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ABSTRACT. Let G be a graph and let S be a subset of vertices
of G. A vertex v of G is called perfect with respect to S if
IN[v] N S| = 1 where N[v] denotes the closed neighborhood of

: v. The set S is defined to be a perfect neighborhood set of G if

| every vertex of G is perfect or adjacent with a perfect vertex.
The perfect neighborhood number 6(G) of G is defined to be
the minimum cardinality among all perfect neighborhood sets
of G. In this paper, we present a variety of algorithmic results
on the complexity of perfect neighborhood sets in graphs.

1 Introduction

Let G = (V, E) be a graph with vertex set V and edge set F, and let v be a
vertex in V. The open neighborhood of v € V is N(v) = {u € V |uwv € E}
and the closed neighborhood of v is N[v] = {¥} U N(v). For a set S of
vertices, we define the open neighborhood N(S) = UuesN(v), and the
closed neighborhood N[S] = N(S)U S.
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The concept of perfect neighborhood sets in graphs was introduced and
studied in [2]. Let S be a subset of vertices of G. A vertex v of G is called
perfect with respect to S if [N[v] N S| = 1. The set S is defined to be
a perfect neighborhood set of G if every vertex of G is perfect or adjacent
with a perfect vertex. The (lower) perfect neighborhood number 0(G) of G
is defined to be the minimum cardinality among all perfect neighborhood
sets of G. We will refer to a perfect neighborhood set of cardinality 8(G)
as a §-set of G.

Perfect neighborhood sets may be defined in terms of functions. Let
f:V — {0,1} be a function which assigns to each vertex of G an element
of the set {0,1}. For S C V, we define f(S) = ) .5 f(v), and we define
the weight of f to be w(f) = 3,y f(v) = f(V). For a vertex v in V,
we denote f(N[v]) by f[v] for notational convenience. Corresponding to
each perfect neighborhood set S of G, we associate the function, namely
the characteristic function f of S defined by f(v) =1ifv € S and f(v) =0
otherwise. Such a function we call a perfect neighborhood function of G.
Hence a function f: V — {0,1} is defined to be a perfect neighborhood
function of a graph G if for every u € V, there exists a v € N[u] satisfying
f[v] = 1. The perfect neighborhocod number of a graph G can be defined
as the minimum weight of a perfect neighborhood function of G.

In this paper we present a variety of algorithmic results. We show that
the decision problem corresponding to the problem of computing 8 is NP-
complete even when restricted to bipartite graphs or chordal graphs. Upper
bounds on 6(G) are presented for connected graphs G. We also present a

linear time algorithm for finding a perfect neighborhood set in an arbitrary
tree.

2 Complexity results for 8

From a computational point of view the problem of finding 8(G) appears
to be very difficult. In this section we show that the decision problem
PERFECT NEIGHBORHOOD SET (PNS)
INSTANCE: A graph G = (V, E) and a positive integer m < |V|.
QUESTION: Is there a perfect neighborhood set of cardinality m?
is NP-complete, even when restricted to bipartite and chordal graphs, by
describing polynomial transformations from the following well-known N P-
complete problem:
EXACT COVER BY 3-SETS (X3C)
INSTANCE: A finite set X with |X| = 3¢ and a collection C of 3-element
subsets of X.
QUESTION: Does C contain an exact cover for X, that is, a subcollection
C’ C C such that every element of X occurs in exactly one member of C’.
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Theorem 1 PNS is NP-complete, even for bipartite graphs.

Proof. It is clear that PNS is in NP. To show that PNS is an
N P-complete problem, we will establish a polynomial transformation from
X38C. Let X = {z1,...,z35} and C = {C},...,C,n} be an arbitrary in-
stance of X3C. We will construct a bipartite graph G such that this in-
stance of X3C will have an exact three cover if and only if G has a perfect
neighborhood set of cardinality m.

The graph G is constructed as follows. Corresponding to each variable
z; € X, we associate the path z;, y; on two vertices. Corresponding to each
set Cj, we associate the graph F; which consists of the path a;,bj,c; on
three vertices. The construction of the bipartite graph G is completed
by adding the edges {zicj|z; € C;}. It is easy to see that the con-
struction of the graph G can be accomplished in polynomial time. Let
X = {zlyzZI .. v,qu}: Y = {yl)y21 oo :yaq}, and C = {clv vee )c'n}' We
show that C has an exact 3-cover if and only if G has a perfect neighbor-
hood set of cardinality m.

Suppose C’ is an exact 3-cover for X. Then |C'| = q. Let S = {¢;|Cj €
C'}u {b;|C; € C —C'}. Then S is a perfect neighborhood set of G of
cardinality m. Suppose, conversely, that S is a perfect neighborhood set of
cardinality m. If S contains no vertex of F; for some j, 1 < j < m, then
the vertex a; is neither perfect nor adjacent with a perfect vertex with
respect to S, contradicting the fact that S is a perfect neighborhood set of
G. Thus, [V(F;)NnS|>1for j=1,...,m. Consequently, [SNV(F;)|=1
forj=1,...,mand SN(XUY) = 0. Since S contains no vertex from
X UY, no vertex of Y is perfect with respect to S. Hence each vertex of
Y must be adjacent with a perfect vertex. Thus each vertex of X must
be perfect, and is therefore adjacent with a unique vertex of S. Letting
S’ = SN C, each vertex of X is therefore adjacent with exactly one vertex
of S’. Hence there are precisely 3q edges joining X and S’. However, since
each vertex of S’ is adjacent with three vertices of X, there are 3|5’| edges
joining X and §’, so |S’| = q. Consequently, C’ = {Cj|c; € S} is an exact
3-cover for X.

Theorem 2 PNS is NP-complete, even for chordal graphs.

Proof. It is clear that PNS is in NP. To show that PNS is an
N P-complete problem, we will establish a polynomial transformation from
X3C. Let X = {z3,...,z3} and C = {C},...,Cn} be an arbitrary in-
stance of X3C. We will construct a chordal graph H such that this in-
stance of X3C will have an exact three cover if and only if H has a perfect
neighborhood set of cardinality m.

Let H be obtained from the graph G constructed in the proof of Theo-
rem 1 by adding an edge between every two vertices of C' so that the ¢;’s
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induce a clique; that is, ({c1,...,cm}) = K. It is easy to see that the
construction of the graph H can be accomplished in polynomial time. Pro-
ceeding now as in the proof of Theorem 1, we may show that C has an exact
3-cover if and only if H has a perfect neighborhood set of cardinality m.

3 Boundson 8

Since the problem of computing 6(G) appears to be a difficult one, it is
desirable to find good upper bounds on this parameter. The concept of
perfect neighborhood sets is in a some sense related to dominating sets.
For a graph G = (V, E), a subset S of vertices of G is defined to be a
dominating set of G if for every vertex vin V, |[N[v]NnS| > 1. Equivalently,
S is a dominating set of G if each v € V is either in S or adjacent to a
vertex of S. (That is, N[S] = V.) The domination number of a graph G,
denoted (G), is the minimum cardinality of a dominating set in G. In [2],
the following result is established.

Lemma 1 For any minimal dominating set D of a graph G, there exists a
perfect neighborhood set of G of cardinality | D).

Corollary 1 For every graph G, 6(G) < v(G).

However, it is well known (see [3]) that v(G) < n/2 for all connected
graphs G of order n > 2. Thus we have the following resuit.

Proposition 1 IfG is a connected graph of order n > 2, then 6(G) < n/2.

That the upper bound in Proposition 1 is in a sense best possible, may
be seen as follows. For m > 2 an integer, let T be the tree obtained from a
star K1, by subdividing each edge once. Let T, T3,... ,T;y be m disjoint
copies of T, and let v; denote the central vertex of T} for t = 1,2,... ,m.
Finally, let G,, be the graph obtained from the disjoint union UZ,T; of
Ty, Ts,..., Ty by adding a new vertex vy, and the edges v;v; for 1 <
i < j < m+1. The graph G,, is shown in Figure 1. We show that
0(Gm) = m? —m+1. Let S be a perfect neighborhood set of Gy,. Then S
contains at most one of v3,v2,... ,¥mt1. fv; € S, then |SNV(T)| > m
since every perfect neighborhood set is 2-dominating. Thus, 6(G,,) > 1+
(m —1)m = m2 —m+ 1. However, there exist perfect neighborhood sets of
G, of cardinality m2 — m + 1 as illustrated by the set of darkened vertices
in Figure 1, so 8(Gy) < m? —m + 1. Thus, 6(G,,) = m? —m + 1. Hence
Gn is a connected graph of order n = 2m?2 4+ m + 1 satisfying

0(Gm) mP-m+1 1-1/m+1/m?
n  2m2+m+1 2+4+1/m+1/m?’
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Hence, 8(Gm)/n — 1/2 as m — oo.

Koss Vmt1
ﬁ/ D 4\

Flgure 1. The graph G,,. (The da.rkened vertices form a perfect
neighborhood set in G,.)

If G is a connected graph with minimum degree at least 2, then the upper
bound in Proposition 1 can be improved. A packing of a graph is a set of
vertices whose elements are pairwise at distance at least 3 apart in G. In
[2] the following result is established.

Lemma 2 Every mazimal packing S of a graph G is a perfect neighborhood
set of G.

Using Lemma 2, we may improve the upper bound in Proposition 1 when
G is a connected graph with minimum degree at least 2.

Proposition 2 Let G = (V, E) be a connected graph of order n > 3 with
minimum degree at least 2. Then 0(G) < n/3.

Proof. Let S = {v;,vs,...,vx} be a maximal packing of G. Then
N[w]NNp;] =0 for1 <i <J < k. Thus |u,_1N[v,]| =YF degui+12
3k = 3|S|. On the other hand, UX_, N[v;] C V, so | UE_, N[v;]| < n. Thus,
|S| € n/3. The result now follows from Lemma 2.

That the upper bound in Proposition 2 is in a sense best possible, may
be seen as follows. Let F,, be the graph obtained from two disjoint copies
of the graph G,, (contructed in the paragraph following Proposition 1) by
identifying the corresponding end-vertices. (Equivalently, Fy, is obtained
from the disjoint union of two complete graphs Ky, ;1 on m+1 vertices with
the vertices from the one complete graph named vq,v9,... ,%m+1 and from
the other named v},v3,... ,v,,,, by joining v; and v with m internally
disjoint paths each of length 4 fori =1,2,... ,m.) Then F,, is a connected
graph of order n = m(3m+2)+2 = 3m?2 + 2m + 2 with 0(Fn)=2+(m-
2)m = m? — 2m + 2. Thus F,, satisfies

0(Fm) _ m2—2m+2 1-2/m+2/m?
n  3m24+2m+2 3+2/m+2/m?
Hence, 6(Fy,)/n — 1/3 as m — 0.
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4 A linear algorithm for computing (T') for a tree T

In this section, we present a linear algorithm for computing the value of
6(T) for any tree T. We construct a dynamic style algorithm using the
methodology of Wimer (see [5]). We characterize the possible classes tree-
subset pairs (T, S), give a multiplication table for these classes, describe the
recursion relations (and the associated equations) and then give a complete
algorithm. We make use of the well-known fact that the class of (rooted)
trees can be constructed recursively from copies of the single vertex Kj,
using only one rule of composition, which combines two trees (T1,71) and
(T2, 72) by adding an edge between r; and r2 and calling r; the root of the
resulting larger tree. We denote this composition of T and T, by T} o T5.

For notational convenience, we will denote a ’perfect neighborhood set’
simply by a ’pn-set’. We begin by defining the collection of possible tree-
subset pairs T'S as the set of all ordered pairs (T,S) which satisfy the
following three properties:

e T is a rooted tree with root r.

e If r € N[S], then every vertex of T, except possibly for r, is perfect
or adjacent with a perfect vertex with respect to the set S.

e If r ¢ N[S], then every vertex of T, except for r and possibly for
some neighbors of 7, is perfect or adjacent with a perfect vertex with
respect to the set S.

Then any such (tree-set) pair (T,S) can be classified into one of the fol-
lowing fourteen classes (unless otherwise stated, perfect vertices are with
respect to the set S):

[11 = {(T,S)|r € S, Sis a pn-set of T, r is perfect, r is adjacent with
a perfect vertex, r has a neighbor that is not perfect and has r as its
unique perfect neighbor},

[2] = {(T,S)|r € S, S is a pn-set of T, r is perfect, r is adjacent with
a perfect vertex, every neighbor of r is perfect or is adjacent with a
perfect vertex different from r},

[8] = {(T,S)|r € S, S is a pn-set of T, r is perfect, r is not adjacent
with a perfect vertex, r is the unique perfect neighbor for one of its
neighbors},

[4) = {(T,S)|r € S, S is a pn-set of T, r is perfect, r is not adjacent
with a perfect vertex, r is not the unique perfect neighbor of any of
its neighbors},

[5] = {(T,S)|r € S, S is a pn-set of T, r is not perfect},
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[6] = {(T,S)|r € S, S is not a pn-set set of T},

[71={(T,8)|r &S, Sis apn-set of T, r is perfect, r is adjacent with
a perfect vertex, r has a neighbor that is not perfect and has r as its
unique perfect neighbor},

[8={(T,S)|r €S, Sis apn-set of T, r is perfect, r is adjacent with
a perfect vertex, every neighbor of r is perfect or is adjacent with a
perfect vertex different from r},

[9] = {(T,S)|r ¢S, S is a pn-set of T, r is perfect, r is not adjacent
with a perfect vertex, r is the unique perfect neighbor for one of its
neighbors},

[10] = {(T, S)|r € S, S is a pn-set of T, r is perfect, r is not adjacent
with a perfect vertex, r is not the unique perfect neighbor of any of
its neighbors},

1] ={(T,8)|r € S, S is a pn-set of T, r is not perfect},

[12] = {(T,S)|r & NI[S], S is not a pn-set of T, every neighbor of r
is adjacent with a perfect vertex },

[13] = {(T, S) |r & NI[S], S is not a pn-set of T, r has a neighbor that
~ is not adjacent with a perfect vertex },

[14] = {(T,S)|r & S, S is not a pn-set of T, [N(r) N S| > 2},

These subclasses will be used in the design of the algorithm. For any tree-
set pairs (T3, S1) and (T3, S2), we will denote the pair (T} o T3 , S} 0 S5)
with (771, 81) o (T2, S2). We now consider the effect of composing a tree T
having a set S; which is of class [{] with a tree T} having a set which is of
class [5] for every possible combination of classes 1 < i < j < 14. That is,
we must describe the appropriate class of the combined set S; U S5 in the
composed tree T' = T o T. This is described in the multiplication table for
these classes shown in Figure 2. The symbol x indicates that the resulting
tree-set pair, though defined, is not a member of T'S; that is, no set S can
ever decompose into two subsets $; and S. of the classes indicated.
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U[13] o [6)

[10] = [10] o [11] U [12] o [5] U [13] o [s]

[11] = [8le[1]u[8]o [2] U[8]o [3 U [8] o [4] U 8] o [5] U [10] o [1] U [10] o 2]
U[10] o [ U [11] o 1] U [11] 0 [2] U [11] o [3] U [11] o [4] U [11] o [3]
U[t1]e [7)U[11) o [8]U[11) 0 [9] U [11] 0 [10] U [11] o [11] U [12] o [7]
U[12]o[8]u[12]0 [9]U[12]o[10]U[13]o[7]U[13] o [8] U[13] o 9] U [13]
o[10] U [14] o [1] U [14] o 2] U [14] o [3] U [14] o [4] U [14] o [7] U [14]
o[8] U [14] o [9] U [14] o [10]

[12] = [12] o [11]

[13) = [12]0[12]U[12]0[13)U[12] 0 [14)U[13] o [11] U 13] o [12] U [13] o [14]

[14] = [10] o [5] U [14] o [5] U [14] o [11]

To illustrate this, a tree-subset pair of class [4] can be read as follows: a
tree-subset pair (T, S) which is of class [4] can be obtained only by com-
posing a pair (T3, 51) of class [4] with a pair (T3, S3) of class [8] or by
composing a pair (T}, S1) of class [4] with a pair (T3, S,) of class [11].

To prove the correctness of this dynamic programming algorithm for
computing 8(T") for any tree T, we would have to prove a theorem asserting
that each of these recurrences are correct. Space limitations prevent us
from doing this here, but it is easy to do. It is even easier to verify the
correctness of Figure 2, which can be done by inspection. The final step
in specifying a 6-algorithm is to define the initial vector. In this case, for
trees, the only basis graph is the tree with single vertex K. 1. We need
to know the minimum cardinality of a set S in a class of type (1] to [14]
in the graph Kj, if any exists. It is easy to see that the initial vector is
--=-1--- == --0- —] where ’—’ means undefined.

We now have all the ingredients for a 0-algorithm, where the input is
the parent array parent[l...p] for the input tree of order p and where the
output is the 14-tuple corresponding to the root (i.e., vertex 1) of T which
is computed repeatedly by applying the recurrence system to each vertex in
the parent array, with the initial vector being associated with every vertex
in the parent array as the computation begins. The basic structure for the
algorithm is a simple iteration.
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procedure 0;

for i:=1 to p do
initialise vector [1 ... 14] to
[-) R e Tt it Tt it St TR | P -1;
for j:=p downto 2 do
begin
k:=parent[j];
combine(vector,k,j);
end;

O(T) := min {vector[1,1], vector[1,2], vector[1,3], vector[1,4],
vector[1,5], vector[1,7], vector[1,8], vector[1,9],
vector[1,10], vector[1,11],};

end; {6}

The combine procedure is derived directly from the recurrence system:
For example, the fourth and tenth components of the 14-tuple correspond-
ing to vector k are given, respectively, by

vector[k, 4] = min{vector[k, 4]+vector|j, 8], vector|k, 4] +vector|[j, 11]};
vector[k, 10] := min{vector[k, 10] + vector[s, 11],
vector([k, 12] + vector[j, 5], vector[k, 13] + vector(4, 5]};

It is clear that procedure 6 has linear execution time.
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