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Abstract
The complete stability cs(Px), where Pi denotes the property of
having a k-factor, satisfies cs(Px) = n+k—2,if1 < k < 3, and
n+k—2<cs(Pi) S n+k—1,if k > 4. A similar result for bipartite
graphs with complete biclosure is proved also.

1 Introduction

We consider only undirected graphs with no loops or multiple edges. Let G
be a graph with vertex set V(G), edge set E(G) and order n = |V(G)|. By
dg(u) we denote the degree of a vertex u € V(G) in G and 6(G) denotes
the minimum degree of G. A k-regular spanning subgraph of G is called a
k-factor of G. The union and the join of two graphs G and H are denoted
by GU H and G + H, respectively.

In [3], Bondy and Chvital introduced the closure of a graph and the
stability of a property. For a non-negative integer I, the I-closure Ci(G) of
a graph G is the graph obtained from G by recursively joining pairs of non-
adjacent vertices whose degree sum is at least !, until no such pair remains.
The l-closure is independent of the order of adjunction of the edges and
any graph G of order n satisfies

G = C2n-3(G) C C21-4(G) C ... C Co(G) = K,

where K,, denotes the complete graph of order n. Let P be a property
defined on all graphs of order n and let ! be a non-negative integer. Then
P is said to be l-stable if for any graph G of order n and any two non-
adjacent vertices 4 und v of G such that dg(u) +dg(v) > ! and G+ uv has
property P, then G itself has property P. Every property is (2n — 3)-stable
and every I-stable property is (! + 1)-stable. The stability s(P) of P is the
smallest integer I such that P is l-stable. This number usually depends on
n and is at most 2n — 3.

If P is a l-stable property and if Ci(G) satisfies P, then G satisfies P.
Clearly, it is not always easier to check a property in C;(G) than in G and
so the implication above is often used in the weaker form, when C;(G) is
complete. This led Faudree, Favaron, Flandrin and Li [6] to introduce the
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complete stability cs(P) of a property P, defined on all graphs of order n
and satisfied by K, to be the smallest integer ! such that any graph G of
order n satisfies P if Ci(G) is complete. This number usually depends on
n and satisfies cs(P) < s(P). In [6] it was shown that for some properties
equality holds. But the interest in ¢s(Px) is motivated by some properties
P for which e¢s(P) is much smaller than s(P).

For a positive integer k we denote the property of having a k-factor by
P,. Note that a graph of odd order n cannot have a k-factor, when k is
odd. Thus we may restrict our attention only to situations with kn even.
Bondy and Chvital [3] investigated the stability of P;. The case & = 1
appeared as a part (2p = n) of

Theorem 1 [3] Let p be an integer with 2 < 2p < n. Then for the property
P: “G contains p independent edges” holds s(P) = 2p — 1.

Faudree et al. [6] observed that the examples given in [3) showing that
2p — 1 is best possible have their (2p — 2)-closure complete. Therefore we
have ¢s(P) = s(P) and especially es(P;) =n — 1.

For k > 2 Bondy and Chvital proved

Theorem 2 [3] Let2 < k < n—1 and kn be even. Then s(Px) < n+2k—4
and equality holds if n > 3k + 3.

Clearly, Theorem 2 and ¢s(Px) < s(Px) yield an upper bound for ¢s(Px). A
lower bound was obtained in [6] by considering the graph K1 + (Kn_x U
K;). This graph has its (n 4+ k — 3)-closure complete and contains no
k-factor, since its minimum degree is k — 1.

Theorem 3 [6] Let 2 < k < n—1 and kn be even. Thenn+k —2 <
cs(Pi) <n+2k—4.

In particular, Theorem 3 yields ¢s(Pz) = s(P;) = n.

The aim of this paper is to improve the upper bound for cs(Px) from
Theorem 3 for k£ > 3. Our main result, including the lower bounds and the
exact values from above, is

Theorem 4 Let 1 < k < n—1 and kn be even. If1 < k < 3, then
cs(Pr)=n+k—-2andifk>4,thenn+k—2<cs(Ps)<n+k—1.

So, for k > 4, there are still two values for cs(Px) possible. We make the
following

Conjecture 1 Let1 < k < n—1 andkn be even. Then cs(Py) = n+k—2.

Theorem 4 will be proved in section 3. Thereafter we will briefly discuss
what possibly can be done to prove the conjecture by extending the present
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method. There we will show also that in general it is impossible to de-
crease the lower bound from Theorem 3 further, even when the problem is
restricted to graphs G satisfying the necessary minimum degree condition
4(G) > k.

In a final section we will give a complete solution to the corresponding
problem for bipartite graphs with complete biclosure. This problem has its
origin from Amar, Favaron, Mago and Ordaz [1].

2 Preliminary results

Let G be a graph and let U, W C V(G). By eq(U, V) we denote the number
of edges joining a vertex in U with a vertex in W. For abbreviation we let
dg(U) = ¥ ,ev da(u) and Ng(U) = |Jyepy No(u), where Ng(u) denotes
the neighborhood of the vertex u in G. By < U >¢g we denote the subgraph,
which is induced by U in G. The number of components of G is w(G).

Theorem 5 [3] Let! be a positive integer and let P be the property “G is
l-connected”. Then s(P) =n+1-2.

Theorem 6 [4] Let n and! be integers with 0 <1 < 2n-3. If G is a graph
of order n with C(G) = K,, then |E(G)| > [}(! + 2)%]. Moreover, there
ezrists a graph H(n,l) of order n with Cy(H(n,l)) = K, and |E(H(n,l))| =
L3t +2)%].

Proposition 1 Let G be a graph of order n. Let D C V(G) and let 1 be
an integer with > 2|D|. If Ci(G) = Ky, then Ci_qp|(G — D) = K,_pj.

Proof. The non-adjacent vertices of G— D can be joined in the same order
asinG. m

The next result is a special case of Tutte’s f-factor Theorem [12], which
characterizes those graphs that do not have a k-factor and it was first
proved by Belck [2].

Let k be a non-negative integer and let D, S be disjoint subsets of V(G).
We call a component of G—(DUS) an odd component (of G with respect to
(D, S, k)), if k|[V(C)| + ec(C, S) is odd, and by qg(D, S, k) we denote the
number of odd components. Let hg(D, S, k) = k|D| - k|S| + dg-p(S) —
96(D, S, k).

Theorem 7 Let G be a graph of order n and let k be a non-negative integer
with kn even. Then the following statements hold.

(?) [12]  he(D, S, K) is even for any disjoint sets D, S C V(G);

(%) [2], [12] G does not have a k-factor if and only if G has a k-Tutte-
pair, that is a pair of disjoint subsets (D, S) of V(G) with hg(D, S, k) < —2.
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The next lemma was first observed in [13].

Lemma 1 Let G be a graph and let u and v be two non-adjacent vertices of
G. Then for every non-negative integer k and every pair (D, S) of disjoint
subsets of V(G)

0 < hguo(D, S, k) — ha(D, S, k) < 2.

A k-Tutte-pair (D, S) of a graph G is called tight, if hg(D, S, k) = —2.
Furthermore, we call a graph G k-mazimal, if G has no k-factor and G is
edge-maximal with this property. Clearly, every graph without a k-factor
is a factor of a k-maximal graph.

From Lemma 1 and Theorem 7 it is easy to derive

Lemma 2 Let G be a graph of order n and let k be an integer with 1 <
k < n—1 and kn even. If G is k-mazimal, then every k-Tutte-pair of G is
tight.

The usual way to prove the existence of a k-factor in a graph G by The-
orem T is to assume, contrarily, that G has a k-Tutte-pair. However, it is
not easy to obtain a contradiction from the inequality of Theorem 7 (ii).
So there have been several attempts to overcome some of the difficulties. In
particular, the following two approaches have been used recently in several
occasions. Katerinis and Woodall [7] chose a k-Tutte-pair (D, S) maximal
with respect to | DU S|. Thereby they obtained information on the vertices
of V(G) — (DU S). Enomoto, Jackson, Katerinis and Saito [5] chose a
k-Tutte-pair (D, S’) minimal with respect to |S’|. Thereby they obtained
information on the vertices in S’. In [10] we observed that it is possible
to combine these ideas by choosing first a k-Tutte-pair (D, S), which is
maximal with respect to |D U S| and then a k-Tutte-pair (D, S’), where
S' C S and |S'| is minimal. By the following theorem we will extend this
idea. The proof of our main result heavily depends on the statements listed
therein. Some more statements as well as a generalization to the f-factor
problem and further applications appeared in the author’s doctoral thesis

[9).

Theorem 8 Let G be a graph of order n and let k be an integer with
1<k <n-1 and kn even. If G is k-mazimal with §(G) > k, then there
ezist tight k-Tutte-pairs (D,S) and (D, S’) of G with §' C S such that the
following statements hold.

C1 dg-p(z) > k +1 for every vertez z € V(G) — (DU S);
C2 eg(z,S) < k—1 for every vertez z € V(G) — (DU S);
C3 |V(C)| > max{3,k+2 —|S]|} for every component C of G— (DU S);
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C4 dg-p(X) < kIX| = 2+ ¢(X) < KIX| = 2 + qa(D, S', K) for every
D #X CS', wherec(X) denotes the number of odd components C of
G with respect to (D, S', k) with Ng(X)NV(C) # 6;

C5 the subgraph induced by S’ in G has mazimum degree at most k — 2;
C6 dg(y) = n— 1 for every vertez y € D;
C7 every component of G — (DU S) or G- (DU S’) is complete;

C8 every component of G— (DUS) or G— (DU S') is an odd component
of G with respect to (D, S, k) or (D, S, k), respectively;

C9 k—1<dg_p(z) <k for every vertexz € S - §';

C10 for every component C' of G—(DUS') holds either V(C') = V(C)U
M, where C is a component of G — (DUS) and M C {z €S -5 |
de-p(z) = k}, or V(C') = {y}, wherey € S — S’ with dg_p(y) =
k-1;

C11 qg(D,S', k) = qc(D, S, k) + |{z€ S-S5 |dg-p(z) = k - 1}].

Proof. Since G is k-maximal, there exists a k-Tutte-pair (D, S’) of G.
Let (D, S’) be chosen such that |D| is maximal under all k-Tutte-pairs of
G and |S’| is minimal under all k-Tutte-pairs of the form (D, S*). We
next choose a finite sequence of k-Tutte-pairs (D, S;), i = 1,2,...,p, with
the following three properties: S’ = S1; Siy1 = S; U {z;} for a vertex
z; e V(G)—(DUS;) fori=1,2,...,p—1; (D, Sp U{z}) is no k-Tutte-pair
for every x € V(G) — (DU Sp).

To see that such a sequence exists, start with (D, S') = (D, S1). Sup-
pose then that we have (D, S1), (D, S2),...,(D, S;) already found. If there
exists a vertex z, € V(G) — (DU S, ) such that (D, S, U{z,}) is a k-Tutte-
pair, then let S, = S, U {z,}. Otherwise we are done and p = r.

Let now S = S,. Then (D, S) and (D, S’) are k-Tutte-pairs of G, which
are tight by Lemma 2. We now verify the statements of the theorem.
(C1) and (C2) are proved in [7] in the situation, where (D, S) is a k-Tutte-
pair, which is maximal with respect to |[D U S|. But the proof needs only
that for every vertex z € V(G) — (D U S) the pairs (D U {z},S) and
(D, S U {z}) are not k-Tutte-pairs and this is here satisfied by the choice
of D and S.

(C3) is an immediate consequence of (C1) and (C2).

To see (C4) let @ # X C S’. Then (D, S’ — X) is not a k-Tutte-pair by the
choice of S’ and so

0 he(D,S' — X, k)

k|D] - k(]S'| — |X]) + dg-p(S' = X) —q6(D, S' — X, k)

A
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he(D,S' k) + k|X| - dg-p(X) + ¢gc(D, S, k) — qc(D, S’ — X, k)
=2+ k|X| = dg-p(X) +¢(X)
-2+ lel - dc_D(X) + QG(D, S/,k).

INIA I

(C5) follows from (C4), since for z € S’ it holds d¢s/54(z) < dg-p(z) —
o({z}) < k-2

Suppose next that there exists y € D with dg_p(y) < n — 1. Then
there exists a vertex u, which is not joined to y. Now hgiyu(D, S, k) =
hg(D, S, k) = —2 contradicts the edge-maximality of G. So (C6) is proved.
By the same argument we can prove that every component of G— (DU JS;),
i=1,2,...,p, is complete and so (C7) is verified.

To verify (C8), suppose that there exists a component C of G — (DU S;)
for some i € {1,2,...,p} such that k|V(C)| + ec(C, S;) is even. Then
there exists no further component C* of G — (D U §;), since otherwise we
could add edges joining C and C* with h(D, S;, k) remaining unchanged.
Thereby we have especially that gg(D, Si, k) = 0. Moreover, every vertex
y € V(C) is joined to every vertex z € S;, since otherwise

hG4yz(D,Si k) = k|D|—k|Si| +dG-p(Si) +1 — gG4y=(D, Si, k)
= hg(D, Si k) = -2,
contradicting the edge-maximality of G again. Thus we have G = K, _|s,+
< S; >g with (C6) and (C7). The remainder is done by induction as

follows. If i = p, then G = K,,_|5)+ < § >¢. Since every vertex z € V(C)
is joined with all vertices of S, we obtain with (C2)

5] = eg(=,5) <k - 1.
On the other hand we have by §(G) > k

-2 hg(D, S, k) = k|D| - k|S| + dg-p(S)

> k|D| - k|S]|+|S|(k —|D]) = k| D| - |S||DI.
Therefore |[D| > 0 and so

kD] +2

S| > ————
512 =

>k,

a contradiction.
Let now 1 < i < p—1 and suppose by the induction hypothesis that
96(D, Si41,k) = w(G — (DU Si41)). By Lemma 2 we have

0 = hg(D,Sis1,k) = hg(D,S;,k)
—k +dg-p(zi) — 96(D, Si+1, k). (1)
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By the structure of G there are only two values for gg(D, Si+1, k) possible.
CasE 1. gg(D, Si+1,k) = 0.
Then V(G) is the disjoint union of D, S; and {z;} and by (1) we have
dg-p(zi) = k. Therefore |S;| = dg_p(2i) = kand |[D|=n - |S|-1=
n — k — 1. Thus with §(G) > k we obtain

-2 = hg(D,Si,k)=k(n—k—1)—k?®+dc-p(S:)
> k(n—2k—=1)+k(k—(n—k—1))=0,

a contradiction.

CASE 2. gg(D, Si4+1,k) = 1.

With (1) we get here dg_p(zi;) = k + 1, and then k + 1 = dg_p(z;) =
n—1—|D|. Thus |D| = n — k — 2. Moreover, since qg(D, Si4+1,k) = 1, we
know that DU S; U {z;} # V(G) and so |S;] < n — |D| — 2 = k. Now we
obtain again with §(G) > k

-2 = hg(D,Si k) =k(n—k—2) - k|Si|+ dc-p(Si)

> k(n—k=2)—|Sil(n—k—2)= (k—|Si)(n— k- 2).

Since |S;| < k, we have n — k — 2 < —1 or, equivalently, n — 1 < k. By our
hypothesis n —1 > k we get n—1 = k. Now §(G) > k implies G = K,,, but
the complete graph is not (n — 1)-maximal. This contradiction completes
the proof of (C8).

Let now £ € S — 5’. Then there exists an index ¢ such that x = z; and
Sit1 = S; U {z;}. By Lemma 2 we have

0 = hg(D,Sit1,k) — ha(D, Si, k)
= —k+dg-p(z) —96(D,Sis+1,k) + 96(D, Si, k)

and thus dg_p(z) = k + q¢(D, Si+1, k) — gc(D, Si, k). Since the compo-
nents of G — (DUS;) are complete, z is adjacent to at most one component
of G— (DU S;4+1). If there exists such a component, then we have by (C8)

96(D, Si41, k) = w(G = (DU Siy1)) =w(G — (D U Si)) = q6(D, Si, k)

and therefore dg-p(z) = k.
Otherwise {z} is a component of G — (DU S;) and with (C8) we obtain

46(D, Si+1, k) = w(G—(DUSi41)) = w(G—(DUS))—1 = qa(D, Si, k)1,

and so dg_p(z) = k— 1. Thereby, we have already verified (C9). Moreover
we have seen that dg_p(z;) = k — 1 if and only if {z;} is a component
of G— (DUS;) and dg-p(zi) = k if and only if z; is adjacent to one
component of G — (D U S;41). This implies that for every component C’
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of G— (DU S') there exists a set M C {z € S — §'|dg-p(z) = k} such
that either V(C’) = V(C) U M, where C is a component of G — (D U S),
or V(C') = {y} UM, where y € S — S’ with dg-p(y) = k — 1. So we can
verify (C10) by showing M = 0 in the latter case. Therefore we suppose
that there exists a component C’ with V(C’) = {y} UM and M # 0. Let
j := max{i|z; € M}. We consider now the pair (DU {z;},S; U{y}). Note
that y ¢ Sj, since otherwise z; forms a component of G— (DUS;). It holds

dg-(pu{z;})(Si U {v})

dg-p(S;) + de-p(y) — ec(zj, S; U {y})
= dG_D(Sj) -1,

and thus
hg(D U {z;},S; U{y}, k)
= k|D| - k|S;| + dg-(pu{z;1)(S; U{y}) — ¢a(D U {=;}, S; U {v}, k)

k|D| - k|S;| + dg-p(S;) — 1 — (¢6(D, S, k) — 1)
he(D,Sj k) = =2,

contradicting the choice of |D|. Finally, (C11) follows immediatly from
(C10). m

3 Proof of Theorem 4

Since c¢s(Px) > n+ k — 2 by Theorem 3, we need only to prove the upper
bound. The proof is by contradiction. Suppose that there exists a graph G
contradicting the theorem. We choose G with minimum order n under all
counterexamples. Let ¢4 = 1,if0 < k< 3,and ¢ = 0,if k > 4. Then G
is a graph without a k-factor having its (n + k — 1 — €x)-closure complete,
and so the (n + k — 2)-closure of G is complete, which will suffice for major
parts of the proof. By Theorem 1 we have c¢s(P;) < s(P;) < n—1 and
so k > 2. Furthermore, we may assume that G is chosen edge-maximal
without a k-factor. So G is k-maximal. Moreover, by Theorem 5 we know
that G is k-connected and in particular §(G) > k. Therefore, G satisfies the
hypotheses of Theorem 8 and so there exist tight k-Tutte-pairs (D, S) and
(D, S") of G with §' C S such that the statements (C1)-(C11) hold. For
abbreviation we let ¢ = q¢(D, S, k), ¢’ = gc(D, S', k), W = V(G)—(DUS)
and ¢, = |[{z € S— S’ | dg-p(z) = k — 1}. Note that (C11) becomes
9 =9+ qa.

Cram 1. |§'| > |D|+ k-1

Let first |D| > 2. Since G was choosen with minimum order under all

counterexamples, there does not exist a graph of order n — 2 without a
(k — 2)-factor having its ((n — 2) + (k — 2) — 1 — €x_2)-closure complete
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(the case k = 2 can be included in this formulation, since every graph has
a 0-factor). Choose now two vertices v,w € D and consider the graph
G* = G- {v,w}. By Propositon 1 and €x_z > € it follows that G* has its
((n—=2) + (k — 2) — 1 — €x_3)-closure complete and so G* has a (k — 2)-
factor. Therefore (D — {v,w}, S’) is no (k — 2)-Tutte pair of G*, that is
hge(D — {v,w}, S,k — 2) > 0. This yields

-2 > hg(D,S',k)— hge(D— {v,w}, 5", k—2)
k|D| - k|S'| +dg-p(S") —¢' - ((k —2)(I1D1-2) - (k- 2)|5|

+dge—(D-{v,u})(5) — 96+ (D — {v,w}, §, k))
2|D| - 2IS"| + 2k — 4,

or, equivalently, [S’| > |D|+ k — 1 as required.

Let now |D| < 1. Suppose that |S’| < |[D|+ k — 2. If |[D| = 0, then
hG(D,S', k) = —2 and 6(G) > k imply ¢’ = —k|S'|+d(S') +2 > 2. Thus
5’ is a cutset of G with |S’| < k — 2, contradicting the k-connectedness of
G. If |D| = 1, then |§'| < k — 1. With hg(D, S, k) = =2 and §(G) > k we

obtain here

q' = k- kIS'l + dG_D(S') +2
> kK|S +|S|(k-1)+2=k~-|5|+2>3.

Thus DU S’ is a cutset of G and so |$'| = k — 1, since G is k-connected.
Therefore, G is a subgraph of K + (Ka U K, U K,) for suitable integers
a>b>c>1withn=a+b+c+k. Since Cppr—2(G) = K,, we get
Crnik-2(Ki + (K, UK, UK,.)) = K,,. Therefore (a+k—1)+(b+ k- 1) >
n+k — 2, but the left-hand-side of this inequality is equal to n + k— 2 —¢,
contradicting ¢ > 1.

CLam 2. W #@andg> 1.
By (C8) it suffices to show that W # @. Suppose, therefore, that W = §,
that is DU S = V(G). We have

-2 = hg(D,S,k) = k|D| - k|S| + dg-p(S)
2k|D| - kn + 2|E(G - D)|,

and so
2|E(G - D)| = kn — 2k|D| - 2. (2)

By Proposition 1 we have Cp4k_2-2p|(G — D) = K,_|p; and thus by
Theorem 6

2|E(G - D)| > 2| g(n + K~ 2(DI)?| > 2(5(n+k—2iD))? - 1).
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With (2) we obtain

2
0 < kn — 2k|D| — %(n+k—2lD|)2=—(%—§—|Dl> ,

a contradiction.

Since G has its (n + k — 1 — €x)-closure complete and since G is not
complete itself, there exist two non-adjacent vertices z,y € V(G) with
dg(z) +dg(y) > n+ k —1— €. By (C6) we have z,y ¢ D and also
dg(z) = dg-p(z) + |D| and dg(y) = dg-p(y) + |D|. Thus with Claim 1
dg-p(z)+de-p(y) > n+k-1-e —2|D|

= |DI+I1S|+1S=S§'|+ W+ k—1-e —2|D|

> |WI+IS-S5|+2k-2—¢
and so

de-p(z) +dc-p(y) 2 |W|+|5— 5| + 2k -3, (3)

where the inequality is strict for k¥ > 4. Next we will use (3) in six cases
depending on to which of the sets W, S — S’ and §’ the vertices  and y

belong. First we consider the three cases in which z and y belong to the
same set.

CAsE 1. z,y e W.
By (3) and (C2) we have

WI+|S—S|+2k-3 < dg-p(z)+de-p()
[((N(z) UN(y)) N W]+ eg(z,S) +ec(y, S)
IW - {.’L', y}l + CG(:B, S) + eG(ya S)

|W|=2+42(k—1) = |W|+ 2k —4,

VAN VAN | I VAN

a contradiction.

CAsE 2. z,ye€S—S'.

By (3) and (C9) we have
W|+2k-1 W|+IS-5'|+2k-3

dg-p(z) +de-p(y) < 2k,

and so |W| < 1. Since |W| > 3¢ by (C3), we obtain even |W| = 0,
contradicting Claim 2.

<
<

CASE 3. z,y € 5.
Here we have with (3), (C4) and (C11)

W|4+ga+2k-3 < |W|+|S-5'|+2k-3
dg-p(z) +da-p(y)
2k—-2+4+q'=2k—-2+q+q,,

ININ
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and so |W| < ¢ — 1. Together with |W| > 3¢ by (C3), we obtain 2¢ < 1,
contradicting Claim 2.

Next we consider the cases, where z and y belong to different sets. Without
loss of generality we may consider only the following three cases.

Cased4. z€S~S andye W.
Note that [N(y) N W| < [W|—-1-3(¢g — 1) by (C3). Together with (3),
(C9) and (C2) we get

IW|+2k-2 < |[W[+|S—5'|+2k—3<dg-p(z)+dc-p(y)

k+|N(y) "W +ec(y,S)
< k+|W|-1-3¢—-1)+k-1,

IN

and therefore ¢ < 1. Thus ¢ = 1 by Claim 2. Moreover, equality holds
in all estimations above. This yields dg_p(z) = k and S = §' U {z}. By
(C11) we have therefore ¢’ = 1. But now (C7) implies that z is adjacent
to all vertices of W, in particular z is adjacent to y, a contradiction.

Case5.z€ S andye S-9'.
With (3), (C4) and (C9) we obtain

IWl+ga+2k-3 < |W|+|S—S8'|+2k -3 < de_p(z)+dc-p(y)
< k-2+4q¢+k=2k-2+¢,

and thus [W| -1 < ¢’ — g, = ¢ by (C11). But, since |W|> 3¢ by (C3),
we have |W| = 0, contradicting Claim 2.

CASEG6. z € S'andye W.
With (3), (C4), (C2) and (C11) we get

IWl+¢a+2k—-3 < |W|+|S—5'|+2k-3<ds-p(z)+de_p(y)
k=244 +|N@y)nW|+ec(y,S)
k=249 +|W|-1-3(g—-1)+k-1
|W|+2k~1—-29+qa,

A IA

and thus ¢ < 1. For k > 4, we have strict inequality in (3) and therefore
even ¢ < 1, already contradicting Claim 2. Let now k < 3. Then ¢ = 1
by Claim 2 and equality holds in all estimations above. This yields |$’| =
|D]+k—1 (from equality in (3)), ga = |S—5"|, d-p(z) = k—2+¢({z}) =
k—2+44q and eg(y,S) = k- 1.

Now we get

-2

ha(D,S',k) = k|D|-k|S'| +dg-p(S') — ¢’
k|D| = k(ID|+ k = 1) + dg-p(S' — {z}) + (k =2+ ¢) - ¢,
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and so dg-p(S' — {z}) = k* — 2k.

Let first k = 2. Then dg_p(S' — {z}) = 0. But since 1 = eg(y,5) =
ec(y,S') by (C7), this implies that £ and y are adjacent, a contradiction.

Finally, let k = 3. Then dg-p (S’ —{z}) = 3. By ¢s = |S— 5’| we know
that every vertex of S — S’ has degree k — 1 = 2 and is a component of
G — (DU S'). Furthermore, ¢({z}) = ¢’ implies that z is adjacent to every
vertex of S — S’. Moreover we have with (C7) eq(y,S') = ec(v,S) =
k —1 = 2. Thus we obtain 3 = dg_p(5' — {z}) 2 ¢a +e(3,5') = ¢a + 2,
that is go < 1.

For g, = 0 the information implies that G — D is either the graph G; in
Figure 1 with an additional edge joining S’ and W, which is not incident
with z and y, or the graph G2 in Figure 1 with an additional edge joining
z and a vertex in §' — {z}.

For g, = 1, the information implies that G — D is the graph sketched

in Figure 2 with an additional edge joining the vertexin S — S’ to a vertex
in &' — {z}.

Figure 2

In all cases it is easy to verify that G— D does not have its (|W|+3+4a)-
closure complete. With Proposition 1 it follows that G does not have its
(IW|+ 3 + g4 + 2| D|)-closure complete. Now this is the final contradiction,
since |W|+3+ga+2|D|=|W|+|D|+|S'|+|S-S5|+1=n+1m

We would like to note that with the exception of CASE 6 the proof of
Theorem 4 works under the weaker hypothesis Cp4x-2(G) = Kn. There-
fore, a proof of Conjecture 1 can possibly be done by finding the missing
argument in this case.
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Next we present graphs of order n > 3k + 1 with minimum degree at
least k and Cp4x-3(G) = K,,, which do not have a k-factor. Therefore we
use the graphs from Theorem 6. For nk even let

- Kynokon+ H(3(n+k+1),2k~2) ifn—kis odd
n, k) =

Kygn_x)+ H(%(n +k), 2k — 3) if n — k is even.
We check only the case ‘n — k is odd’. The case ‘n-k is even’ can be treated
analogously. We have §(G(n,k)) > 3(n—k—1)> 1Bk +1-k-1)= k.
Moreover G(n, k) has its (n + k — 3)-closure complete, since H(3(n + k +

1), 2k — 2) has its (2k — 2)-closure complete. To see that G(n, k) does not
have a k-factor, choose D = V(Ky(s_x-1)) and § = V(G) — D. Then

he(D,S,k) = —k*—k+ 2|E(H(-;—(n +E+1),2k - 2))|

Kk +2[%2J < —k.

4 Complete biclosure and regular factors

Let G be a bipartite graph with partition (A4, B). For an integerl, 0 <! <
|A| + |B| — 1, the l-biclosure BCi(G, A, B) of G (with respect to (4, B))
is the graph obtained from G by recursively joining non-adjacent vertices
belonging to different partition sets and having degree sum at least [, until
no such pair remains. The l-biclosure is independent of the order of adjunc-
tion of the edges, but it may be possible that it depends on the partition,
if G is not connected. It holds

G = BCa1418)-1(G, A, B) € ... C BCo(G, A, B) = K\4),1B)»

where K|4), 8| denotes the complete bipartite graph with partition sets of
size |A| and |B|.

Besides many other results the following theorem is proved in Amar,
Favaron, Mago and Ordaz [1].

Theorem 9 Let G be a bipartite graph with partition (A, B) and |A| =
|B| = n. Furthermore, let k be an positive integer and let u € A and
v € B be non-adjacent vertices with dg(u) + dg(v) > n, if k = 1, or
dg(u) +dg(v) > n+2k—-3, ifk > 2. Then G has a k-factor if G +uv has
a k-factor. Moreover, the degree bounds are best possible for n > 3k.

From Theorem 9 it follows that a bipartite graph with partition sets of size
n has a k-factor (k > 2), if its (n + 2k — 3)-biclosure is complete (this is
already mentioned in [1]). In this section we prove
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Theorem 10 Let G be a bipartite graph with partition (A, B) and |A| =
|B| = n. Furthermore, let k < n be a positive integer such that
BCh4k-1(G,A,B) = K, .. Then G has a k-factor.

Theorem 10 is best possible in the sense that BCp4x-1(G,A,B) = K, n
implies 6(G) > k, but BCp4x-2(G, A, B) = K, » does not.
To prove Theorem 10 we need the following results.

Theorem 11 Let G be a bipartite graph with partition (A, B) and |A| =
|B]. Then G has no k-factor, if and only if there exist sets X C A and
Y C B with

eG(X,B-Y) < k|X|-k|Y|-1,

The f-factor version of Theorem 11 is sometimes called Ore’s Theorem,
since it can be derived from results on directed graphs in [11]. In [13] Tutte
gave a direct proof and in [8] Lovdsz and Plummer derived it from the
Maz-Flow Min-Cut Theorem.

Lemma 3 Let G be a bipartite graph with partition (A, B) and |A| < |B|.
Furthermore, letl be an integer with 0 <1 < |A|+|B|-1. If BCi(G, A, B) =
I\,lAMB" then

IE(G)|>{ [41(”1)2] if0<I<2A4l-1
LA+ -14) L2 214),

Proof. Let p = min{|A|,[] + 1}. Starting with Ho = G we define
graphs Hy, Hs,..., Hp recursively as follows. Let 0 < i < p—1. If H; #
K)aj-i,B]-i» then choose non-adjacent vertices z € V(H;) N A and y €
V(H;)N B with dy,(z) + dy, (y) > 1 — 2i. If H; = K| 4j-iB|-i, then choose
adjacent vertices z € V(H;)NA and y € V(H;)N B with dy,(z) +du, (y) >
! = 2i + 1. Then let Hiyy = H; - {z, y}.

To see that Hy, Hs,...,H, exist we argue as follows. G = Hp has its
I-biclosure complete and so, if Ho # K)a|, 5|, then there exist nonadjacent
vertices £ € A and y € B with dy,(z) + dg,(y) > ! and thus H; can be
defined. Moreover, H; has its (I — 2)-biclosure with respect to
(A - {z}, B — {y}) complete, since missing edges can be added in the
same order as in Ho. By repeating this argument we see that H;;, can be
defined, if H; # K|a|-i,B|-i- If H; = K|4|-i,B|-i, then choose arbitrary
vertices £ € V(H;) N A and y € V(H;) N B. Then we have dy,(z) +
dy.(y) = |A|+|B|—2i > 14+ 1—2i and thus we can define H;;1. Moreover,
Hiy1 = K)a|-(i4+1),|B|-(i+1)- By repeating the argumentation we see that
also Hiys,..., Hp can be defined.

From the definition of Ho, Hy,..., Hp it follows

[E(H:))| 21 = 2i+ |E(Hiya)
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fori=0,...,p—1. Thus

|E(G)I

p—1 p-1
|E(Ho)| > > (1 — 2i) + |E(H,)| > Y (1 - 2i)

1=0 i=0

[+ 1) if0<1<2|4]-1
= pll-p+1)= .
|AI+1—]4]) ifI>2|A]. =

Proof of Theorem 10. The proof is by contradiction. Let G be a graph
satisfying the hypotheses of the theorem and having no k-factor. By The-
orem 11 there exist X C A and Y C B with

ec(X,B-Y) < k|X| - k|Y| - L. )

We consider the graph H = G- ((A— X)UY). H hasits (n + k —
1 - (|A — X| + |Y|))-biclosure with respect to (X, B —Y) complete, since
the missing edges can be added in the same order as in G. Therefore
BCix|-y|4+k-1(H,X,B -Y) = K x|n-|y|, because n + k —1— (|4 ~
X|+[Y]) = |X| - |¥Y| + k — 1. Note that (4) implies |X| > |Y| and thus
[X|=Y|+k—1> 0. Moreover, we have | X|-|Y|+k—1< |X|+|B-Y]|-1,
since k < n. Thus we may apply Lemma 3 to H and [ = | X|— |V |+ k —1.

Case L. |X|=|Y]|+k—1<2min{|X|,|B-Y]|}-1.
Here we have with (4) and Lemma 3
FIX|-kY|-1 > ec(X,B-Y) = |E(H)|
1 1
> | gUXI=Y1+82] > 20XI = Y]+ 87 -1,
4 4
and thus
1 1
0 <KIXI = kY] = 2(X| = [Y]+§)* = —2(IX]| - [Y] - k)%,
a contradiction.
CASE 2. |X| - |Y|+k — 1 > 2min{|X], |B - Y|}.
Suscase 1. | X| < |B-Y]|.

Then we have | X|—|Y|+k—1 > 2|X|, and therefore | X| < k—~1—|Y]| < k.
On the other hand, (4) and Lemma 3 imply

kI X| - kY] > ec(X,B-Y) = |EH)
2 XWX =1YI+k=1)+1-]X]) = K|X|-|X]|lY],

that is | X| > k, a contradiction.
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SuBcase 2. |X|> |B-Y|.
Then | X|-|Y|+k—1> 2|B-Y|=2n-2|Y|, andso |Y| > 2n—|X|—-k+1 >
n —k + 1. On the other hand, (4) and Lemma 3 imply
k|X|- kY] > eq(X,B-Y) = |E(H)|
2 (=YX -Y[+E-1)+1=(n—|Y])
= (n=Y)(X]|+k—n),

equivalent to k(n — |X]) < (n — |Y|)(n — | X|) and thus |Y| < n — k. This
contradiction completes the proof of the theorem. =
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