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ABSTRACT. A graph G is triangle-saturated if every possible
edge insertion creates at least one new triangle. Furthermore,
if no proper spanning subgraph has this property, then G is min-
imally triangle-saturated. (Minimally triangle-saturated graphs
of order 7 are the diameter 2 critical graphs when n > 3.) The
maximally triangle-free graphs of order n are a proper subset of
the minimally triangle-saturated graphs of order n when n > 6.
All triangle-saturated graphs are easily derivable from the min-
imally triangle-saturated graphs which are primitive, that is,
have no duplicate vertices. We determine the 23 minimally
triangle-saturated graphs of orders n < 7 and identify the 6
primitive graphs among them.

1 Introduction

A triangle in a graph is a complete subgraph of order 3. In this paper we
study the structure of two classes of graphs defined by restrictions on the
presence of triangles. All graphs under study are finite, simple graphs.
For any graph G of order n, let G1 denote the set of all graphs of order
n which contain a subgraph isomorphic to G, and let G| denote the set of
all graphs of order n which are subgraphs of G. More generally, if G is any
set of graphs of order n, we define G 1 to be the union of all the sets G T,
and G| to be the union of all the sets G|, each taken over every G € G.

Let G be any graph containing ¢ > 0 triangles. Then G is triangle-free if
t =0, and is mazimally triangle-free if it is the only triangle-free graph in
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G1. Also G is triangle-saturated (or saturated, where no confusion results)
if it is the only graph in G'1 containing ¢ triangles. If G is not a complete
graph, it follows that it is triangle-saturated precisely if addition of any edge
to G creates at least one new triangle. Thus any triangle-saturated graph
which is not complete has diameter 2, and conversely. We call G minimally
triangle-saturated if it is the only triangle-saturated graph in G |. Let 7,
and S, respectively denote the set of all maximally triangle-free graphs of
order n, and the set of all minimally triangle-saturated graphs of order n
(that is, the set of all diameter 2 critical graphs when n > 3). Note that
if G is triangle-free, so is every graph in G |; therefore F; | is the set of
all triangle-free graphs of order n. Again, if G is triangle-saturated, so is
every graph in G 1; therefore S,, T is the set of all triangle-saturated graphs
of order n.

Remark 1. Note that every graph which is maximally triangle-free is
minimally triangle-saturated, that is, 7, C S, for everyn > 1.

Bollob4s [1] discusses many results from extremal graph theory whick
are related to the study of F,, and S,,. Note that his terms 3-saturated and
strongly 3-saturated correspond in our terminology to mazimally triangle-
free and triangle-saturated respectively. Plesnik [10] constructs families of
graphs which are triangle-saturated, and refers to other relevant papers.

2 Triangle-free and triangle-saturated graphs of small order

By systematic examination of all graphs of order n < 7, we determined
all triangle-free and triangle-saturated graphs in this range. Our search
was considerably simplified by use of the excellent diagrams published by
Peter Steinbach [11]. Since F, | is the set of all triangle-free graphs of
order n, the triangle-free graphs are adequately specified by listing the
fn = |Fn| members of the maximal set F,,. Likewise, Sy, T is the set of all
triangle-saturated graphs of order n, so the triangle-saturated graphs are
adequately specified by the s, := |S,| members of the dominated set S,.
The cardinalities of these sets for n < 7 are given in Table 1. In Figure 1
we show the 10 non-bipartite members of F,, and S, for n < 7.

3 Minimally triangle-saturated graphs need not be triangle-free

From Table 1 we note the important fact that there are minimally triangle-
saturated graphs which are not triangle-free. The smallest of these is B.
Let B, be as illustrated in Figure 2. Then we have

Remark 2. For every order n > 6, there is at least one minimally triangle-
saturated graph which is not triangle-free, so S, \ F,, is nonempty ifn 2 6.



n fn Sn
1 1 1
2 1 1
3 1 1
4 2 2
5 3 3
6 4 5
7 6 10
Table 1.

The numbers of maximally triangle-free graphs (f,) and
minimally triangle-saturated graphs (s,,) of order n < 7.

a0

O @ L
Ah A A0 Ay

Figure 1.
Non-bipartite members of ,, and S,, forn < 7.



Figure 2.
The minimally triangle-saturated graph B,.

What local structure characterises a minimally triangle-saturated graph?
Some notation and terminology will be helpful. The neighbourhood of any
vertex v in a graph G is the set N(v) of all vertices adjacent to v in G, and
the non-neighbourhood of v is the set N(v) of all vertices distinct from v
which are not adjacent to v in G. A vertex in N(v) is a non-neighbour of
v. If explicit reference to G is appropriate, these sets will be written Ng(v)
and Ng(v). A vertex or edge in G is triangular if it belongs to a triangle.
If ab is a triangular edge in G, its endpoint a is selective for ab if a has a
non-neighbour z which is adjacent to b but not to any other neighbour of a,
that is, there is at least one vertex z € Ng(a) such that N(a)NN(z) = {b}.
A triangular edge ab is selective if at least one of a and b is selective for ab.
For example, the edge bc in the graph B, is selective.

Theorem 1. A triangle-saturated graph is minimally saturated if and only
if all its triangular edges are selective.

Proof: Let G be any triangle-saturated graph. Suppose G is minimally
saturated and ab is any one of its triangular edges. Then there are nonad-
jacent vertices z,y in F := G\ ab such that insertion of the edge zy in F
does not create a triangle. Since ab is triangular in G, its insertion in F
would create a triangle, so zy # ab and z, y are nonadjacent in G. But G is
saturated, so insertion of zy in G would create a triangle. Such a triangle
must contain ab, since insertion of zy and deletion of ab are commutative
operations and their cumulative result does not produce a triangle. Hence
with appropriate labelling we may take y = a. It follows that z is adjacent
to b in G, so insertion of zy in G forms the triangle abza. On the other
hand z is not adjacent to any other neighbour of a in G, for if it were, such
adjacencies would also be present in F' and insertion of zy in F would cre-



ate a triangle. Thus z € Ng(a) and Ng(a)N NG(z) = {b}, so a is selective
for ab in G. It follows that every triangular edge in G is selective.
Conversely, suppose all triangular edges of G are selective. Let ab be
any edge of G and let F := G\ ab. If ab is not triangular, its insertion
in F retrieves G without creating a triangle. On the other hand, if ab is
triangular, we may suppose without loss of generality that a is selective for
ab, so there is a vertex z € Ng(a) such that Ng(a) N Ng(z) = {b}. Thus z
is nonadjacent to a in G, and b is the unique common neighbour of a and
z in G, so insertion of ax in G creates precisely one triangle, namely abza.
Therefore insertion of ax in F does not create a triangle. It follows that G
is minimally saturated. m]

Remark 3. If G € S, \ F,, then G| contains a graph with exactly one
triangle more than G.

This follows from the last part of the proof of Theorem 1. By contrast,
note that K32 is triangle-free and K22 € F4, but no graph in K221 has
exactly one triangle.

4 Duplication and simplification

In B, (Figure 2) note that N(vy) = N(v3) = --- = N(v,) = {b,d}, so
each of vg,...,v, duplicates the relationship of v, to the rest of B;. In
general, if G is any graph with two vertices v and v’ which have the same
nonempty neighbourhood, we shall call v' a duplicate of v. Let F be the
graph resulting from G by deletion of . We shall say that G results
from F by duplication of v, and write G := D,F. Thus for example,
B, = D7~!B, for r > 1. Conversely, F results from G by simplification of
v, and F := D;1G. Often we indicate a duplicate vertex by a dash without
further comment. Duplication of vertices has been studied in the context
of diameter 2 graphs by Plesnik [8, 9, 10]. Duffus & Hanson [4] also refer
to duplicating vertices, in essentially the same context.

More generally, for any graph G let D(G) be the set of all graphs which
are obtainable from G by a finite sequence of duplications and/or simplifi-
cations. We call D(G) the duplicate class of G.

Duplication of vertices allows us to generate new saturated graphs from
old. In fact, it is easy to see
Remark 4. Suppose F and G are graphs such that G = D,F. Then G is
triangle-saturated if and only if F is triangle-saturated.

As a direct result, we have
Remark 5. If a graph G is triangle-saturated, so are all graphs in its
duplicate class D(G).

How far is it true that duplication of vertices preserves minimality? Not
without restriction: for example, DyB; is triangle-saturated but not min-



imally saturated, since it contains A as a spanning proper subgraph (see
Figure 1). But suitably restricted duplication does preserve minimality, as
we shall show.

For any vertex a of a graph G, the iriangular neighbourhood of a in G
is the set T(a) of neighbours b € N(a) such that the edge ab is trian-
gular. Note that T'(a) is nonempty precisely when a is triangular. Ex-
tending the terminology introduced in the previous section to characterise
minimally triangle-saturated graphs, we say that the vertex a is selec-
tive if for each b € T(a) there is an z € N(a) such that b is the only
neighbour of a which is adjacent to z. Thus, a is selective if it is se-
lective for every triangular edge with which it is incident. Each selec-
tive vertex is at the head of a “lawn rake” subgraph (Figure 3), since
the vertex a is selective precisely when, corresponding to its triangular
neighbourhood {b;, bs,...,b,} := T(a), there is a non-neighbour subset
{z1,22,...,2.} C N(a) such that N(a) N N(z;) = {b;} for 1 <i<r.

a
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Figure 3.
A “lawn rake” subgraph at the selective vertex a.

Note that any vertex a which is not triangular is automatically selective
because the conditions are then vacuous. Again, any triangular vertex
a of degree 2 in a minimally saturated graph must be selective. For if
N(a) := {b,c}, then abea is a triangle. By minimality, the triangular edge
ab is selective; but b cannot be selective for ab since c is adjacent to b and
therefore no non-neighbour of b is adjacent to a. Hence a must be selective
for ab, and similarly for ac, so a is selective.

Theorem 2. Suppose F and G are triangle-saturated graphs such that
G = D,F. If G is minimally saturated, so is F. Conversely, if F is



minimally saturated then G is minimally saturated precisely when v is
selective.

Proof: Suppose G is minimally saturated. Then F is saturated, by Remark
3, so it suffices to show minimality of F. By Theorem 1, in turn, it suffices
to show that all triangular edges of F' are selective. Any triangular edge
ab in F must be triangular in G, and therefore selective in G. By suitable
labelling, in G there is at least one non-neighbour z of a such that b is the
only neighbour z has in common with a. We may suppose that =z € F; for
if »’ is a suitable candidate for z, duplication ensures that v is also. Thus
a is selective for ab in F, and it follows that F is minimally saturated.

Conversely, suppose F is minimally saturated. Let ab be any triangular
edge of F. Then ab is triangular in G. Also ab is selective in F, by Theorem
1, so by suitable labelling there is a vertex zNp(a) such that Np(a) N
Np(z) = {b}. This is unchanged by duplication of v unless v = b, in which
case Ng(a) N Ng(z) = {b,b'} for every z € Ng(a). Therefore a is selective
for ab in G precisely when v # b. In the case v = b, it follows that ab is
selective in G precisely when b is selective for ab in G, which holds precisely
when v is selective for av in F. Therefore all triangular edges of F are
selective in G precisely when v is selective for all those with which it is
incident, that is, precisely when v is selective. Note that an edge av’ is
triangular in G if and only if av is triangular in F, and v’ is selective for av’
precisely when v is selective for av in G. Therefore all triangular edges in G
are selective if v is selective. By Theorem 1, it follows that G is minimally
saturated precisely when v is selective. ]

Theorem 2 shows that if G is minimally saturated and F := D;'G, then
F is minimally saturated. But G = D, F is minimally saturated, so v is
selective. Hence

Corollary 2.1. If G is a minimally triangle-saturated graph, every dupli-
cate vertex in G is selective.

For any graph G, let the selective duplicate class of G be the set D*(G) of
all graphs which are obtainable from G by a finite sequence of duplications
and/or simplifications of selective vertices. Then Theorem 2 implies

Corollary 2.2. If G is a minimally triangle-saturated graph, so are all
graphs in its selective duplicate class D*(G).

All vertices of a triangle-free graph G are selective, so D*(G) = D(G).
Since F;, C S, in this case Theorem 2 implies
Corollary 2.3. If G is a maximally triangle-free graph, so are all graphs
in its duplicate class D(G).

Together these results show that the classes F, and S, are rather robust
under the operation of duplication or simplification of a vertex. In fact,



(1) Ge Sl & DG € Snpafd,
(2a) G € S, = D,G € Sp41 provided v is selective,
(2b) G € Sp < DG € Sny1,

3) G e Fn. © D,G € Fpy1,

(4) Ge Fol & DG € Fny1l.

The last equivalence comes from the observation that duplication of a vertex
v in G creates a new triangle only when v belongs to a triangle in G.

5 Complete bipartite graphs

The graphs of Table 1 include many which are complete bipartite. In fact,
every such graph is maximally triangle-free, as is easily proved directly.
Alternatively, note that K,, = D’I"ID;"IK 1,1 for every r,s > 1. But
K,,1 € F2,50 K, 5 € Frys, by Corollary 2.3. Hence

Remark 6. The set F,, contains every complete bipartite graph of order
n.

This immediately implies
Remark 7. F,, > |n/2| forn > 2.

This accounts for 12 of the maximally triangle-free graphs in Table 1.
The bound in Remark 6 is actually achieved when n < 4 but not for any
larger n, since there are non-bipartite graphs in F,, when n > 5.

The complete bipartite graphs form a kind of backbone for F,,, since they
include its smallest and largest members. These facts are special cases of
classical theorems of Turén [2, 12, 13] and Erdés, Hajnal and Moon [5]:

Theorem 3. (Turdn). The unique graph of largest size in F, | is the
complete bipartite graph K, s with r := |n/2|, s := [n/2].

Theorem 4. (Erdés, Hajnal & Moon). The unique graph of smallest size
in 8,1 is the complete bipartite graph K n_;.

The complete bipartite graphs K., with 7 4+ s = n all lie in F,,. By
Theorems 3 and 4, they include the largest and smallest members of F,,
corresponding to the smallest and largest values of |r — s| respectively. We,
and many others before us, have independently conjectured that the graph
of largest size in S, has ["‘sz edges and that this size is uniquely attained
by the Turdn graph described in Theorem 3. The conjecture has been
attributed to Simon and Murty (see [3]). Recently Fiiredi [7] has shown
it is true for all n larger than some huge but computable number. The
conjecture has also been studied by Plesnik [9] and by Fan [6] who has

shown that the upper bound of [1‘;] is correct for n < 24. If the conjecture
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is true, it would follow that the complete bipartite graphs of order n include
the largest and smallest members of S,,, so F,, would contribute both size
extremes to S,,.

6 Structure of duplicate classes

In the preamble to Remark 6, we noted that the duplicate class D(K3)
is the set of all complete bipartite graphs. Call a graph primitive if it
contains no duplicate vertices: for example, K is primitive. For any graph
G there is a unique primitive P € D(G). This can be seen as follows.
Partition the vertices of G into equivalence classes such that two vertices
are equivalent precisely if they are duplicates. Call two equivalence classes
A and B adjacent if there is an edge ab in G with vertices a € A, b € B.
Then o'V’ is an edge in G for every a’ € A, b’ € B since duplication of a
ensures that a’b is an edge, then duplication of b ensures that a’d’ is an edge.
But no vertex is adjacent to any of its duplicates. Thus the subgraph of G
induced by any equivalence class has no edges, and the subgraph induced
by any two adjacent equivalence classes A and B is the complete bipartite
graph with A and B as its parts. The duplicate quotient of G is the graph
P with one vertex for each equivalence class of vertices in G, and such that
two vertices of P are adjacent precisely if the corresponding equivalence
classes of G are adjacent. No two vertices of P are duplicates, so P is
primitive. Thus we are led to

Theorem 5. For any graph G, the duplicate quotient P of G is its unique
primitive graph, and D(G) is precisely the set of all graphs having P as
duplicate quotient.

Proof: Let [P] be the set of all graphs having P as duplicate quotient.
Every H € [P] is obtainable from P by a suitable sequence of duplications,
so [P] C D(P). On the other hand, even though duplication and simplifi-
cation may change the cardinalities of some equivalence classes of vertices,
each preserves the set of equivalence classes, and the adjacency relation
between them. So every H € D(G) has P as its duplicate quotient, and
D(G) C [P).

Evidently a suitable sequence of duplications from P yields G, so G €
D(P). Thus all graphs obtainable from G by a finite sequence of duplica-
tions and/or simplifications are so obtainable from P, and conversely, so
D(P) = D(G). Hence D(G) = [P] = D(P). Clearly P is the only graph in
[P] which is primitive, so the proof is complete. a

Let F and G be two graphs with the same duplicate quotient P. We shall
say that F is nonselectively dominated by G, or G nonselectively dominates

F, if for each nonselective vertex v in P, the number of duplicates of v in G is
greater than or equal to the number of duplicates of v in F. Since D*(G) C
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D(G), and duplications in D*(G) are restricted to selective vertices, we
have

Corollary 5.1. For any graph G with primitive P, the selective duplicate
class D*(G) is the set of all graphs with primitive P which are nonselectively
dominated by G.

If F and G are two graphs such that F € D(G), then D(F) = D(G).
But, by contrast, if FF € D*(G) then D*(F) C D*(G) and equality does
not necessarily hold. Corollary 5.1 shows in particular that if P is the
duplicate quotient of G then D*(P) C D*(G), with equality precisely when
each nonselective vertex in G has no duplicate.

What can be said about the minimally saturated graphs in a duplicate
class? Note first that the duplicate class of a saturated graph need not
contain any minimally saturated graph. For example, K3 is saturated so
all members of its duplicate class D(K3), comprising all complete tripartite
graphs, are saturated; but no graph G € D(K3) is minimally saturated,
since every edge in G is triangular and nonselective. However if a given
duplicate class D(G) contains some member F € D(G) which is minimally
saturated, then all graphs in D*(F) are minimally saturated, and no nons-
elective vertex in F has a duplicate, by Corollaries 2.1 and 2.2. Therefore
D*(P) = D*(F), where P is the duplicate quotient of F, by Corollary 5.1.
Thus F € D*(P), and all graphs in D*(P) are minimally saturated. But
D(F) = D(G), so P is also the duplicate quotient of G, by Theorem 5. In
summary, we have

Corollary 5.2. Let G be any graph with duplicate class D(G) containing
at least one minimally triangle-saturated graph. Then the set of all mini-
mally triangle-saturated graphs in D(G) is precisely the selective duplicate
class D*(P), where P is the primitive of G.

Having determined the “vertical” structure of duplicate classes and selec-
tive duplicate classes, we can now look at their “horizontal cross-sections”,
that is, the subsets comprising just those graphs of a given order n. For
any primitive graph P, the exact number of graphs of order n in D(P),
or in D*(P), depends on the structure of the automorphism group aut(P).
However, we shall content ourselves with lower bounds on these numbers.

Theorem 6. For any primitive graph P of order k, the number of noniso-
morphic graphs of order n in the duplicate class D(P) is at least %(’,::{ ,
where c is the order of aut(P).

Proof: Assign labels 1,2,...,k to the vertices of P. For any k-sequence
T = z1,Z2,...,Zk of positive integers with sum =, the graph

D(x)P:= D7*"'pga~1 . D¥1p
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is an order n member of D(P), and every order n member of D(P) is of
this form, by Theorem 5. Let S(k,n) be the set of k-sequences of positive
integers with sum n. Call x,y € S(k,n) equivalent k-sequences precisely
when the graphs D(x)P and D(y)P are isomorphic. The number of k-
sequences in an equivalence class is at most ¢ := |aut(P)|, so the number
of equivalence classes in S(k,n) is at least |S(k, n)|/c Since the number
of k-sequences of positive integers with sum n is (}_}), the theorem now
follows. o

Let us define the selective order of any graph G to be the number of
selective vertices in G. Suppose P is a primitive graph of order k and
selective order s. Only selective vertices of P are duplicated in D*(P), so
each order n member of D*(P) is of the form D(x)P, where x € S(k,n) and
z; = 1 if i labels a nonselective vertex of P. The s terms of x corresponding
to the selective vertices of P form a subsequence x* € S(s,n — k + s), so
reasoning as for the proof of Theorem 6 yields

Corollary 6.1. For any primitive graph P of order k and selective order s,
the number of non-isomorphic graphs of order n in the selective duplicate
class D*(P) is at least 1(*~5*5~1), where c is the order of aut(P).

Corollary 6.2. If the primitive graph P of order k and selective order
s is minimally triangle-saturated, then the number of graphs in S, with

duplicate quotient P is at least 1("~*+$%1), where c is the order of aut(P).

Corollary 6.3. If the primitive graph P of order k is maximally triangle-
free, then the number of graphs in F, with duplicate quotient P is at least
1 "'l) where c is the order of aut(P).

When P = K3, Corollary 6.3 shows that F,, contains at least (n;)/2
complete bipartite graphs. The exact number is |n/2], as reflected in Re-
mark 6.

7 Primitive minimally triangle-saturated graphs

The results of the previous section show that duplicate classes of graphs are
characterized by the unique primitive graphs which they contain. Again, if
a duplicate class contains any minimally saturated graph then the primitive
graph of the class is minimally saturated, and its selective duplicate class
is precisely the set of all minimally saturated graphs in the class. In this
way the determination of all minimally saturated graphs reduces to the
determination of all primitive graphs of this type.

For any set of graphs G, let D(G) denote the union of the duplicate
classes D(G) for all G € G, and let D*(G) denote the corresponding union
of selective duplicate classes D*(G). Let PF;,, and PS, denote the sets of
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all primitive graphs in F,, and &,, respectively. Then

PFat1 = Fap1 \ D(Ur_PF;), (1)
’PSn-i-l = On+1 \D* (Ur—-zpsr)’ (2)

for every n > 1. In particular, PF; = F2 = S = PS2 = {K>}. Since 83
and S, are contained in D(K3), there are no primitive graphs in these sets,
so PF3 = PSz = @ and PF; = PS; = §. The 5-cycle Cs is the sole member
of 85 not contained in D(K3), so PFs = PSs = {Cs}. Then fn > 1 ("7),
since Corollary 6.3 yields this as a lower bound on the number of order n
graphs in D(Cs), superseding Remark 6 for n > 9. Figure 1 shows four
members of D(Cs) which are in Fg or F7: Cs,1 = D1Cs; Cs2 = D?Cs;
Cs3s = D1D3Cs; Cs4 = D1D2Cs. Hence Fg and F7 are contained in
D(Kz, 05) = D(Kz) U D(C5), so PFg = @ and PF; = 0.

The graph B; (Figure 2) is the sole member of Sg not contained in
D(K,, Cs) = D*(K>,Cs), so PS¢ = {B,}. Figure 1 shows D*(B;) N S; =
{Bl,l; Bz}. Then 'pS7 = 37 \D‘(Kz,Cs, Bl) = {A, M} In particular, we
can now conclude from Corollary 6.2 that s, > [D*(M) N S,| > 3("51).
Table 2 summarizes these results, with the corresponding bounds derived
from Corollary 6.2.

These calculations confirm the internal consistency of Figure 1. We shall
now determine deductively the primitive graphs of order n < 7, thus proving
the completeness of the list in Table 2, and hence the completeness of Figure

1. The reasoning occupies the remainder of this section, and in its course
yields several other general results.

order P |[D*(P)NS,|

1 Ki Owhenn>2
K, > __(n— P
)

2

5 G 2 ‘6("_

6 B, > % (n—4)

T M 2 §( D,

VRIS ()
Table 2

Primitive minimally triangle-saturated graphs P of order > 7.

It turns out to be convenient to fix the minimum degree 6 in the graphs
under study. (Duffus & Hanson [4] have established related results about
graphs in F,, with minimum degree § = 2 or 3.) Any graph in S, is
connected, so § > 1 when n > 2. We begin by observing
Remark 8. If P € S, is a primitive graph with minimum degree 1, then
n = 2 and P = K3. The minimally triangle-saturated graphs with § = 1
are the stars DTKa = Ky y41 withr > 0.
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Next consider primitive graphs with minimum degree § = 2. First the
triangle-free case:

Theorem 7. If P € F, is a primitive graph with minimum degree 2, then
n=5and P=Cs.

Proof: Let P € F, be primitive and have minimum degree 2. Let a be a
degree 2 vertex of P, and {b,c} := N(a). Since P is triangle-free, b and c
are not adjacent, P is not complete, and diamP = 2. All remaining vertices
are in N(b) U N(c) \ {a}. Let X := N(b)\ N(c), Y := N(c) \ N(b) and
Z :=N@®)UN(c)\{a}. If 2 € Z then N(z) = {b,c} because P is triangle-
free; but then =z is a duplicate of a, contradicting primitiveness of P. Hence
Z = {. But degb > 2, so X is nonempty; similarly Y is nonempty. Any
z € X has degz > 2, so is adjacent to some vertex in Y. Indeed, P is
maximally triangle-free, so every vertex in X is adjacent to every vertex in
Y. Then N(z) = {b}UY for every z € X, so all vertices in X are duplicates
if |X| > 1, contradicting primitiveness of P. Similarly if |Y| > 1. Hence
X={z},Y={y},n=5and P=Cs. 0

If G € F,, but we do not require G to be primitive, the same proof as for
Theorem 7 shows that every z € Z is a duplicate of g; also N(z) = {b}UY
for every z € X, and N(y) = {c} U X for every y € Y. Now § = 2 ensures
that if either of X and Y is empty, they both are, and then Z # @ and
G = DJF for some r > 1, where F is the path bac. If X and Y are
nonempty then G = D7 D3 D;Cs for some r,s,t > 0, where Cs = abzyca.
Hence

Corollary 7.1. The maximally triangle-free graphs with minimum degree
2 are D1D2K2 = K3 r41 with r > 1, and D]D§D.Cs with r,s,t > 0.

Continuing with the study of primitive graphs with minimum degree
d = 2, we next seek those which contain triangles. The vertices of degree
2 may or may not include triangular vertices: the first case is treated in
Theorem 8, the second in Theorem 9 and its corollary.

Theorem 8. Any graph in S, which has a triangular vertex of degree 2
contains B; as an induced subgraph.

Proof: Let G € S, have a triangular vertex a with {b,c} := N(a). Then
abca is a triangle, so its edges must be selective, by Theorem 1. Since b
cannot be selective for ab, and c cannot be selective for ac, it follows that
a must be selective. Hence X := N(b) \ N(c) and Y := N(c) \ N(b) must
both be nonempty. All other vertices of G are in Z := N(b) N N(c) \ {a}.
Without loss of generality, we may suppose that c is selective for bc.
Then there is a vertex £ € X such that N(c) N N(z) = {b}, so z is not
adjacent to any vertex in Y U Z. But degz > 2, so there is an adjacent
vertex v € X, and buzb is a triangle. Note that v is not selective for vz
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because b € N(v) and N(z) C X, so N(b)NN(z) = YNN(z) = 0. Hence =
must be selective for vz, by minimality of G: since b € N(z) there is some
vertex y € N(b) N N(v). Then y € Y and the subgraph of G induced by
{a,b,c,v,z,y} is B;. u]

Corollary 8.1. Forn <7, if P € S,, is a primitive graph with a triangular
vertex of degree 2, then either n =6 and P=By,orn=7 and P = A.

Proof: Let P € S, be a primitive graph with a triangular vertex of degree
2. Then B; is an induced subgraph of P by Theorem 8 so n > 6, and
P = B; when n = 6. Continuing with the notation used in the proof of
Theorem 8, let n = 7 and let w be the extra vertex. First suppose that
w € Z. Then w is a duplicate of a so D,B; C P. Minimality of P implies
P = D,Bj; but this contradicts primitiveness, so w ¢ Z. Now suppose
w €Y. If w is adjacent to v then D, B; C P. This contradicts minimality
and primitiveness of P, so w is not adjacent to v. Then w is adjacent to z,
since diamP = 2. This contradicts N(z)NY =0, so w ¢ Y. Hence w € X.
If w is adjacent to v then D;B; C P. This again contradicts minimality
and primitiveness of P, so w is not adjacent to v. But diamP = 2, so w is
adjacent to y. Then A C P, and minimality requires P = A. m]

To complement Theorem 8, now consider graphs in S, \ F, containing
a non-triangular vertex of degree 2. The graph M (Figure 1) plays an
important role. In Theorem 9 we restrict attention to graphs containing

neither By nor W as an induced subgraph (Figure 4). In the proof of
Corollary 9.1 we cover the remaining cases.

b Bo d w a

c e b

Figure 4. The graphs By and W.

Theorem 9. Suppose G € S,, \ F,, has minimum degree 2. If G contains
no induced subgraph isomorphic to By or W, then G contains M as an
induced subgraph.

Proof: Let a be a vertex of degree 2 in G with neighbours b and ¢c. By
Theorem 8, b is not adjacent to c. As before, let X = N(b)\ N(c), Y =
N()\ N(c), and Z = N(b)N N(c)\ {a}. Since G contains a triangle, there
is a triangle with b or ¢ as one of its vertices. For suppose there is a triangle
entirely in X UY U Z: at least two of its vertices are adjacent either to b or
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¢, forming a triangle of the type claimed, so we may assume G contains a
triangle bxzb. Now z and z can’t both lie in Z, since the induced subgraph
on {b,c,z, z} would be W. Thus we assume z € X and z € X U Z. Either
some triangle on b has a vertex z in Z, or each triangle on b has its other
vertices lying in X.

Suppose there is a triangle bzzb wherez € X and z € Z. Now N(2)nY =
9, since otherwise G would contain one of the induced subgraphs By or W.
This implies that b is not selective for the edge bz, so 2 must be selective for
bz. Thus there is a vertex w € X not adjacent to z or any neighbour of z
other than b. There can be no neighbour of w in X U Z for otherwise there
would be an induced subgraph By or W in X U{b, z}. But degw > 2, sow
is adjacent to some y € Y. Now z is not selective for the edge zz since all
neighbours of = other than b are adjacent to b or ¢, which are neighbours
of z. Thus z is selective for zz, so there is a neighbour of z in Y U {c}
which is not adjacent to any neighbour of z. But N(z)NY =@, so cis not
adjacent to any neighbour of z. Therefore N(z) C XU{b, z}. Consequently
z and y are not adjacent. However, diamG = 2 implies that =z and y have
a common neighbour u, and the above reasoning shows that z € X. Now
the subgraph induced by {b,u,z, 2z} cannot be W, so u must be adjacent
to z. But then the edge uz is not selective, and this contradiction shows
there cannot be a triangle bzzb with z € Z.

So we may suppose that any triangle on b has its other two vertices in X.
Let bzvb be such a triangle. We note that = and v cannot have a common
neighbour w in Y, otherwise the induced subgraph on {b,v,w,z} would
be W. Without loss of generality, assume z is selective for the edge zv.
Then there is a y € N(v) \ {b} which is not adjacent to any neighbour of
z. Thus y € Y. Since diamG = 2, z and ¢ must have a common neighbour
u € Y, and y and u are not adjacent. Hence the subgraph induced on
{a,b,c,u,v,z,y} is M. O

Corollary 9.1. For n < 7, if P € S, \ F. is a primitive graph with
minimum degree 2 but no triangular vertex of degree 2, then n = 7 and
P=M.

Proof: We show that if P is a graph satisfying the stated hypotheses, then
P contains neither Byp nor W as an induced subgraph. The result then
follows from Theorem 9.

First suppose that P contains an induced subgraph By, labelled as in
Figure 4. Since P is minimally saturated, every triangular edge in P is
selective. Without loss of generality, b is selective for the edge bc, so there
is a vertex v € N(b) such that N(v) N N(b) = {c}. Now degb > 3 because
b is a triangular vertex, so b has at least one more neighbour, say u. Then
n = 7. Also u has at least one more neighbour. But N(v) N N(b) = {c}, so
u is not adjacent to v. But diamP = 2, so » and v must have a common
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neighbour. If either d or e is a common neighbour of v and v, we may
assume d € N(u) N N(v) without loss of generality. But then P properly
contains a spanning subgraph M, with abca as its triangle and d as the
vertex at distance 2 from the triangle. This contradicts minimality of P,
so neither d nor e is a common neighbour of u and ». Therefore ¢ must
be the common neighbour of © and v. Then u is a triangular vertex, as
are d and e, so each has degree at least 3; also degv = 2. Hence each of
d, e, u, v has at least one more adjacency and without loss of generality
we can assume that du and ev are edges. Then P again properly contains
a spanning subgraph M, with adea as its triangle and c as the vertex at
distance 2 from the triangle. This contradicts minimality of P, so it follows
that P cannot contain an induced subgraph By.

Now suppose that P contains an induced subgraph W, labelled as in
Figure 4. All triangular edges in P must be selective, so without loss of
generality we can assume that a is selective for the edge ab, and there
is a vertex v € N(a) such that N(v) N N(a) = {b}. Now b is the only
neighbour of v in W, and n < 7, so degv < 3. Suppose degv = 3, say
N(v) := {b,u,w}. Then n =7. As P has a nontriangular vertex of degree
2, without loss of generality u is nontriangular and degu = 2. Now u is not
adjacent to a, since N(v) N N(a) = {b}, so u is adjacent to ¢ without loss
of generality. But diamP = 2, so u and d must have a common neighbour.
But W is induced, so d is not adjacent to c¢; and N(v) N N(a) = {b}, so
d is not adjacent to v. This contradiction shows that degv # 3. Hence
degv = 2, say N(v) := {b,u}, and v is not triangular, so u is not adjacent
to b. Also u is not adjacent to a, since N(v) N N(a) = {b}. Now c and
d each have at least one more neighbour, and they cannot be duplicates.
Since n < 7, it follows that one of them is adjacent to u, one of them is
adjacent to another vertex w, and they are not both adjacent to u and w.
Without loss of generality we can suppose cu and dw are edges. Now u
is not adjacent to w, for otherwise P would properly contain a spanning
subgraph M, with abda as its triangle and » as the vertex at distance 2
from the triangle. But diamP = 2: then v and w must have a common
neighbour, so w is adjacent to .

There is no vertex which is a common neighbour of d and u, and diamP =
2, so d must be adjacent to u. Then ¢ is adjacent to w, since ¢ and d
cannot be duplicates. But degw > 3, since w is triangular. Hence w is
adjacent to a. Now P properly contains a spanning subgraph M, with
abwa as its triangle and u as the vertex at distance 2 from the triangle.
This contradiction shows that P cannot contain an induced subgraph W,
and the corollary now follows. (|

It would be interesting to know if Theorem 9 holds with weaker hy-
potheses. Note that the contradictions achieved in proving Corollary 9.1
were based on the discovery of spanning proper subgraphs isomorphic to
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M. This suggests that something approaching the conclusion of Theorem
9 may hold even if By and W are not excluded.

Theorem 10. If n < 7, there are no primitive graphs in F,, with minimum
degree 6§ > 3.

Proof: Suppose P € F, is a primitive graph with minimum degree § > 3,
and n < 7. Let a be a vertex of degree § in P with neighbours which
include b, ¢ and d, no two of which are adjacent. Then b has at least two
more neighbours, say u and v, and these are not adjacent. Also b and ¢
are not duplicates, so without loss of generality we can assume that ¢ has
a neighbour w which is not adjacent to . Then n = 7, and without loss of
generality c is adjacent to u. No two of u, v and w are adjacent, and » must
have at least one more neighbour, so  is adjacent to d. But now = dupli-
cates a, contradicting the requirement that P is primitive. Consequently
P does not exist. a

Theorem 11. If n < 7, there are no primitive graphs in S, \ F,, with
minimum degree 6 > 3.

Proof: We begin by showing that P € S, \ F,, does not contain a subgraph
isomorphic to W (not necessarily induced). Suppose P has a subgraph W,
labelled as in Figure 4. We can assume a to be selective for the edge ab, so
there is a vertex v € N(a) such that N(v) N N(a) = {b}. Now degv > 3,
so v has neighbours » and w, not adjacent to a. Thus n = 7. Now c is not
selective for ac, so a must be. Therefore ¢ has a neighbour in N(a). So we
can suppose u is adjacent to ¢ and then u is not adjacent to b or d; but »
must be adjacent to w, since degu > 3. Now the edge bc is not selective,
contradicting minimality of P, so P does not have a subgraph W.

Let abca be a triangle in P. Now a has a neighbour v, since dega > 3.
But no subgraph W is present in P, so v is not adjacent to b or ¢. Similarly
b and ¢ have distinct neighbours « and w, while u is not adjacent to a or
c and w is not adjacent to a or b. Without loss of generality c is selective
for the edge bc, so we can assume that N(u) N N(c) = {b}. But degu > 3,
so u is adjacent to v and there is another vertex z € P adjacent to u; then
z € N(c). Thus n = 7. Since degw > 3, w must be adjacent to both «
and v. But neither a nor c can be selective for the edge ac, regardless of
whether additional edges are present. Since ac is not selective, P is not
minimally saturated, so does not exist. a

It follows from Remark 7, Theorems 7, 10 and 11, and Corollaries 8.1 and
9.1, that the list of primitive graphs of order n < 7 in Table 2 is complete.

8 Remarks

A number of unsolved problems suggest themselves in this paper. The
following seem particularly interesting. Corollary 1.1 suggests
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Problem 1. What conditions on G € F, ensure that G1 contains a graph
with exactly one triangle?

Note that the graph obtained by duplicating each vertex of Cs once does
not have this property. (We are indebted to a referee for this example.)
Again, Theorem 9 suggests
Problem 2. IfG € S, \F, has minimum degree 2 but no triangular vertex
of degree 2, is it true that G contains M as a subgraph?

We conjecture that the answer to Problem 2 is “yes”. Theorem 9 notwith-
standing, it is not true that M must appear as an induced subgraph when
the conditions of this conjecture hold. The graph in Figure 5 is in Sg \ Fg,
has minimum degree 2 and no triangular vertex of degree 2: it does contain
M as a subgraph, but not as an induced subgraph.

O O
Figure 5. A graph with M as a non-induced subgraph.

We would also like to repeat the conjecture, attributed to Simon and
Murty, that the answer to the following problem is “yes”:

Problem 3. Is the Turdn graph the unique graph of largest size in S,, for
every n?

In follow-up papers we plan to further the study of triangle-free and

triangle-saturated graphs with a generalization of vertex duplication, the
description of several infinite families of primitive minimally saturated graphs
(including triangle-free families), and the determination of all maximally
unsaturated graphs.
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