A Simple Algorithm for Generating Subsets
of k or Fewer Elements of an n-Set

R.E. Sabin
Computer Science Department
Loyola College
Baltimore, MD 21210 USA
E-Mail: RES@loyola.edu

Abstract. Forming all distinct subsets with k or fewer objects from a set with n elements
can be acoomplished by generating a subset of the binary reflected Gray code. This paper
presents a straightforward algorithm that generates the desired Gray codewords by altering
the stack which maintains the transition sequence that determines the next codeword
position to be altered.

1. Introduction

Problems that require the formation of subsets of k or fewer elements from a set of
n elements occur in coding theory [2] and graph theory, where, for an n-cube with
each vertex labeled (x,, x,, . . ., x), x,= 0 or 1, traversal of vertices with Euclidean
distance of k2 or less from (0, 0, ..., 0) is desired. The most efficient algorithm would
generate the subset by the addition or deletion of a single element to the preceding
result [3]. If k£ < n, such an algorithm does not exist. Minimally, the task requires that
in several cases the next element is gencrated by a deletion of a single element
followed by the addition of an element [4]. The algorithm presented here, while not
minimal, is attractively simple to implement. It utilizes the binary reflected Gray code.

2. Generating a Subset of the Binary Reflected Gray Code

A binary reflected Gray code of length #» may be represented by a full binary tree
of height n with non-root nodes containing 1 or 0. A codeword is the sequence of data
values encountered in the acyclic path from the root to the leaf . Figure 1 shows such
a representation for the Gray code of length 5. Note that the tree is shown in a reflected
and rotated manner with the root at the extreme left of the figure and what would
usually be considered the leftmost leaf (00000) at the top of the figure. For clarity, in
referring to this rotated, reflected tree, rather than use the usual “left” and “right”
designations, we will refer to each node as an “upper” or “lower” node depending on
whether it is above or below its sibling, the node with which it shares its parent.
Furthermore, we will associate a weight with each node in the tree where weight is the
number of 1's encountered in the path from the root to that node (including the node).

If Gray codeword g is indexed g,,...g,, each codeword can represent a subset of the
set of n elements where the element with subscript i is included in the subset if and

JCMCC 25 (1997), pp. 175-181

only if g,= 1. Then the number of 1's in the codeword, the weight of the codeword, is
the cardinality of the subset corresponding to the codeword..

For a given n, construct a tree of height » and consider the codewords
corresponding to leaves of the tree. To generate the subset consisting of codewords
with weight is less than or equal to %, the algorithm below will “prune” the tree,
allowing only the desired leaves to remain. In Figure 1, for k = 3, such leaves are
marked with an “*.”

_.—-0 00000*
1 00001*

/ \1 00011*
S Oovior

\ /1<1 00111*

00101*

0 o 00100*

__0==0 01100y
=1 oiol*

- \1/1 01111

01110*

~— — 0 oiolos

0~ 11 oiolr*

~~o—1 olo01*

=0 01000

0/0 11000*
- \1 11001+

- 0~ =1 1on
1 \0 11010*
~ _1=—9 1o
1 l 11111
\0 11101
\0 11100*
0——-‘0 10100*
10101*
/ \1 — 1 10111
10110*
\ 1= 0 10010*
< = il
"~ <5 10000+
Figure 1 - Tree representation of Gray codewords of length 5

1

A subsequence of Gray codewords that are not to be generated, i.e.,those with
weight k+1 or more, immediately succeed a codeword of weight k. Since successive
codewords differ by weight one, the sequence of “heavy” codewords must terminate
with another codeword of weight k. Theorem 1 follows immediately from the structure
of the code and is proved in [1].

Theorem 1: Successive binary Gray codewords of length # and weight £ differ in
exactly 2 positions.

176

The transition sequence for a binary reflected Gray code is easily generated by use
of a stack [1]. The stack is stored in array S where S(i) is initialized to i+1, for all ;,
0 < i < nand S(0) is the element at the top of the stack. A value in S is interpreted as
a position in the Gray codeword to be altered as well as the location, in S, of the next
element in the stack. Gray codewords are generated by Algorithm 1.

Algorithm 1 - Generating binary Gray codewords

g+ 0000..0
t<0
while 1 <n do

RSN ()]

complement the -th position of g

S(0) « 1

S(t-1) « ()

S «—1+1

We generate successive Gray codewords of k or lower weight by altering the stack.
The following lemmas will prove helpful.

Lemma 1: Of two sibling nodes in the tree representation of a binary reflected Gray
code, the upper node has even weight and the lower node has odd weight.

Proof: The nodes on level / represent, in top-to-bottom order, the sequence of Gray
codewords of length /. The topmost node represents the all-zero codeword. Since
successive Gray codewords differ from each other in exactly 1 digit, the sequence of
codewords must have alternating even-odd weights. The sequence of nodes on level
1is alternating upper sibling-lower sibling. =

Lemma 2: Let g,...g, represent a Gray codeword as well as the path in the binary tree
from the root to the leaf corresponding to that codeword. If the rightmost upper node
in the path occurs at position ¢ where > 1, then g,,=1 and g=0forall 1s i <.

Proof: g,is the root of a subtree representing the binary reflexive Gray code of length
t-1. The path g, ,...g, consists of all lower nodes and corresponds to the last Gray
codeword of length ¢-1 generated, viz., 100...0. a

We first consider only the case where k is odd.
Theorem 2: Let k < n be odd. If Gray codeword g has weight k and the next Gray
codeword is to be generated by replacement of a 0 with a 1 in position ¢ of g, the next

k-weight Gray codeword, g /, differs from g only in positions ¢ and ¢~ 1 with g ;=1 and
84.=0.

177

Proof: By Lemma 1, codeword g = g,....g, with odd weight k, is a lower node in a leaf’
pair with a common parent. The next codeword in the sequence is generated by back-
tracking from the original codeword (leaf) to the first upper node encountered on the
path from that leaf to the root. Here that node is at level # > 2 with g, = 0. By Lemma
2,8.=1andg;=0Vi Osi<t Ift=2, we have the configuration

0~
ol e
1\0 g/

Clearly, here only 1 leaf need be pruned from the tree; g’ is the next codeword of
weight k, where g ‘differs from g only in thatg ;=0 and g, = 1.

If 1> 2, g has the lowest weight of any leaf in the subtree rooted at g,, = 1, Subtree A
below.

Position: t t-1 1
0 1
T~ 1<0 Subtree A
S 0 g
0 .
/
< Subtree B
1 <
N Subtree C
0, ubtree
\0 g ’

Clearly, all leaves in Subtree B have weight greater than k& and must be pruned.
Leaves in Subtree C form an ordered set that is identical to the leaves of Subtree A
except that values at positions 7 and ¢- 1 differ. Hence all leaves in Subtree C except
g’ are too heavy and are pruned. . =

178

We test for the conditions of Theorem 2 by storing the weight of the current Gray
codeword and the current value of g, The structure of the tree reveals that a non-leaf,
upper 0 is always the child of another upper node in the tree. The position of an upper
node in the tree must be in the stack, since elements in the stack are positions that are
to be altered. Thus, when the conditions of Theorem 2 are satisfied, the stack must
contain at its top ¢, the position of the upper 0, and, immediately below it on the stack,
t+ 1, the position to the left of the upper zero. The stack’s top, ¢, is stored in S(0). The
second element in the stack is S¢#) and, when the two top elements of the stack are
consecutive, S(1) = ¢ + 1, the initialized value of S(#). To prune the tree, we generate
the next k-weight Gray codeword as described above, then pop the stack to alter the
transition sequence. Because of the structure of the stack just described, the stack is
popped by the single assignment S(0) + S().

For the even k case, we initialize g to 100...0, weight to 1 and traverse the leaves
of Figure 1 in a bottom-to-top order.

Algorithm 2 - Generating binary Gray codewords of weight < k

if k is even
£+ 1000..0
weight « 1
else
g+ 0000..0
weight « 0
t<0
while t <n do
t+ S0
ifg,=1orweight<k { a single adjustment to g is needed }
ifg,=1
&+ 0
weight + weight - 1
else
&+l
weight «+ weight + 1
S(0) «+ 1
S(t-1) < S@»
S@) —1t+1
else { two adjustments to g needed - “pruning”}
&+l
8+ 0
§(0) + S@)

179

3. Time Complexity of Algorithm 2

Each iteration of the while loop of Algorithm 2 accomplishes the generation of
one of the N=Y % (1) desired Gray codewords. Clearly the algorithm is O(N).

The time may be more precisely estimated by determining the number of times a
Gray codeword, representing a subset, is found by pruning the tree, i.e., the number
of times a subset is formed by both selecting an element and “unselecting” another
element of the last subset formed. This is the number of times the expression g,= 1
or weight < k is false which is the number of times the outer else-block within the
while loop of Algorithm 2 is executed. This number can be determined by examining
a path on the n-cube.

All distinct n-length strings of 1's and O's are vertices of an #-cube and may be
arranged as a 2-dimensional graph with strings of weight w represented by nodes on
level w, as in Figure 2 where n = 5. The generation of the binary Gray codewords
corresponds to a Hamilton path with all edges drawn between nodes in adjacent levels.
(Shown as — in Figure 2.) Algorithm 2 generates a path which consists of portions
of this path with one or more edges between elements in level k. Figure 2 displays
these edges as dotted --- for k= 3.

The number of dotted edges is the number of times the tree is pruned by Algorithm
2, i.e,, the number of times the outer else block within the while loop of Algorithm 2
is executed. These edges occur only when a node on level k is the initial point of a
downward edge in the Gray graph. Due to the reflective symmetry of the Gray graph,
this numberis (”;').

Weight
0

Figure 2 - Paths on the 5-Cube

180

Let C, be the time needed to generate a subset by a single adjustment to the
preceding subset and C, be the time required to generate a subset that results from
pruning. If C, s the time required to execute the statements preceding the while loop,
total time is estimated by TQN) = C,+C, (N-(";'D+ C, (" ").

Note that C, is greater than C, because fewer “stack tending” operations are
required to produce a subset by pruning. Pruning involves only popping the stack, a
single assignment statement; to produce a subset without pruning involved requires
both pushing and popping.

The algorithm does require the actual generation of Gray codewords and not
simply transition sequences. In practice, the time involved in updating the Gray
codeword (g) can be minimized by considering Gray codewords as arrays of bits and
using predefined bit-functions available in most compilers.

The above analysis measures time required by Algorithm 2. If an application uses
the Gray codewords generated by Algorithm 2 to operate on an ordered set, a
codeword resulting from pruning requires that two adjustments to the selection of
elements of the set be made: one previously selected element is to be “unselected” and
a previously “unselected” element is to be selected. That these adjustments are always
made to elements in adjacent locations (¢ and ¢ - 1) can lead to optimizations. For
example, in the generation of linear codewords that are the sum of k or fewer basis
vectors, the real cost of this double alteration may be minimized by pre-computing the
sums of “adjacent” basis vectors in the generating set. Then the vector that results
from pruning can generated by a single addition to the preceding result.

References

[1] J. Bitner, G. Ehrlich, and E. Reingold, Efficient Generation of the Binary
Reflected Gray Code and Its Applications, Comm. of the ACM 19 (1976), 517-
521.

[2] D. Coppersmith and G. Seroussi, On the Minimum Distances of Some Quadratic
Residue Codes, IEEE Trans. On Inf. Th. IT-30 (1984), 407-411.

[3] P. Eades, M. Hickey, and R. Read, Some Hamilton Paths and a Minimal Change
Algorithm, J. of ACM 31 (1984), 19-29.

[4] V. Job and B. Jamison, A Minimum Change Algorithm to Generate all Subsets
of an N-Set with K or Fewer Elements (preprint).

181

