Filling the Missing Names of Towns in a Map:
A Graph Theoretic Approach

Frank Harary*

Department of Computer Science
New Mexico State University

Aurora Morgana

Dipartimento di Matematica
Universitd di Roma “La Sapienza”

Bruno Simeone

Dipartimento di Statistica
Probabilita e Statistiche Applicate
Universitd di Roma “La Sapienza”

ABSTRACT. A map shows only the names of some (but not all)
towns in a region. If for each town, the names of all neighboring
towns are known, when is it possible to reconstruct from this
information the missing names? We deal with a generalization
of this problem to arbitrary graphs. For a graph G = (V, E)
with n nodes, we give an O(n®) algorithm to recognize those
instances for which the answer is YES, as well as two characteri-
zation theorems: NO-instances are determined by the existence
of a certain partition of V and YES-instances by the existence
of a suitable weak order in V.

1 The Problem

A region consists of n townships. For each township the set of all neigh-
boring townships is known. A map of the region is available, in which only
the names of some — but not all — townships are indicated. Making use of
the given list of neighborhoods, is it possible to fill the missing names?

*Research supported by a CNR visiting professorship at the University of Rome “La
Sapienza” during the month of May 1992.

JCMCC 25 (1997), pp. 121-127

One of us actually encountered this problem when trying to visualize
on a map the output of an algorithm for political redistricting. The map
showed only the names of the townships with at least 30,000 inhabitants.
On the other hand, the adjacency lists of all townships were available in a
computer file.

To illustrate, consider the map of Figure 1, where only the names of the
townships 2, 3, 4, 11 and 12 are known to be A, B, E, D and C respectively.

Name
_Adjacency List
BFH
AHLM

grReIOMMOoOOD>
m
-m
X
G
=

Figure 1 Table 1

We suppose that the adjacency list of each township is available as shown
in Table 1. Then it is possible to reconstruct the missing names in the
following way:

Township 6 is adjacent to A and B. An inspection of Table 1 shows that
the only township which is adjacent to both A and B is H. Hence the name
of township 6 is H.

Township 7 is adjacent to B and C and H. From Table I, the only

township neighboring with B, C and H is M. Hence 7 must have the name
M.

Continuing, one can sequentially identify the remaining names as follows:
L—-8 J—-9 F—o1, G—-5 K-—10.

On the other hand, in the map of Figure 2 the townships 1 and 4 cannot
be identified as there is not enough information to decide which is A and
which is D, but if we had been given only the names of townships 1 and 2,
then 3 and 4 could have been identified.

122

B @ Adi Name U
jacency List

Figure 2 Table 2

In order to give a graph theoretic formulation of the problem, let us
introduce some notation and definitions, following [1] in general. Let G =
(V,E) be a graph with n = |V| nodes and m = |E| edges. For z € V, we
define its neighborhood to be N(z) = {z € V: zz € E}. Given z € V and
any subset S C V, we write N(z,S) ={2€ S:zz€ E} = N(z)n S.

A node = ¢ S is called S-identifiable if for each y € S, y # z, we have
N(y,S) # N(z,S). Let I(S) be the set of all S-identifiable nodes of G.

Two nodes z, y are S-twins if N(z,S) = N(y, S).

With reference to the example of Figure 1, let Sp = {2,3,4,11,12} be
the set of townships whose set of corresponding names {4, B, E, D, C} is
initially known.

Then nodes 7 and 8 are Sy-twins since N(7, Sp) = N(8, So) = {3,12} and
thus their names cannot be identified at once. On the other hand, nodes 1,
5, 6, 9 and 10 are Sp-identifiable, since N(1,Sp) = {2,4}; N(5,S) = {4};
N(6,S0) = {2,3}; N(9,5) = {12}; N(10,Sp) = {11,12} and their names
are uniquely determined to be F, G, H, J and K, by inspection of Table
1.

Problem: Given a graph G and Sp C V we want to know if there is a per-
mutation (z1,...,zs) of V such that letting ¢ = |Sp| and Sk = {z1, ..., zk},
k=12,...,n,

(i) Sg= So,
(ii) zi41 is Sk-identifiable, ¢ < k < n.

If the answer is YES, G will be said to be Sp-identifiable and the sequence
(z1,-..,zn) will be called an Sp-identifying sequence.

We next give a simple general algorithm for deciding whether or not a
given subset of nodes enables all the remaining nodes to be identified and
then we shall prove its correctness.

123

Algorithm 1.

Step 0. Set S = Sp and k = g+ 1. Let the elements of Sp be z;,...,z,.
Step 1. While I(S) # @ do

begin

Select z € I(S) and replace S by SU {z}. Set zx = z.
Increase k by 1.

endwhile
Step 2. If S = V then G is Sp-identifiable; else G is not Sp-identifiable.
End.

Clearly if the algorithm answers YES then G is Sp-identifiable and the
sequence (z,...,z;) produced by the algorithm is an Sp-identifying one.
However it is not obvious that if the answer of the algorithm is NO there
is no identifying sequence at all.

To prove this, we start froth the following trivial remark:

Lemma 0. Let SCT CV and z ¢ T. If x is S-identifiable then z is also
T-identifiable.

Theorem 1. Algorithm 1 is correct.

Proof: Asremarked above, it is enough to prove that when the set S output
by the algorithm is properly contained in V, then G is not Sp-identifiable.
So suppose that (zi,...,z,) is an Sp-identifying sequence. Let k be the
smallest index such that zx1 ¢ S. Then S C S. On the other hand, x4,
is Sk-identifiable and hence by Lemma 0 is also S-identifiable, contradicting
the fact that the set S obtained by the algorithm satisfies 1(.S) = 0. O

By this theorem we note that the algorithm works regardless of the choice
of z € I(S) in Step 1. Hence one can consider the following special version.

Algorithm 2.

Step 0. Set S = Sp.

Step 1. While I(S) # 0 do replace S by SU I(S).

Step 2. If S = V then G is Sp-identifiable else G is not Sy-identifiable.
End.

Notice that, if I(S) # 9 and S C T C SUI(S), then I(T) # @ by Lemma
0. Hence in Step 1 there’is rfo need to test the condition I(T") # 0 for all
such intermediate subsets T

Algorithm 2 runs in polynomial time. In fact, the implementation given
below is seen to run in O(n®) time. The input graph is given by means of
adjacency lists while, for the representation of sets, one can make use of
efficient data structures supporting Union-Find operations [2].

124

Algorithm 2 (implementation).

Step 0. Set S =Q = Sp.
foreachi,j=1,...,ndoset a;; = 1.
{Since the end of the first execution of Step 1, for all 7,5 ¢ S one has
a;; = 1 or 0 according as i and j are S-twins or not w.r.t. the current S}
Step 1. While Q # 0 do
begin
for each h € Q do
for each {i,5} V — S do
ifie N(h)and j ¢ N(h)ori¢ N(h) and j € N(h)
then set a;; = 0.
endfor
endfor
Set Q = 0.
for each i ¢ S do
let d; = 3 {ai;: j ¢ S}
ifd; =1then add i to Q. {d; =1iff i € I(5)}
endfor
Replace S by SUQ.
endwhile
Step 2. If $ = V then G is Sp-identifiable else G is not Sp-identifiable.
End.

We present two characterizations of an Sp-identifiable graph G.

Let G = (V,E) and let X,Y C V be disjoint nonempty subsets of nodes.
Then we write B(X,Y) for the bipartite subgraph of G spanned by those
edges of G joining a node of X with a node of Y.

Theorem 2. Graph G is not Sp-identifiable if and only if there is a partition
{Xo, X1,..., X} of V such that

(i) Xo D So;
@) X 22 i=1,....t

(iii) foreveryi=1,... ,t the bipartite subgraph B(X;, Xo) is either empty
or complete.

Proof: To demonstrate the ‘only if’ assertion, let
Vo =S and Vg1 = Ve Ul(Vi), k=0,1,... 1)

If G is not Syp-identifiable then there is an index k such that I(Vk) = 0.

125

Define in V — Vi an equivalence relation by = =~ y meaning that z and y
are Vi-twins. _

Let Xo = Vi and let X,..., X, be the equivalence classes of ~. Then
{Xo, X1,..., X} is a partition of V. Moreover, |X;| > 2 for all ¢ > 1, else
I(Vi) = 0. Finally B(X;, Xo) is either empty or complete.

We now show the “if part”. Let {Xp, X1, ..., X:} be a partition satisfying
(i), (ii), (iii) and assume that G is Sg-identifiable. Let (z1,...,Z») be an Sp-
identifying sequence and let k be the smallest index such that zx4+1 ¢ Xo.

Then Sk = {z1,...,zk} C Xo and since zx4, is Sk-identifiable it is also
Xo-identifiable by Lemma 0. But then zx; has no Xo-twins, contradicting
(ii) and (iii). O

Recall that a binary relation > on a set V is complete if for all z,y € V,
zT>2yory2=z.

A weak order on a set V is a complete and transitive binary relation >.
We use the standard notation:

z>ymeansz >y and z # y.

z > —y or in words, = covers y, means z > y and there is no z such that
T>z>Yy.

Theorem 3. Graph G is Sy-identifiable if and only if there is a weak order
on V such that for all x,y ¢ Sp there is a node z < z, y which is adjacent
to exactly one of z and y.

Proof: We first prove “only if”. Let G be Sp-identifiable. If Vp, V3, ... are
defined by the recursion (1), then in view of Algorithm 2 there is a smallest
index p such that V, = V.

Define Ly = Sp and Ly = I(LoULl U "'ULk_l) fork=1,...,p.

Notice that Vi = LU L U U Lg_q for k=0,1,...,p.

Hence {Lo, L1,..., Ly} is a partition of V. Define > in V by

y>zmeansz € Ly andy € Ly and h < k.

Clearly > is a weak order.
Now let z,y ¢ So. Assume that z € Ly and y € L, where h,k > 1 and,
without loss of generality, h < k. Then z is Vj,_;-identifiable and thus there
exists a node z which is adjacent to exactly one of z and y, and belongs to
some L;, i < h <k, implying z < z,y.

To show the “if part”, let > be a weak order in V satisfying the hypothesis
of the theorem.

Define Ly = Sp and Ly = {z:z2 € V - (LoU L1 U---U Lg_;) and 3
y € LoUL1U---ULg_,such that z > —y} foreach k=1,2,....

Clearly, there exists an index p such that V = LoU Ly U---U Ly.

126

Moreover {LoUL;U---UL,} is a partition of V. Let h > 1 and let z be an
arbitrary element of Ly. If k > k and y is an arbitrary element of Ly, then
there exists a z < z, y which is adjacent to exactly one of z,y. Since 2 must
belong to some L;, with i < k, it follows that z is (LoUL;U--- U Lp—1)-
identifiable. Hence Ly I(LoU LyU---ULp_,). Since {LoU L, U---U Ly}
is a partition of V, the theorem follows. a

Notice that combining Theorems 2 and 3 one gets a good characterization
of those pairs (G, Sp) such that G is Sp-identifiable.

References
(1] F. Harary, Graph Theory, Addison-Wesley, Reading, 1969.

[2] T. Cormen, C. Leiserson and R. Rivest, Introduction to Algorithms,
MIT Press, Cambridge, MA,1990.

127

