs [7], and skew Room frames [6]. For some results on
IMOLS, we refer to [1,2,8,15,17,18,21,26]. The following are known results
concerning FSOLS(h") and FSOLS(h™ul).

Theorem 1.1. [22] If there exists an FSOLS(h™u'), thenn > 1+ 2%,
Theorem 1.2.

(1) [4] There exists an FSOLS(1™) if and only if n >4, n # 6.

(2) [20,22] For h > 2, there exists an FSOLS(h™) if and only if n > 4.

(3) [27] There exists an FSOLS(1*~%u!) if v > 3u+1 and (v,u) # (6,1)
or (3u+2,u) where u € {2,4,6,8,10, 14,16, 18,20, 22, 26, 28, 32, 34, 46}.

(4) [24] There exists an FSOLS(2"u!) ifand only if n >4 and n > 14u.

The following is another necessary condition for the existence of FSOLS
(A"ul).

Theorem 1.3. For h # u, if there exists an FSOLS(h™u') then n > 4.

Proof: The proof of n > 2 is trivial, so we need only to prove that = # 3.
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Assume that there exists an FSOLS(h3u!) and denoted by L, with row
and column indices and entries taken from the set X UY U Z U T, where
X = {2113:2: ...,Ih}, Y = {yl,yz:---,yh}, Z = {21,22,...,Zh}, and
T = {t1,t2,...,ts}. The entries in the first row (indexed by z;) of L
with column indices y; (1 < ¢ < k) must be from Z UT. Suppose they
are iy,t2,...,8k, 21,22,.-.,2h—k. Suppose the entries of the first row with
the column indices z; (1 < i < h) are txyr,- -, tu, Y1, 92, - -« » Yn— (u—k)-
We observe the self-orthogonality of L, suppose the entries in the first

column with row indices y; (1 <4 < h) are 21,23,...,2;,t1,85,..., 8,
and the entries in the first column with row indices 2; (1 < 7 < h) are
Y123 Ynkor bhekt 1 - - bk (hutky WheTe {2,..., 20} C Z, {9}, ..,

Yh-x} C Y and {23,85,...,8, ¢ nutky} =T Then it must be h —k +
(h —u+ k) = u. This means that k = u. This is a contradiction and the
proof is complete. a

In this article, we shall show that for an FSOLS(3"u!) exists if and only if
n > 4andn > 142, with seventeen possible exceptions that (n, u) = (5,1)
and (n,u) = (n, [i(ﬁ;_‘lj) where n € {6, 10, 14, 18,22, 30, 34, 38, 42, 46, 54,
58,62, 66,70,94}.

2 Constructions and transversals

Construction 2.1. (Filling in holes) [24] Suppose there exists an FSOLS
of type {si: 1 <i<n} and for 1 <i<n, si=2;.‘=ls,-_.,-.

(1) If there exists an FSOLS of type {sn;: 1 < j < t,}, then there exists
an FSOLS of type {s;: 1 <i<n—-1}U{s,;;: 1 <j <t,}.

(2) Let @ > 0 be an integer. For 1 < i < n — 1, if there exist FSOLS
of type {a} U {sij: 1 < j < t;}, then there is an FSOLS of type
{a+ S} U(UESH{S;: 1 <5 < 8:)).

Construction 2.2. (Weighting) Suppose (X, G, A) is a GDD and let w be
amap: X — Z* U {0}. Suppose there exist FSOLS of type {w(z): = € A}
for every A € A. Then there exists an FSOLS of type {3} .5: G € G}.
The following recursive construction is referred to as the Inflation Con-
struction. It essentially “blows up” every occupied cell of an FSOLS into a
latin square such that if one cell is filled with a certain latin square, then its
symmetric cell is filled with the transpose of an orthogonal mate of the latin
square. We mention the work [5,19] which can be thought of as sources of
the Inflation Construction.
Construction 2.3. (Inflation Construction) Suppose there exists an FSOLS
(hT*h3?...he*) and an MOLS(h), then there exists an FSOLS((hh;)™
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(hh2)™2 ... (hhk)™). In particular, the existence of FSOLS(1™) and MOLS(h)
implies the existence of an FSOLS(h™).

In order to get an FSOLS(m™u!), we generalize the Inflation Construc-
tion. The following recursive constructions rely on information regarding
the location of (holey) transversal in certain latin squares. Suppose L is a
holey latin square on symbol set S with hole S;. A holey transversal with
hole S is a set T of |S| — |Si| (occupied) cells in L such that every symbol
of S\ S, is contained in exactly one cell of T and the |S| — |Sy| cells in T
intersect each row and each column indexed by S\ S, in exactly one cell.
|S| is called the size of the hole of the holey transversal. A hole transversal
T is symmetric if (i,7) € T implies (j,7) € T. Two holey transversals T}
and T, with the same hole are called a symmetric pair of holey transversals
if (4,7) € T if and only if (5,7) € To. If S; = 0, then we call the holey
transversal a (complete) transversal. m holey transversals are said to be
disjoint if they have no cell in common.

The following construction is a generalization of (27, Construction 3.3].

Construction 2.4. Suppose there is an FSOLS(t"™) which has p + 2q dis-
Jjoint transversals, p of them being symmetric and the rest being q symmet-
ric pairs. For 1 <i<pand1<j<gq,let v; >0 and w; > 0 be integers.
Let h be a positive integer, where h # 2 or 6 if p+2q < t(n —1). Suppose
there exist IMOLS(h + v;,v;) for 1 < i < p and IMOLS(h + wj, w;) for
1 < j < q. Then there exists an FSOLS((ht)"(v + 2w)!), where v = ¥ v;
and w= Z wj.

Construction 2.5. Suppose there is an FSOLS(t™) which has p + 2q
disjoint transversals, p of them being symmetric and the rest being q sym-
metric pairs. For 1 < i <pand1<j <gq,let v; >0 and w; >0
be integers. Let s and h be positive integers, where sh # 2 or 6 if
P+ 29 < t(n —1). Suppose there exist FMOLS(s"v}) for 1 < i < p,
FSOLS(s"wj}) for 1 < j < q and FSOLS(s'"k!). Then there exists an
FSOLS((tsh)™u'), where u =k + Y v; + 23 w;.

Proof: Applying Inflation Construction, take FSOLS(t") as initial square,
filling every occupied cell into the given FSOLS(sh'w]l-) we obtain an FSOLS
((tsh)™(v + 2w)') with h sub-SOLS of order nts missing, where v = 3" »;,
w = ) wj. Filling the holes of order nts with the given FSOLS(s'"k!) we
obtain an FSOLS((tsh)™u!) as desired. (]

The following is a modification of Construction 2.4, in which holey transver-
sals are used.
Construction 2.6. [27, Construction 3.4] Suppose there is an FSOLS(t9h!),
where H is the size h hole, having k+2p disjoint holey transversals with hole
H such that k of them are symmetric and the rest form p symmetric pairs.
For1 <i<kandl<j<p, letv; and w; be non-negative integers. Let m
be a positive integer, m # 2 or 6, and suppose there exist IMOLS(m+v;, v;)
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for 1 < i < k and IMOLS(m + wj,w;) for 1 < j < p. Then there is an
FSOLS((mt)?(mh +u + 2w)'), where v =3 v; and w =Y w;.

To apply these recursive constructions we need some “ingredients” pro-
vided in the following theorems.

Theorem 2.7. [3] There exists an MOLS(v) for any positive integer v,
v #2,6.

Theorem 2.8. [13] There exist IMOLS(v,n) for all values of v and n
satisfying v > 3n except that IMOLS(6,1) does not exist.

Theorem 2.9. [27] There exist IMOLS(v,n) if v > 3n+ 1 and (v,n) #
(6,1), (v,7) # (3n+2,n), wheren € {2,4,6,8, 10, 14, 16, 18, 20, 22, 26, 28, 32,
34,46}.

Theorem 2.10. [11] If n > 5 is an odd prime power, then there exists
an FSOLS(1™) with n — 1 digjoint transversals occurring as "T‘l pairs of
symmetric transversals.

Theorem 2.11. [9] For all even n, n ¢ {2, 6,10, 14, 46, 54, 58, 62, 66, 70},
there exists an FSOLS(1™) with n — 1 disjoint symmetric transversals.

A transversal design TD(k,n) is a GDD with kn points, k groups of size
n, and n? blocks of size k. It is well known that a TD(k, n) is equivalent
to k — 2 MOLS (mutually orthogonal latin squares) of order n and that for
any prime power p, there exist p — 1 MOLS of order p. So we have the
following lemma.

Lemma 2.12. For any prime power p, there exists a TD(k,p), where
3<k<p+1.

Theorem 2.13. [11, Theorem 2.5] If n is a prime power, n. > 7, then there
exist FSOLS(1™) with a pair of symmetric holey transversals with a hole of
size one.

Theorem 2.14. Suppose n > 5 is an odd prime, then there exists an
FSOLS(1™) with one symmetric holey transversal and 12“—5 symmetric pairs
of holey transversals with a hole of size one, all these holey transversals are
disjoint.

Proof: From [12, Lemma 1.4] we know that there exist n—1 MOLS(n) and
occurring as 153 pairs of squares, each pair being mutually transposes, plus
a symmetric square and a square with constant on the main diagonal. Then
the first pair gives an ISOLS(r, 1) and each of the remaining determines a
symmetric pair of holey transversals in the ISOLS(n, 1). Each of the extra
squares determines a holey symmetric transversal, and the holey symmetric
transversal determined by the last square is on the main diagonal. This
means that there exists an FSOLS(1™) as has been desired. a
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Lemma 2.15. Suppose there is a TD(s + 2,t), where s > 4. If there exist
FSOLS of type h°k}, h*t1k}! (1 < i <t), k™r! and h'rl, then there exist
FSOLS(h**t™ul) for u =1+ Y ¢_, ki.

Proof: Applying Construction 2.2, in the given TD(s + 2,t), give weight
h to each point of the first s groups. For the (s + 1)th group, give weight
h to m point and weight zero to the rest points. For the last group, give
weight k; to the ith point (1 < i < t). Using the input FSOLSs, we obtain
an FSOLS of type (ht)*(hm)'(3_ k;)!. Filling the holes of size ht and hm
with FSOLS(h!r!) and FSOLS(h™r!) we obtain the desired FSOLS. O

All the construction given above are recursive constructions. In the fol-
lowing we give a direct construction. It is a modification of the starter-adder
type constructions. The idea has been described by several authors includ-
ing Horton [14], Hedayat and Seiden [10}, Zhu [25], Heinrich and Zhu [12]
and Xu and Zhu [24].

Construction 2.16. Let e=(0, ao1, a02, - - - » @o(n—1), B, Go(n+1)s - - - » B0(2n—1)»
e oo ®,80(hn—n+1), - - - » @0(hn,)) be & vector of length hn with entries in (Zpy,\
{0,n,...,(h = 1)n}) U X, where X = {z1,z2,...,Z4}, “D" means that
the cell it occupies is empty. Let f = (aoz,,0Q0z,,.--,002,) and. g =
(@z,0, 82,0, . ..,0az,0) be vectors of length u with entries in Zp,\{0,n, ..., (h—
1)n}. These vectors are use to construct an array A = (a;;) of order hn+u
with n empty subarrays of order h and one empty subarray of order u
having row and column indices and entries in Zy, U X. The array is con-
structed as follows, where all the elements including indices are calculated
modulo hn and z; acts as “infinite” elements.

(1) If a;; =0, 0 < 4, j < hn — 1, then a1 1)j41) = 0.

(2) If ai;j € Zpn, 0 <4, j < hn —1, then A3i+1)(G+1) = @ij + 1.

(3) If Qij € X, 0 < 1 < hn — 1, then Qi+1)(G+1) = @i j

(4) If0<i<hn-1,and j € X, then a@i+1); = aij + 1.

(6) f0<j<hn-1,and i€ X, then a;(j;1) = a;; + 1.

Conditions can be described for the vectors e, f and g so that the array
as constructed is an FSOLS(h™u!). However, we shall simply give the
vectors and the reader can check for himself that they do yield the desired
FSOLS(h™u?).

Example 2.17. [23] Let e = (0,2,2,1,0,7,3,6), f = (5), g = (3), these
vectors generate an FSOLS(241!) shown in Figure 1, where X = {z}.

From Figure 1 we can easily see that there are two pairs of symmetric
holey transversals with a hole of size one in the FSOLS(2411). It is clear

that there are there are M“z—'ll — b pairs of symmetric holey transversals
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with a hole of size b in an FSOLS(h™b!) generated by Construction 2.16
if h(n'— 1) is even; if h(n — 1) is odd, there will be ﬂ% — b pairs of
symmetric holey transversals and one holey symmetric transversal with a
hole of size b in an FSOLS(h"b!) generated by Construction 2.16. We list
in Table 2.2 some FSOLS gengrated by Construction 2.16, we only give the
type and the vectors e, f and g. So from [24, Lemma 3.17], [23], [12] and
Table 2.2 we have the following lemma which is very useful in constructing
FSOLS(3™u!).

21x]|1 713|615
7 31x|2 014]6
510 4| x |3 117
2161 51x|4 0

31712 6|x[5]1
6 410]3 71x]2
x| 7 511]4 03
1[x]|0 6|]2]5 4
314|516 ]7]|0]1]2

Figure 1. an FSOLS(241)

Lemma 2.18. There exist FSOLS(h™b') with h(n — 1) — 2b disjoint holey
transversals with a hole of size b occurring as ﬂ"z—_lz — b of symmetric
pairs when h(n — 1) is even and with h(n — 2) — 2b + 1 disjoint holey
transversals with a hole of size b occurring as a symmetric one and &{—22 -
b of symmetric pairs when h(n — 1) is odd for the parameters shown in
Table 2.1.

h n b

2 6 0,1,34
2 7 1

2 11 1

1 10 1,3

1 13 3

1 14 25

1 15 0,2,6
1 17 1,3

1 19 13

1 46 17,21
1 58 2327
1 62 26,29

Table 2.1. FSOLS(h"b!) have holey transversals
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2°: e=(0,10,3,1,9,7,0,11,4,8,5,2),f = g = 0.
11': e=(0,2,11,6,14,13,1,9,4,7,15,10, 16, 3,8,12,z), f = (5), g = (6).
1°: e = (9,14,13,11,10,8,7,2,12,6,9,5,4,3,1), f = g = 0.
1¥1': e =(0,,18,17,16,15,14,6,9,13,12,7,4,11,8,3,2,1,5), f = (10),
g=(9).
1°17': e = (0,13,9,43,42, 19, 27,23, 37,21, 7, 22, 34, 3223, 30, 12, 74, 28, x5,
Te,T7,25,14,18,24,44,40,29,17,210,Z11, 22, Z12, Z13, 36,x14, 39,
15, T16,Z17,6,4,3,2, 26),
f = (31,11, 38,35,29, 21,10, 16,8, 1, 33,41, 15,45, 5, 18, 20),
g = (30,9, 35, 31,23, 28,20, 5,41, 32,17, 24, 33, 26, 25, 39, 44).
1°21': e = (0,13,7, 21,22, 19,27, 23,37, 23,7, 74, 34, 32, 25, 30, 12, 6, 28, 27
z8,Z9, 25,14, %10, 24,44,40, 211, 17, 712, Z13, 22, T14, 715, 36, T16, 39,
Z17, T18, 19, T20,4, 3, 21, 26),
f = (31,11, 38,35,43,29,21,42, 2,10, 16, 6,8, 1, 33,41, 15, 45, 5, 18, 20),
g = (30,9,35,31,38,23,28,4,11,20,5,40, 41, 32, 17, 24, 33, 26, 25, 39, 44).
1°°23': e = (9,57, 56,55, 54, 53, 71, 51, 72, 73, 48, 47,45, 34, 43, 38, 42, 41, 35, 4,
zs5,37,z¢,33,z7,32, 31,49, x5, 13, 7,z9,x10,Z11, 21, Z12, 50, 213, 14, 20,
T14, Z15, T16, Z17, T18, T19, T20, T21, 22,40, 19, 223, 9, 6,4, 3, 2, 1),
f = (27,10,16,52,18, 5,28, 26,44, 46, 24, 23, 11, 22, 39, 25, 8, 36, 29, 30,
15,12,17),
g = (28,12,20,57,25,13,18, 37, 31, 32, 9,40, 51, 3, 19, 46, 30, 1, 53, 55,
41,43,47).
1%17': e = (9,57, 56,55, 21, z2, 73, 51, 74, 75, 48, 47, 45, 34, 43, 38, 42, 41, 35, 75,
z7,37,x8,33, 20, 32, 31,49, z,0, 13,7,211, 212, Z13, 21, 214, 50, 235, 14, 20,
%16, T17, T18, T19, T20, T21, T22, T23, T24, 40, 19, 225, 9, 1,4, 26, 27, 10),
f = (27,2,53,16,52,54,18, 5, 3,28, 26, 44, 46, 24,6, 23,11, 22, 39, 25, 8,
36,29, 30,15,12,17),
g = (28,4,50,20,57,2,25,13,12,18,37, 31, 32,9, 48, 40, 51, 3, 19, 46, 30,
1,53,55,41,43, 47).
1°226': e = (0, 61,60,59, 58, 57, 21, 55, 54, 53, 52, 51, 50, 49, 48, 2, 46, 45, 44, 43,
42,41, 40, 33, 38, 37, 36, 35, 33, 23, 29, 34, 24, 4, T5,%6,X7,Z8,T9,T10,Z11,
T12,T13, T14, £15, T16, T17, 16, T18, T19, T20, T21, T22, T23, T24, T25,47,
Z26, 5, 3, 2, 1),
f=(6,9,11,8,10,13,15,12,7, 18,14, 21,22,17, 24, 30, 20, 27, 32, 23, 26,
19,28, 31, 56, 25),
g = (7,11,15,13,17, 21, 25,23, 19, 32, 29, 37, 39, 35,43, 50, 41, 49, 55, 47,
51,45,1,59,27, 57).
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1%229': e = (9, 61, 60, 59, 58, 57, z1, 55, 54, 53, 52, 51, 50, 49, 48, 22, 46, 45, 44, 43,

42,41, 40, 39, 38, 37, 36, 35, 23, 24, 29, 34, x5, 2,9, x6, 7, 28, L9, £10, L11,
%12, 13, %14, X15, Z16, Z17, 10, T18, Z19, Z20, T21, T22, L23, 24, 25, L26,
47, 226, Z27, Z28, T29, 8),

f =(3,7,18,11,1,5,6,15,13,12,21,4, 33,14, 16, 22, 17, 24, 30, 20, 27, 32,
23,26, 19, 28, 31, 56, 25),

g=(2,5,21,15,6,11,13,7,4, 23, 33,17, 19, 29, 32, 39, 35,43, 50,41, 49,
55,47,51,45,1, 59, 27, 57).

Table 2.2. Some FSOLSs constructed by Construction 2.16

3 Existence of FSOLS(3"u!) for n is even

Let E = {2, 6,10, 14,46, 54,58, 62,66, 70}, F = {6,10, 14,18, 22,30, 34, 38,
42,46,54,58,66,70,94} and G = EU F = {2,6,10,14,18,22, 30, 34, 38,42
46,54, 58,62, 66,70, 94}.

Lemma 3.1. If n is even and n € G, then there exist FSOLS(3"u!) for
0<ug D)

Proof: From Theorem 2.11 we know that there is an FSOLS(1") with
n — 1 disjoint symmetric transversals. Applying Construction 2.4 with
t=1,p=n—-1,¢=0,h =3, v; =0, or 1, we obtain an FSOLS(3"u!),
where 0 <u <n-1.

Applying Construction 2.5 witht =1, p=n—-1,¢=0,s=1, h=3,
v; =1, 0 < k < § —1, the input designs are from Theorem 1.2, we obtain
an FSOLS(3"ul!) for n —1 < u < 321, ]

Lemma 3.2. There exist FSOLS(3%u!) for 1 <u < 6.

Proof: Applying Theorem 2.14 and Construction 2.6 with n = 7, g = 6,
t=h=1,k=p=1,m=3and0 < v, w; <1, we obtain an FSOLS(3%u?)
for3<u<6.

FSOLS(352!) can be constructed by vectors e = (0, 17,15, 14,13, 9,9, 10,
z1,5,11,22,0,2,4,7,3,1), f = (6,8), g = (17,15), and FSOLS(3%1!) by
e=(0,z,,17,16,8,13,0,14,10,7,3,2,9,5,15,11,1,4), f = (9), g = (17). O

Lemma 3.3. There exist FSOLS(3'%u') for 1 < u < 12.

Proof: From Lemma 2.18 we know that there exists an FSOLS(11%b)
with 10 — 2b — 1 disjoint holey transversals with a hole of size b and oc-
curring as a symmetric one and 4 — b symmetric pairs for b = 1 or 3.
Applying Construction 2.6 witht =1, g =10, h=1, k=1, p = 3,
m = 3, 0 < v;,w; <1 we obtain an FSOLS(3'%!) for 3 < u < 10; with
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t=1,9=10,h=3,k=1,p=1,m=3,0 < v,w; <1 we obtain an
FSOLS(3'%!) for 9 < < 12. FSOLS(3°1!) can be constructed by vectors
e = (0,29, 28,27,26,24, 23,19, 2,22,0, 18,17, 8, 13,16, 25,14, 21,5, 0,12, 15,
7,9,6,4,3,2,1), f = (11), g = (18), and FSOLS(31°2) by e = (8, 29, 28, 27,
26,24,23,25,17,22,0,18,11,x,, 24, 16,21, 12, 15,5, 0, 14, 13, 7, 9,6,4,3,2,1),
f=(819), g = (3,12). O
Lemma 3.4. There exist FSOLS(3'44!) for 1 <u < 18.

Proof: From Lemma 2.18 we know that there exist FSOLS(1!4b1) with
14 — 2b — 1 disjoint holey transversals with a hole of size b and occurring
as a symmetric one and 6 — b symmetric pairs for b = 2 and 5. Applying
Construction 2.6, the proof is the same as that of Lemma 3.3, we obtain
an FSOLS(3'u!) for 6 < u < 18.

FSOLS(344!) for u = 1,2,4, 5 can be constructed by Construction 2.16:

3'1%11: e = (0,41,40, 39, 38,37, 36, 34, 33, 35, 29, 27, 23, 31, 0, 18, z, 30, 17,
26,25,22,15,32,21,20,13,16,0,7,10,12,11,24,9,8,6, 5,4, 3, 2),
f=(19),g = (24).
31421: e = (0,41,40, 39, 38,37, 36, 34, 33, 35, 31, 29, 32, 0, 26, 25, 30, 23, 12,
21,18,z,29,27,20,7,16,0,11,17,22,10,13,9,8,6,5,4,3,2, 1),
f = (15,24), g = (16,41). ,
3'44!: e = (0,41,40, 39, 38,37, 36, 34, 33, 35, 31, 30, 25, 29, 0, 22, 27, 26, 7, 18,
23,16, 71, 72, 73, 74,19, 24,0,11,17,12, 10, 13,9, 8,6,5,4, 3,2, 1),
f =(32,20,15,21), g = (33,18,5,1).
3'%5': e = (0,41,40, 39, 38, 37, 36, 34, 33, 35, 31, 30, 25, 29, 0, 24, 23, 16, 21,
18,27,22, 21, z2, z3, %4, T5, 26,0,11,17,12,10,13,9,8, 6, 5,4, 3,2, 1),
f =(32,20,19,7,15),g = (31,18, 11,39, 35).

FSOLS(3143!) can be get from Theorem 1.2. m]

Lemma 3.5. There exist FSOLS(3"u!) for n € {18,22,30, 34, 38,42,94}
and 0 < w < 3220,

Proof: From Theorem 2.11 we know that there is an FSOLS(1™) with
n — 1 disjoint symmetric transversals. Applying Construction 2.4 with
t=1,p=n-1,¢9=0, h=3, v; =0or 1, we obtain an FSOLS(3"u!),
where 0 <u <n-—1.

Applying Construction 25 witht =1, p=n—-1,¢q=0,s=1, h = 3,
v; = 1,0 < k < § —2, the input designs are from Theorem 1.2(3), we
obtain an FSOLS(3"u!) forn —1<u < 3(“2—_12 ]

Lemma 38.6. There exist FSOLS(3%¢u!) for 2 < u < 66.
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Proof: In a TD(7,9), give weight three to each point of the first five groups.
In the sixth group, give one point weight three and other points weight
zero. In the last group, give the ith point weight w; (0 < w; < 6,w; # 1)
(1 € i < 9). Applying Construction 2.2 we obtain an FSOLS(2753'u!)
for 2 < u < 54. Filling the holes of size 27 with FSOLS(3°) we obtain an
FSOLS(3%6%!) for 2 < u < 54.

From Lemma 2.18 we know that there exists an FSOLS(1%66') with
45 — 2b disjoint holey transversals with a hole of size b and occurring as a
symmetric one and 22 — b symmetric pairs for b = 17 and 21. Applying
Construction 2.6 witht =1, 9=46, h=17, k=1,p=22-17, m =3,
0 < v;,w; < 1 we obtain FSOLS(346u!) for 54 < u < 65; witht =1, g = 46,
h=21,k=1,p=1,m=3, v; =w; =1 we obtain an FSOLS(3%666'). O

Lemma 3.7. There exists an FSOLS(3%u!) for 2 <u < 78.

Proof: From Theorem 2.10 we know that there is an FSOLS(1%) with
eight disjoint transversals occurring as four symmetric pairs. Applying
Construction 2.4 witht =1, n=9,p=0,¢=4,h=18,2 < w; <9,
the input designs, IMOLS(h + w;,w;), are from Theorem 2.8, we obtain
an FSOLS(18%!) for 0 < v < 72, where v is even. Filling the holes of
size 18 with FSOLS(3%k!) (2 < k < 6) we obtain an FSOLS(3%u!) for
2<u<T8. a

Lemma 3.8. There exists an FSOLS(3%%u!) for 2 < u < 84.

Proof: In a TD(9,11), give weight three to each point of the first five
groups. Give weight three to one point and weight zero to other points in
the sixth, seventh and eighth group. In the last group, give the ith point
weight w; (0 < w; < 6,w; # 1) (1 <4< 11). Applying Construction 2.2
we obtain an FSOLS(33%34!) for 2 < u < 66. Filling the holes of size 33
with FSOLS(3'1) we obtain an FSOLS(3%x!) for 2 < u < 66.

In a TD(7,11), give weight three to each point of the first five groups.
In the sixth group, give three points weight three and other points weight
zero. In the last group, give the ith point weight w; (0 < w; < 6,w; # 1)
(1 < i £ 11), then we obtain an FSOLS(33%9'»!) for 2 < v < 66. Filling
the holes of size 33 with FSOLS(3!2) and the hole of size 9 with FSOLS(3*)
we obtain an FSOLS(3%84!) for 5 < u < 69.

From Lemma 2.18 we know that there exists an FSOLS(158b') with
57 — 2b disjoint holey transversals with a hole of size b and occurring as a
symmetric one and 28 — b symmetric pairs for b = 23 and 27. Applying
Construction 2.6 witht =1, g=58, h=b k=1, p=28-b, m = 3,
0 < »;,w; < 1. With b = 23 we obtain FSOLS(3%%4!) for 69 < u < 80;
with b= 27 we obtain an FSOLS(3%8x!) for 81 < u < 84. (]

Lemma 3.9. There exist FSOLS(3%2u') for 2 < u < 90.
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Proof: In a TD(9,8), give weight three to each point of the first seven
groups. In the eighth group, give weight three to six points and weight
zero to other points. In the last group, give the ith point weight w;
(0 <wy < 9w #£1) (1 <i< 8). Applying Construction 2.2 we ob-
tain an FSOLS(24718%?) for 2 < u < 72. Filling the holes of size 24 with
FSOLS(3%k!) and the holes of size 18 with FSOLS(3¢k!) (0 < k <6,k #1)
we obtain an FSOLS(3%2x!) for 2 < u < 78.

From Lemma 2.18 we know that there exists an FSOLS(162b!) with
61 — 2b disjoint holey transversals with a hole of size b and occurring as a
symmetric one and 30 — b symmetric pairs for b = 26 and 29. Applying
Construction 2.6 witht =1, g =62, h=b, k=1,p =30 - b, m =3,
0 < v, w; < 1. With b = 26 we obtain FSOLS(3%2u!) for 78 < u < 87;

with b = 29 we obtain an FSOLS(3%2x!) for 87 < u < 90. a
Lemma 3.10. There exist an FSOLS(3%u!) for 2 < u < 96.

Proof: From Theorem 2.10 we know that there exists an FSOLS(1!!) with
ten disjoint transversals occurring as a five symmetric pairs. Applying
Construction 2.4 witht =1,n=11,p=0,¢g=5 h=18,0< w; <9. We
obtain an FSOLS(18!!%!) for 0 < u < 90, where v is even. Filling the holes
of size 18 with FSOLS(3k!) (2 < k < 6) we obtain an FSOLS(3%6x!) for
2 <u<96. a

Lemma 3.11. There exists an FSOLS(3™x!) for 2 < u < 102.

Proof: Using Theorem 2.10 and Construction 2.4 witht =1;n =7, p =0,
g=3, h =30, 0 < w; <15. we obtain an FSOLS(307v!) for 0 < v < 90,
where v is even. Filling the holes of size 30 with FSOLS(31%!) (2 < k < 12)
we obtain an FSOLS(37«!) for 2 < u < 102. 0

From Lemmas 3.1-3.11 we get the following theorem.
Theorem 38.12. There exists an FSOLS(3"u!) for even n and 2 < u <
2051, with possible exceptions that u = | X511 | for n € {6,10,14,18, 22,
30, 34, 38,42, 46, 54, 58, 62, 66, 70, 94}.

4 Existence of FSOLS(3"u!) for n is odd

Lemma 4.1. If n is an odd prime power and n > 7, then there exist
FSOLS(3"u!) for n —1 < u < 31,

Proof: Applying Construction 2.5 with t =1, p = 0, ¢ = 25}, 5 = 1,
1

h=3,w; =1,0< k < 232, the input designs are from Theorems 1.2 and
2.8, we obtain an FSOLS(3"u!) forn —1 <u < 31, |

Lemma 4.2. There exist FSOLS(35u!) for 2 <u < 6.
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Proof: Applying Theorem 2.10 and Construction 2.4 with t =1, n = 5,
p=0,¢=2,h=3,0< w; <1, we obtain FSOLS(3%u') for u = 2 and 4.

Applying Construction 2.5 witht=1,n=5,p=0,¢=2,s=1, h=3,
w; = 1, and k = 2, the input designs are from Theorems 1.2 and 2.8, we
obtain an FSOLS(3%6!).

FSOLS(355!) can be constructed by Construction 2.16 with vectors e =
(01 13’ z1, 7: T2, 01 z3,Z4, 9: 11) 0: 31 s, 4) 8)) f = (12, 1) 141 2) 6)1 and g =
(13,3,11,8, 14).

FSOLS(3%) is from Theorem 1.2(2). a

Lemma 4.3. There exist FSOLS(3"u!) for n = 7,9,11,13 and 2 < u <
n-—1.
Proof: Applying Theorem 2.10 and Construction 2.4 with £t =1, p = 0,
qg= 1‘-27—1, h =3, 0 < w; <1, we obtain FSOLS(3"u!) for n = 7,9,11,13
and 2 < u < n -1, where u is even.
Applying Theorem 2.13 and Construction 2.6 withn = 8, t = h =1,
g=T,k=0,p=1,m=3, w; =1, we obtain an FSOLS(375).
FSOLS(3"u!) for n = 9,11,13 and u» = 5,7 can be constructed by Con-
struction 2.16 with vectors e, f and g as follows:

395': e = (0, 26,25,24, 23,22, 21, 20, 7, 0, 13, z,, 23, 24,19, 4, 17, 75,0, 16,
15,8,7,6,5,2,1),
f = (10,3,11,12,14),g = (11,7, 6, 20, 26).
3971 e = (0, 26,25, 24, 23,22, 20,12, 21, 0, z;, 17, 23, 23,11, 10, 24, 16, 0, 5,
X6y, ZT7, 7, 6, 5, 2, 1),
f=(4,14,3,15,19,13,8),g = (3,16,7,20,11,1, 15).
3!151: e = (9, 21,31, 30,29, 28, 27, 26, 15, 24, 7,0, z,, 16, 3, z3, 74, 12, 23, z5,
19,0,14,17,10,9,8,5,4,3,2,1),
f = (18,13,6,25,20),g = (17,9, 1,32,12).
31171 e = (0,21, 31, 30, 29, 28, 27, 26, 1, T3, 9, 24, z3, 13, 19, z4, 5, 32, Z6,
z7,0,18,6,10,9,8,5,4,3,2,1),
f = (25,7,20,12, 23,17, 16), g = (26,5, 24,17, 30,9, 32).
31351: e = (9, 38, 37, 36, 35, 19, 33, 32, 31, 10, 29, 28, 15, §, 34, 12, 1, 24, z,
z3,25,11, x4, 27, z5, 16, 0, 22, 7,18, 23, 30, 9, 6, 5,17, 21,20, 1),
f=(8,14,2,3,4),g = (6,9,8,11,15).
31371: e = (0, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 23, 0, z,, 22, 73, 14, 11,
z3,21, 24, z5, 27, 76, 24, 0, 27, 19, 18, 25,12, 9, 6, 5, 4, 3,16, 1),
f=(17,8,2,7,15,10,20), g = (22, 14,9, 15, 5,24, 3).
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FSOLS(3"9) for n = 11 and 13 can be generated by Construction 2.3 with
FSOLS(1"3!) and MOLS(3).

From Lemma 2.18 we know that there exists an FSOLS(1133!) with six
disjoint holey transversals with a hole of size three and occurring as three
symmetric pairs. Applying Construction 2.6 witht =1,9g=13, h=3, k=
0, p =3, m=3,0 < wj; <1, we obtain an FSOLS(3'311!). FSOLS(3"3!)
is from Theorem 1.2(2). O

Lemma 4.4. There exist FSOLS(3'%u1) for 2 < u < 21.

Proof: Applying Construction 2.5 with FSOLS(15) and h = 9, p = 0,
g=2,5=1,0<w; <4, k=0or 2, we obtain an FSOLS(9%v!), where v
iseven and 0 <v < 18.

Filling the holes of size 9 with FSOLS(3?) we obtain an FSOLS(3!5x1),
where u is odd and 3 <u < 21.

From Lemma 2.18 we know that there exist FSOLS(1'%v!) with 7 — v
pairs of symmetric holey transversals with hole of size v for v = 0,2, or 6,
Applying Construction 2.6 witht =1,9=15,h =9, k=0,p=7 — v,
m =3 and 0 < w; < 1, we obtain an FSOLS(3!54!), where u is even and
2 <u<20. O

Lemma 4.5. For n = 17 and 19, there exist FSOLS(3"u!) for 2 < u <
n—1.

Proof: Applying Theorem 2.10 and Construction 2.4 with ¢t = 1, p = 0,
g= “—;—1, h =3, 0 < w; <1, we obtain FSOLS(3"u!) for n = 17,19, and
0 <u <n-1, where u is even.

From Lemma 2.18 we know, that there is an FSOLS(1'8) with 17-1 —1 =
7 pairs of symmetric holey transversals with hole of size one. Applying
Construction 2.6 witht =1, g =17, h=1, k=0,p =7, m = 3 and
0 <w; <1, we obtain an FSOLS(3!7x!) for 3 < u < 17, where u is odd.

From Lemma 2.18, there is an FSOLS(1'91') with 13-1 — 1 = 8 pairs of
symmetric holey transversals with hole of size one and an FSOLS(1193!)
with % — 3 = 6 pairs of symmetric holey transversals with hole of size
3. Applying Construction 2.6 as above we obtain an FSOLS(3%!) for
3 € u <21, where u is odd. O

Lemma 4.6. If n is odd and 21 < n < 47, then there exist FSOLS(3"u)
for2<u<n-2.

Proof: Applying Lemma 2.15 with s = 4, ¢t =5, h = 3, k; € {0,2, 3,4}
and m = 1, r = 0 we obtain FSOLS(3?'«!) for 2 < u < 20; with m = 3 or
5 and r = 3 we obtain FSOLS(3%%u!) and FSOLS(3%5u!) for 3 < u < 23,
u F£4.

Applying Construction 24 withn =27, =1,p =0, ¢ =13, h = 3,
0 < wj; <1 we obtain an FSOLS(3%7u!) for 0 < u < 26, where u is even;
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withn=9,t=1,p=0,¢g=4h =9,0 < w; <3 we obtain an
FSOLS(9%!) for 0 < v < 24, where u is even. Filling the holes of size 9
with FSOLS(3%) we obtain an FSOLS(3%u!) for 3 < u < 27, where u is
odd.

Applying Lemma 2.15 with s =4, t =7, h = 3, k; € {0,2,3,4} and
m = 1, r = 0 we obtain FSOLS(3%u!) for 2 < u < 28; with 3 <m < 5,
r = 3 we obtain FSOLS(3"u!) for 31 < n < 33 and 3 < u < 31, where
uFA4.

Applying Lemma 2.15 with s = 4,t =8, h =3, k € {0,2,3,4}, 3 <
m < 5 and r = 3 we obtain FSOLS(3"u!) for 35 <n <37 and 3 < u < 35,
where u # 4.

Applying Lemma 2.15 withs=5,t="7,0r 8, h =3, k; € {0,2,3,4, 5,6},
3 <m < 7 and r = 3 we obtain FSOLS(3"u!) for 38 <n <42, 3 < u < 42,
u#4and for43 <n <47,3 <u <51, u #4.

Filling the holes of size 14 of an FSOLS(3™14!) (21 < m < 43) with an
FSOLS(3*2!) we obtain an FSOLS(3"2?) for 25 < n < 47. Filling the holes
of size 16 of an FSOLS(3™16') (21 < m < 43) with an FSOLS(3%4!) we
obtain an FSOLS(3"4!) for 25 < n < 47.

Applying Construction 24 withn =23,t=1,p=0,¢9g=11, h =3,
0 < w; < 1 we obtain an FSOLS(3%u!) for u =2 or 4. O

Lemma 4.7. Then there exist FSOLS(3"u!) forn > 49 and 2 < u < n—-2.

Proof: Write n = 4t + k, where 4 < k < 7. Since n > 49, we have ¢ > 11
and N(t) > 4 or N(t — 1) > 4, where N(t) is the maximum number of
mutually orthogonal latin squares of order ¢.

If N(t) > 4, applying Lemma 2.15 with s =4, h=3, m =k, r =0,
0 < k; <5, k; # 1 we obtain an FSOLS(3"u!) for2<u<n—-1.

If N(t) < 4, then it must be N(¢ — 1) > 4. Applying Lemma 2.15 with a
TD(S, t—l),h 3, m=k+4,7=0,0<k; <5 k#1 (1<z<t—1)
we obtain an FSOLS(3"u!) for2<u<n—1.

Combining Lemmas 4.1-4.3 and 4.5-4.7 we have the following lemma.

Lemma 4.8. If n is an odd prime power exceeding 3, then there exist
FSOLS(3™u!) for 2 < u < 321,

Theorem 4.9. If n is odd and n > 5, then there exist FSOLS(3™u!) for
2 <ug i) |

Proof: The Theorem is true for » = 15 or n is an odd prime power by
Lemmas 4.2, 4.4, and 4.8.

If n = 3p, where n is an odd prime power and n > 7. Applying
Construction 2.5 with s = ¢ = 1, 2 = 9 we obtain an FSOLS(97»!) for
0 < v < 2821 Filling the holes of size 9 with an FSOLS(3*) we obtain an
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FSOLS(3™u!) for 3 < u < 362=1) FSOLS(372!) is from Lemmas 4.6 and
4.7,

If n = pq, where p = p? > 5, ¢ = p > 3 and p;,p, are different
prime numbers. Applying Theorem 2.10 and Construction 2.5 with an
FSOLS(1?), s =1, h = 3¢, 0 < w; < 31,0 < k < 25! we obtain an
FSOLS((3¢)Pv!) for 0 < v < 3';(72_—1)- Filling the holes of size 3¢ with
FSOLS(3%1), 2 < h < 341 we obtain an FSOLS(3P9u!) for 2 < u <

3(pg—1)
5 -

If n = 3pq, p and q are as above, applying Theorem 2.10 and Construction
2.5 with an FSOLS(1?), h = 9p we obtain an FSOLS((9¢)Pv!) for 0 < v <
241 Filling the holes of size 9¢ with FSOLS(3%k!), 2 < k < 33¢=1
we obtain an FSOLS(3"u!) for 2 < u < 1("2—_12

Applying the Induction Principle we can complete the proof. O

5 Conclusion of the existence of FSOLS(3"u)
Lemma 5.1. There exis¢ FSOLS(3"u!) for all n > 4, n # 5.

Proof: FSOLS of type 3%1!, 3611, 3811, 31011 31211 are from Lemmas
3.1-3.3. FSOLS of type 371!, 311, 81111 31311 can be generated by
Construction 2.16:

3"1':e=(9,z,1,4,6,15,11,0,20,12,19,17,9,3,0, 10,8, 13,5,2, 18),
f = (16),g = (15).
3% e=(0,2,1,4,6,15,26,21,11,0,23,8, 19, 25,22, 20,12, 5,0, 14, 10,
13,16,3,2,24)
f=(17),g = (16).
311!: e = (9, , 32,31, 30, 29, 27, 26, 25, 10, 20, §, 28, 21, 8,17, 12, 23, 16,
18,24,13,0,5,9,15,7,6,4,3,2,1,19),
f=(14),g = (13).
31311: e = (9, z, 38,37, 36, 35, 34, 82, 31, 33, 28, 25, 29, 0, 20, 9, 24, 16, 14,
21,8, 30,23,27,22,15,0,19, 11,10, 12,7,4,6,5,3,2,1, 18),
f =(17),g = (16).
From Theorem 3.12 and Theorem 4.9 we know that for ever integer m >

10, there exists an FSOLS(3™13!). Filling the holes of size 13 with an
FSOLS(3%1!) we obtain an FSOLS(3™+411), m]

We are now in a position to give the main result of this article.
Theorem 5.1. An FSOLS(3"u!) exists if and only if n > 4 and n >
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1+ %;i, with seventeen possible exceptions that (n,u) = (5,1) and (n,u) =
(n, lﬂ"z;llj) for n € {6,10, 14,18, 22, 30, 34, 38, 42, 46, 54, 58, 62, 66, 70, 94}.
Proof: The necessity comes from Theorems 1.1 and 1.3. The sufficiency
comes from Theorems 3.12, 4.9 and Lemma 5.1. a
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