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ABSTRACT. A vertex of a graph G dominates itself and its
neighbors. A set S of vertices of G is a dominating set if each
vertex of G is dominated by some vertex of S. The domination
number ¥(G) of G is the minimum cardinality of a dominat-
ing set of G. A minimum dominating set is one of cardinality
7(G). A subset T of a minimum dominating set S is a forcing
subset for § if S is the unique minimum dominating set con-
taining 7. The forcing domination number f(S,v) of S is the
minimum cardinality among the forcing subsets of S, and the
forcing domination number f(G,%) of G is the minimum fore-
ing domination number among the minimum dominating sets
of G. For every graph G, f(G,v) < ¥(G). It is shown that
for integers a, b with b positive and 0 < a < b, there exists
a graph G such that f(G,v) = a and 4(G) = b. The forcing
domination numbers ofseveral classes of graphs are determined,
including complete multipartite graphs, paths, cycles, ladders,
and prisms. The forcing domination number of the cartesian
product G of k copies of the cycle Czr+1 is studied. Viewing the
graph G as a Cayley graph, we consider the algebraic aspects
of minimum dominating sets in G and forcing subsets.
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1 Introduction

A vertex v in a graph G is said to dominate all the vertices in its closed
neighborhocod N[v]. A subset S of V(G) is a dominating set of G if
UyesN[v] = V(G). The domination number v(G) is the minimum car-
dinality among the dominating sets of G. A minimum dominating set of G
is a dominating set of cardinality 7(G). The book by Haynes, Hedetniemi,
and Slater [6] is devoted entirely to domination in graphs. For graph theory
in general, we follow the notation and terminology of [1,3].

Let S be a minimum dominating set of a graph G. ‘A subset T of S
such that S is the unique minimum dominating set containing T is called a
forcing subset for S. The forcing domination number f(S,v) of S is the min-
imum cardinality of a forcing subset for S. The forcing domination number
f(G,7) of G is the smallest forcing number of a minimum dominating set
of G. Hence, if G is a graph with f(G,y) =aand y(G) =b,then0 < a <b
and there exists a minimum dominating set S (of cardinality b) containing
a forcing subset T of cardinality a. Forcing concepts have been studied
for a variety of subjects in graph theory, including such diverse parameters
as the chromatic number [2] and the graph reconstruction number [5]. A
survey of graphical forcing parameters is discussed in [4].

For the graph G of Figure 1, 7(G) = 2. For example, the sets §; = {t,z}
and S; = {v,z} are minimum dominating sets. All other minimum domi-
nating sets of G are similar to S; or S3. Since S is the unique minimum
dominating set containing {t}, it follows that f(S1,7) = 1. On the other
hand, S is not the unique minimum dominating set containing {v} or {z},
so f(Ss,7) = 2. Consequently, f(G,y) =1.

t z

w
G: O

Figure 1

As another example, consider the nontrivial star graph G = K 5. Then
G has exactly one minimum dominating set consisting of the unique vertex
of degree n in G. Thus f(G,v) =0. In fact, for any graph G, the domine-
tion number y(G) = 1 if and only if G has a spanning star, i.e., the radius
of G is 1. Therefore, if rad G = 1, then f(G,v) < 1 and furthermore, if
G has a unique vertex of eccentricity 1, then f(G,v) = 0. The following
observation will be useful.
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Lemma 1. For a graph G, the forcing domination number f(G,v) =0 if
and only if G has a unique minimum dominating set. Moreover, f(G,v) =1
if and only if G does not have a unique minimum dominating set but some
vertex of G belongs to exactly one minimum dominating set.

Proof: The first equivalence is immediate. To prove the second, assume
that G does not have a unique minimum dominating set but that some
vertex v of G belongs to exactly one minimum dominating set, say S.
Then f(S,7) = 1, so f(G,v) = 1. On the other hand, if G is a graph
such that f(G,v) = 1, then there is 2 minimum dominating set $’ such
that f(S’,) = 1. Consequently, S’ contains a vertex u such that S’ is the
unique minimum dominating set containing w. O

Next, we describe a class of graphs for which the domination number is
considerably larger than the forcing domination number. For each positive
integer b, let P be a path of order 3b, say P: v;,vs,...,v3, and let S be
a minimum dominating set for P. Since 4(P) = b and P has maximum
degree 2, each vertex v of S dominates three vertices in P and every vertex
of P is dominated exactly once. Thus S contains neither v; nor vs,. Since
v; must be adjacent to a vertex of S, it follows that v € S. Hence S
must contain vs,vs,...,v3—1. Therefore S is uniquely determined and
f(P,v) = 0. Thus for the path of order 3b, the domination number is b
while the forcing domination number is 0.

The following result is a direct consequence of Lemma 1.

Corollary 2. For a graph G, the forcing domination number f(G,v) > 1
if and only if every vertex of each minimum dominating set belongs to at
least two minimum dominating sets.

We have already noted that if G is a graph with f(G,%) = a and v(G) =
b, then 0 < a < b. We now show the corresponding realization result: For
every pair a, b of integers, with b positive and 0 < a < b, there exists a
graph G such that f(G,v) =a and ¥(G) = b.

Theorem 3. Every pair a, b of integers, with b postive and 0 < a < b,
can be realized as the forcing domination number and domination number,
respectively, of some graph.

Proof: We have already seen that when G = Ps;, we have f(G,7) = 0
and v(G) = b. Thus, we assume that 0 < a < b. Let P: v;,vz,...,vs, be a
path of order 3b. Recall that the unique minimum dominating set for P is
S = {vg,vs,...,v3—1}. To obtain a graph G with the desired property, we
add a new vertices vj, g, ...,v3,_, to P and for 1 < ¢ < a, we join v§;_, to
both v3;_; and the neighbors of v3;_; in P. Hence ¥(G) = b. An example
is shown in Figure 2 in the case where e = 2 and b = 4.
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Figure 2

Clearly the set S is a minimum dominating set for G, and the subset
T = {vgi—1 | i=1,2,...,a} is a forcing subset for S. So f(G,7) < a. Let
S’ be a minimum dominating set for G. Since §’ is a minimum dominating
set for a subgraph Psp as well, and Ps has a unique minimum dominating
set, it follows that S’ must contain wvs;_ or v3;_; for i = 1,2,...,a. Let
T’ be a forcing subset for S’. To prove that T” contains wa;_; or v3,;_; for
each i (1 < i < a), we suppose, to the contrary, that for some j 1<3i<
a) neither vsj_; nor vj;_; is in T". Then, S’ — {vsj—1,v5;_;} U {v3;-1}
and S’ — {vsj_1,v4;_,} U {v3;_,} are two minimum dominating sets for
G containing T", which contradicts the fact that T” is a forcing subset for
S'. Thus, |T’| > a, and hence f(S’y) > a. Therefore, f(G,v) 2> a and so
f(G, v) =a. a

Figure 3

For a graph G and a subset S of vertices of G, the closed neighbor-
hood N[S] of S, is the union of the closed neighborhoods of the vertices of
S, that is, N[S] = U,esN[v]. For vertices v1,v,...,vn of G, we write
N[v1,v2,...,vn) for N[{v1,v2,...,vs}]. We now determine the forcing
domination numbers for several well-known graphs or classes of graphs. We
begin with the famous Petersen graph P. It is well-known that ~(P) = 3.
Consider the labeling of the Petersen graph P shown in Figure 3. First,
{v1,v4,us} and {v1,u3,u4} are two minimum dominating sets for P, both
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containing the vertex v;. Since P is vertex-transitive, every vertex belongs
to at least two minimum dominating sets and hence f(P,v) > 2. Next, we
show that f(P,v) < 2. Let § = {v;,v4,us}. Now P — N|[uy, usg) is the path
u1,%1,v2, Whose vertices are uniquely dominated in P by v;. Thus {v4, us}
is a forcing subset for S and hence f(S,v) = 2. Therefore, f(P,v) < 2 and,
consequently, f(P,vy) = 2.

Next, we determine the forcing domination number of complete multi-
partite graphs. Let pj,ps,...,px be k > 2 positive integers with p; <
p2<---<prandp, +p2+---+px =mn, and let G = K(py,ps,...,px).
For i = 1,2,...,k, denote the p; vertices of G in the ith partite set by
Vi, 1,%,2,-- -, Vi,p;. First, suppose that p; =1 and p > 1. Then vy, is the
unique vertex of G of degree n —1 and hence {v; ;} is the unique minimum
dominating set for G. Therefore, f(G,v) =0.

Next, suppose that p; = p = 1. Then both {v;;} and {2} are mini-
mum dominating sets for G and hence f(G,v) = 1. Finally, suppose that
P1 > 1. Since any two adjacent vertices form a minimum dominating set
for G, every vertex belongs to at least two minimum dominating sets and
hence 1 < f(G,v) < ¥(G) = 2. Therefore, f(G,~) = 2. In summary,

0 ifpy=1landpy>1

f(K(P1,p2,...,P),7) =1 ifpy=pp=1
2 ifp >1

Since K, is the complete n-partite graph K(1,1,...,1), it follows that
for every integer n > 2, the forcing domination number f(K,,v) = 1.

The corona G° of a graph G of order n is that graph obtained from G
by joining one new vertex to each vertex of G. Thus the order of G° is 2n.
For each end-vertex v of G°, every minimum dominating set for G° must
contain v or its neighbor, and hence y(G°) = n. We now show that the
forcing domination number of the corona of a graph of order n is n.

Let G be a graph with V(G) = {v1,v2,...,vn} and let v} be the new
vertex joined to »; in G°. Then each minimum dominating set S must
contain v; or v} for ¢ = 1,2,...,n. Therefore, each subset T of S of order
n — 1 cannot dominate some vertex v;. Thus T U {v;} and T U {v;} are
two minimum dominating sets for G° so that f(G°,7) > n — 1. Since
¥(G°) = n, it follows that f(G°,v) =n.

2 Forcing Domination Numbers of Paths and Cycles

We begin with the forcing domination number of paths. Since f (Pnyv)=1
for n = 2, 3, we consider paths of order at least 4.
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Theorem 4. For the path Py, of order n > 4,

0 ifn=0(mod 3)
f(Pa,7)=41 ifn=2(mod 3)
2 ifn=1(mod 3)

Proof: Let P be a path of order n, say P: vy,v2,...,vs. If n. = 0(mod 3),
then we have already seen that f(P,v) = 0. Assume then that n = 2
(mod 3). Thus n = 3; + 2 for some positive integer j and y(P) = j + 1.
Consider the minimum dominating set § = {v),v4,v7,...,v3;541} for P. We
show that {v,} is a forcing subset for S. Since the 3j vertices of the path
P — N[v1] are uniquely dominated by the j vertices of S — {v1}, it follows
that f(S,v) < 1. Since S and S — {v1} U {v2} are two distinct minimum
dominating sets for P, we have that f(P,v) > 0. Therefore f(P,v) =1.

Finally, assume that » = 1(mod 3). Then n = 35 + 1 for some positive
integer 7, and y(P) = j + 1. Let S = {vy,v3, v, v, ...,¥3;}, & minimum
dominating set for P. We begin by showing {v;,v3} is a forcing subset of
S. Since the path P — N[v;,vs] of order 3(j — 1) is uniquely dominated by
the 7 — 1 vertices of S — {vy,vs}, it follows that f(P,v) < 2. To show that
f(P,v) > 2, we verify that every vertex of P belongs to two minimum dom-
inating sets. Let S; = {v1,v3,%s,-..,v3j}, S2 = {v2,v3,v6,...,v35}, S3 =
{102:'047'”7: v ’”33'-}-1}1 S4'= {’Uly V4, U7y 4y v3j+1}1 S5 = {'U2)'US; ceeyV35-1,
vsj+1} and Sg = {va,vs,...,v3j-1,v3;}. Then for each i =1,2,...,6, the
set S; is a miminum dominating set for P and furthermore every vertex
of P belongs to at least two of these sets. Hence f(P,y) > 2, and so
f(Py)=2

Next, we present an upper bound for the forcing domination number
of every minimum dominating set of a path. The proof is tedious and is
therefore omitted.

Theorem 5. For every minimum dominating set S of P,, where n > 2,
the forcing domination number f(S,v) < 4.

Next, we determine f(C,,v) for all cycles. Since f(C3,7) = 1 and
f(Cn,v) =2 when n is 4 or 5, we consider cycles of order at least 6.

Theorem 6. For the cycle Cy, of order n > 6,

1 ifn=0(mod 3)
2 otherwise.

f(cm'Y) = {

Proof: Let C be a cycle of order n, say C: v;,va,...,vn,v;. Suppose
first that n = O0(mod 3), say that n = 3k for some positive integer k.
Let S = {vs,vs,...,v3%k—1}. Then S is a minimum dominating set for C.
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We show that f(S,7) = 1. The path P = C — N[wp] is a path of order
3(k—1) which has a unique minimum dominating set by Theorem 4, namely
S — {v2}. Thus f(S,v) < 1. Since C has other minimum dominating sets,
fCm=1

Next suppose that n = 1(mod 3), say that n = 3¢+ 1 for some positive
integer £. For each ¢ = 1,2,...,n, the path C — N[v;] is of order 3(¢ —
1) + 1 and is not dominated uniquely, say S; and S are two minimum
dominating sets for C — N[v;]. Thus S; U {v;} and S U {v;} are two
minimum dominating sets for C' and hence every vertex of C belongs to
at least two minimum dominating sets. Therefore f(C,v) > 1. The set
S = {vq,v3,vs,...,v3¢} is a minimum dominating set for C. Now since
9(C) = £+ 1 and C - Nva, v3] is a path of order 3(¢— 1) that is dominated
uniquely by € — 1 vertices, each minimum dominating set containing v,
and v3 must also contain vg,vg, ..., v3s. So the subset {vq,v3} is a forcing
subset for S. Thus f(S,~) = 2 and hence f(C,v) = 2.

Finally, let n = 2(mod 3) say that n = 3m + 2 for some positive integer
m. Then for each i =1,2,...,n, the path C ~ N[v;] is of order 3(m —1)+2
and is not dominated uniquely. Therefore, as before, every vertex of C
belongs to at least two minimum dominating sets and thus f(C,v) > 1.
To see that f(C,v) = 2, we let S = {v2,v4,v7,...,v3m4+1}. Then S is a
minimum dominating set for C and C'— Nvy, vy] is a path of order 3(m—1).
As before, since 7(C) = m + 1 and C' — N|[vp, v4]is dominated uniquely by
m—1 vertices, each minimum dominating set containing v, and v4 must also
contain v7,v10,...,V3m+1. Thus {ve,v4} is a forcing subset for S. Hence
f(8,7) =2 so that f(C,v) =2. O

3 Forcing Domination Numbers of Ladders P, x K, and Prisms
Cn X K2

We now consider the ladders P, x K3 for n > 2. Now when n = 2, the
ladder P; x K3 = Cj so that f(P; x K2,7) = 2. In the following theorem,
we use the facts that ¥(Poy—y x K3) = k and Y(Por x Kg) =k + 1.

Theorem 7. For every integer k > 2, the forcing domination number
F(Pek—1 x Ka,7) = 1.

Proof: Let G = Py,_; x K>, where the vertices of G are labeled as in
Figure 4.

First, suppose that k = 2. Then S; = {u;,v3}, Sz = {ug, vz}, and
S3 = {ug,v,} are the only minimum dominating sets for P; x K,. Since
each set S; (i = 1,2,3) is the unique minimum dominating set containing
the vertex u;, it follows that f(S;,) =1 and hence f(Psx K2,7v) = 1. Thus
assume that k > 3. We begin by showing that every minimum dominating
set contains either u; or v;. Suppose, to the contrary, that some minimum
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dominating set S’ of G contains neither u; nor »;. Then both uy and v
must be in S’. Then G — Nva,us] = Py(r—2) X K2, whose vertices must
be dominated by k — 1 vertices, producing a contradiction. Therefore, as
claimed, either u; or v; is in every minimum dominating set, and so too is
U2k—1 OF V2k-—1.

S U3 Yz Y
G: {
S e oo —5 o
V1 o) V3 Vo3 Va2 Yok
Figure 4

Now let S be a minimum dominating set of G. Then S contains u;
or vy, say u). Similarly, S must contain either ugx_; or wgr—j. Thus
u; and either ugi_1 or vor_; dominate a total of six vertices of G. The
remaining 4(k — 2) vertices of G must be dominated by k — 2 vertices of
S, each of which has degree 3. Hence the closed neighborhoods of each
pair of distinct vertices in S must be pairwise disjoint. Since u; € S and
vy is dominated by some vertex (of degree 3) in G, it follows that vs € S.
Since the closed neighborhoods of the vertices in S are pairwise disjoint,
the remaining vertices of S are uniquely determined, where us,_1 € S if k
is odd and woi_; € S if k is even. Thus f(S,v) < 1, where S consists of
the vertices u1,vs, us,v7, ..., and either uge_; (if k is odd) or vor—; (if k is
even). However, then the set S’ that consists of the vertices vy, us, vs,uz, ...
and wog—; if k is odd or ugk—j if k is even, is another minimum dominating
set for G. Hence f(G,v) >0, so f(P-1 X P2,7) =1 for k > 2. O

For each integer k > 2, let G be the graph obtained from Ppx_; X Ko,
whose vertices are labeled as in Figure 4, by joining a new vertex w to one
of the vertices of degree 2 in Py,_; X K>, say u. The graphs G2 and G3
are shown in Figure 5. Then any minimum dominating set S for G must
include w or u and since ¥(G}) = k, it follows that u € S. Combining these
observations with Theorem 1], we have the following corollary.

Figure 5
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Corollary 8. For every integer k > 2, the forcing domination number
f (Gk: 7) =0.

Next, for each integer k > 2, let Hi be the graph obtained from Ppx_; X
K>, whose vertices are labeled as in Figure 4, by adding two vertices w;
and w; to Pax_; x Ko along with the edges wyv, and either woug,_; if k
is even or wovgk_1 if k is odd. The graphs H; and Hj are shown in Figure
6. Now y(Hx) = k and any minimum dominating set for Hx must contain
vy and either ugx—) or vax—3. Thus we have the following corollary.

Figure 6

Corollary 9. For every integer k 2> 2, the forcing domination number
Sf(Hg,7) =0.

We now determine the forcing domination number of the ladder Pax x K2
for each positive integer k.

Theorem 10. For k > 1, the forcing domination number f(Pzrx Ka2,7) = 2.

Proof: Let G =Py, x K5, where the vertices of G are labeled as in Figure 7.
o2 U1 Uy

V e o o 0, O
vl v2 V3

Vok-2 Vol Vo

Figure 7

Let S consist of the vertices u;, vy, u4, V¢, Ug, V10, 12, .. . and uog if k is
even or vy if k is odd. Then S is a minimum dominating set for G. We
show that {u,,v;} is a forcing subset for S. We begin by showing that any
minimum dominating set containing u; and v, cannot also contain u, or V3.
Let S’ be a minimum dominating set for G containing u; and vy. If up € S’ ,
then the subgraph H = G — N[u;,u2, v2] is isomorphic to Pa(k—1)—1 x K2
and the vertices of H must be dominated by the remaining k — 2 vertices
of S’. Since Y¥(Pa(k-1)—1 % K2) = k — 1, this is impossible. Thus us és.
Finally, if v3 € S’, then the subgraph H = G - N fu1, va,v3] of G has
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a subgraph isomorphic to Py(x_2) x K2 and H must be dominated by the
remaining k—2 vertices of . As before, since y(Py(x—2)x K3) = k—1, thisis
impossible. Thus neither uz nor v3 belong to S’. Now G —N[uy,v2) & Gk
and by Corollary 12, the forcing domination number f(Gk—1,v) = 0. Thus
{u1,v2} is a forcing subset for S and f(G,y) < 2. Next, we will show
f(G,v) > 1. First, 8’ = {vy,v2, u4, ve, us, V10,212, . . ., w} Where w = ugy if
k is even or w = vy if k is odd is 2 minimum dominating set for G. Thus
v; and u; for 1 <4, j < 2, with ¢ = 2(mod 4) and j = 0(mod 4) belong to
two distinct minimum dominating sets. By using the automorphisms ¢ and
7 of G where o(v;) = u; and 7(u1) = ugk, we see that each vertex in G lies
in two distinct minimum dominating sets, and so f(G,+) > 2. Combining
the two inequalities, we get f(Por x Ko,7) = 2. ]

Combining Theorems 7 and 10, we have the following result for the ladder
P.n x K. 2.

Corollary 11. For every integer n > 2,

1 ifn is odd
2 ifn iseven.

f(P'RXK217)={

In a manner similar to the proof of Theorem 10, we can use Corollary 9
to establish the following result about prisms.

Theorem 12. For every integer n > 3,

if n = 0(mod 4)
ifn=1(mod 4)
ifn =2(mod 4)
if n = 3(mod 4)

F(Cn x K3,7) =

N W N =

Proof: Let G=C, x K3, where the vertices of G are labeled as in Figure 8.

Y1

Figure 8
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Assume first that n = 0(mod 4), so n = 4k for some positive inte-
ger k. Since ¥(G) = 2k and G is 3-regular, every vertex in G is dom-
inated exactly once by a vertex of each minimum dominating set. Let
S = {v1,u3,vs5,%7,...,Un—3, Un—1}. We show that {v,} is a forcing subset
for S. Let S’ be a minimum dominating set for G containing v;. Since
every vertex of G is dominated exactly once by vertices of S’, it follows
that up ¢ S’. Next, some neighbor of up must belong to S’. Since v; € 5/,
we have that uy,v2 ¢ §. Thus u3 € S’. Continuing in this manner,
we see that S = S’. Hence f(S,7) < 1 and so f(G,y) < 1. Since
{v2,u4,vs,us, ..., Un—2,un} is another minimum dominating set for G, by
Lemma 1, f(G,) > 0. Therefore, f(G,v) =1.

Next suppose that n = 1(mod 4), so n = 4k + 1 for some positive integer
k. Now ’Y(G) =2k+4+1and S = {v1,'02,'u4,1)6,U3, vy Ugk—4y Vak—2, u4k} isa
minimum dominating set for G. We will show that the subset T' = {v;, v}
is a forcing subset for S. Now G — N|[T| = Hgk_1, and from Corollary 9,
G — N|[T) must be dominated by 2k —1 vertices of G. Because of degree and
order conditions, none of the vertices in N[T] may be used to complete a
minimum dominating set of G, so by Corollary 9 and Lemma 1, we have that
S is the unique minimum dominating set containing T'. Thus f(S,v) < 2,
so f(G,v) < 2. We now show that every vertex of G belongs to at least
two minimum dominating sets. Let w be a vertex of G. Since G is vertex-
transitive, there exist automorphisms o and 7 of G such that o(v) = w
and 7(v4) = w. Next o(S) and 7(S) are two minimum dominating sets for
G containing w. Furthermore, ¢(S) N N(w) # @ while 7(S) N N(w) = 0; so
o(S) # 7(S). Therefore, f(G,v) > 1 and hence f(G,~) = 2.

Next assume that n = 2(mod 4). Thus n = 4k + 2 for some positive in-
teger k. Then ’)I(G) =2k+2and S; = {’01, Vg, U3, U5, U7, U9, V11« » -y Udk—3,
Vak—1,U4k+1} and So = {v1, up,vs, us, V7, Ug, V11, . . . , Udk—3, Vak—1, Udk+1}
are two minimum dominating sets for G. We now show that T} = {v;, v, vs3}
and Tp = {vy,up,vs} are forcing subsets for S; and S, respectively. Let
U = N[T1] = N[T2). Then G — U = Han_1, and from Corollary 13, G — U
must be dominated by 2n — 1 vertices in G. Because of degree and order
conditions, none of the vertices in U may be used to complete a minimum
dominating set for G; so by Corollary 13 and Lemma 1, we have that S;
and S are the unique minimum dominating sets containing T} and T3, re-
spectively. Thus f(S;,v) < 3 for i = 1,2 and hence f(G,v) < 3. It remains
to show that each pair of vertices in G belongs to at least two distinct
minimum dominating sets. Let u and v be two distinct vertices of G. We
consider two cases, depending on whether u and v belong to a common
n-cycle induced by {w; | i =1,2,...,n}or {v; |1 =1,2,...,n}.

Case 1. Suppose that u and v belong to the n-cycle induced by {u; | i =
1,2,...,n}or{v; |i=1,2,...,n}.

If d(u,v) = 0(mod 4), say d(u,v) = 4m, then the automorphism o of
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G such that o(v3) = u and o(vsm+3) = v gives two minimum dominating
sets, namely o(S;) and o(S5), both containing u and v. Now let d(u,v) =1
(mod 4), say d(u,v) = 4m+1. Then the automorphisms ¢ and 7 of G such
that o(vs) = u, 6(vam43) = v, 7(v2) = v, and 7(vam+s) = u give the two
minimum dominating sets ¢(S;) and 7(S1), both containing u and . Next,
if d(u, v) = 2(mod 4), say d(u,v) = 4m+ 2, then the automorphism o of G
such that o(v,) = v and o(v4m+3) = v give two minimum dominating sets
o(S1) and 0(S2), each of which contains both » and v. Finally, if d(u,v) = 3
(mod 4), say d(u,v) = 4m + 3, then the automorphisms ¢ and 7 of G such
that o(uz) = u, (Ugm+1)+1) = v, T(u2) = v, and T(ugim41)+1) = u give
two minimum dominating sets o(S2) and 7(Sz2), both containing » and v.

Case 2. Suppose that u and v do not both belong to the same n-cycle,
induced by {u; |i=1,2,...,n} or {v; |i=1,2,...,n}.

First, if d(u, v) = 0(mod 4), say d(u, v) = 4m, then the automorphisms o
and 7 of G such that o(v2) = u, 0(%4m+1) = v, 7(v2) = v, and 7(ugm+1) =
u give the two minimum dominating sets o(S;) and 7(S;), both containing
u and v. Next, let d(u,v) = 1(mod 4), say d(u,v) =4m + 1. If m =0,
then G — N[u,v] = Psx—1 x K2, which must be dominated by 2k vertices.
By Theorem 11, there are two minimum dominating sets S and S’ for
G—N[u,v] and hence SU{u, v} and S’U{u, v} are two minimum dominating
sets for G containing v and v. If d(u,v) = 2(mod 4), say d(u,v) = 4m +2,
then the automorphisms o and 7 of G such that o(uz) = u, o(v4gm43) =
v, T(uz) = v, and 7(v4m+3) = u give the two minimum dominating sets
o(S2) and 7(82), both containing » and v. Finally if d(u,v) = 3(mod 4),
say d(u,v) = 4m + 3, then the automorphisms ¢ and 7 of G such that
o(v3) = u, o(Uaim+1)+1) = v, 7(v3) = v, and T(uyim41)+1) = u give the
two minimum dominating sets ¢(S;) and 7(S)), both containing » and v.
Thus f(Cy x K2,7) > 3 and hence f(Cp x Ka,7) = 3, when n = 2(mod 4).

Finally, assume that n = 3 (mod 4), so that n = 4p + 3 for some integer
p. Then ¥(G) = 2p+2and S = {vy,u2,v4,us, 78, . .., Usp—2, Vap, Usp+2} iS @
minimum dominating set for G. Let T = {v;,uz}. Then G — N[T] = Hap,
and from Corollary 13, G — N[T] must be dominated by 2p vertices of
G. Because of degree and order conditions, none of the vertices in N[T
may be used to complete a minimum dominating set of G, so by Corollary
13 and Lemma 1, we have that S is the unique minimum dominating set
containing T'. So T is a forcing set for S, and hence f(G, ) < 2. Since G is
vertex-transitive, each vertex of G can be put into a minimum dominating
set similar to S, either as a member of the forcing subset, or as a vertex of
the forced set so that by Corollary 2, f(C, x Ka,v) = 2. O

Since the domination numbers for P, x P, and C, x P; are not known
in general, it is impossible to generalize entirely the results on ladders
and prisms. However, we close with a discussion of f(G,~), where G =

Hf=1 Cok+1. Let G be a nontrivial finite group. The group I is said to
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be generated by the nonidentity elements hy, ho, ..., hx (called generators)
if every element of I' can be expressed as a finite product of generators.
For a generating set A for I, the Cayley color graph of T with respect to
A, denoted DA (T'), has as its vertex set the group elements of I'. Each
generator h € A is regarded as a color and for gi, g € T, there exists an
arc (g1,g2) colored h in Da(T) if and only if g; = g1h. Let GA(T") denote
the underlying graph of D(T).

In [7, p. 35), it is shown that G = ]'[:;1 Cak+1 is the underlying graph of
DA(T) for T 2 []¥_, Zoks1 and A = {(1,0,...,0),(0,1,0,...,0),..., (0,0,
...,0,1)}, where Zpi+1 denotes the cyclic group of order 2k + 1. The
graph G is 2k-regular and contains (2k + 1)* vertices. Thus any minimum
dominating set S for G contains at least (2k + 1)*~! vertices.

Let S be the subgroupof I* generated by A’ = {(2,1,0,...,0),(3,0,1,0,
...,0),(4,0,0,1,...,0),...,(k,0,0,...,0,1)}. Each element of A’ has order
2k + 1 and since A’ is linearly independent, |S| = (2k + 1)*~1. Consider §
as a subset of V(G). We show that S is a minimum dominating set for G,
where G = GA(T'). Let v be a vertex of G. If v € S, then v is dominated.
Suppose then that v ¢ S. Now v belongs to one of the cosets of I'/S, and
A is a list of coset representatives for I'/S, so v € 8+ S for some 8 € A.
Thus v = B+ s for some s € S. Therefore v is adjacent to s in G and hence
v is dominated. Consequently S is a minimum dominating set for G.

When k = 1, then G = C3 and, by Theorem 10, the forcing dominating
number f(G,v) = 1. When k = 2, then G = C5 x Cs. Viewing G as the
underlying graph of Da (T') for I' = Z5 xZs and A = {(1,0), (0,1)}, we con-
sider the subgroup S as described above; that is, S is the subgroup of Zs x Zs
generated by the element (2,1). So S = {(0,0), (2,1), (4,2), (1, 3),(3,4)} is
a minimum dominating set for G. Let T = {(0,0),(2,1)}. We show that
T is a forcing subset for S. The graph G, drawn on the torus, is shown in
Figure 9.

Consider the vertex (3,0). Every vertex of G is dominated by exactly
one vertex of each minimum dominating set and all the neighbors of (3, 0),
except (3,4), are dominated by (0,0) or (2,1). Thus, if S’ is a minimum
dominating set for G containing T, then (3,4) € S’. Similarly, since all
the neighbors of (3,2), except (4,2), are dominated by a vertex of T or
(3,4), it must be that (4,2).€ S’. Finally (1,3) must also belong to 5.
Hence § = §’ and T is a forcing subset for S. Therefore f(S,v) = 2, so
J(G,7) <2. The set {(0,0),(1,2), (2,4),(3,1),(4,3)} is another minimum
dominating set for G containing (0,0). Thus, since G is vertex-transitive,
fF(G,7) > 1. Therefore f(G,«) = 2. Based on this information, we close
with the following conjecture.
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Figure 9

Conjecture. For G = Hf=1 C3k+1, the forcing dominating number f(G,v) = k
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