Algorithms for Computing Grazing Area

L. Gewali, R. Venkatasubramanian, and D. Glasser
HRH College of Engineering, University of Nevada, Las Vegas

Abstract: We consider the problem of sweeping (or grazing) the inte-
rior/exterior of a polygon by a flexible rope whose one end point (anchor)
is attached on the boundary of the polygon. We present a linear time algo-
rithm to compute the grazing area inside a simple polygon. We show how
to extend the algorithm for computing the internal grazing area, without
increasing its time complexity, to compute the grazing area in the exterior
of a simple polygon. For grazing in the exterior of a convex polygon , we
present an O(n) time algorithm to locate the anchor point that maximizes
the simple grazing area. All three algorithms are optimal within a constant
factor. Grazing area problems can be viewed as guard placement problems
under L-visibility.

Keywords: Computational geometry, visibility, guard placement.

I. Introduction

Problems dealing with visibility properties of polygons have attracted
the interest of many researchers in recent years [1]. One such problem is the
computation of “visibility region” from a given point inside/outside a poly-
gon. Under the standard definition of visibility, two points inside a polygon
are visible if the line segment joining them does not intersect with the ex-
terior of the polygon. Linear time algorithms for computing the visibility
polygon under standard visibility have been reported [2]. Many visibil-
ity problems have been investigated by phrasing them as the placement
of point guards inside a polygonal gallery and are known as “art gallery
problems” [1]. The single guard placement problem asks for locating a
point inside/outside a polygon from which the area of the visibility region
is maximized. Approximation algorithms for solving single guard place-

JCMCC 25 (1997), pp. 193-211

ment problems have been reported (3]; and the existence of exact algorithm
for this problem is open.

Guard placement problems have also been pursued by allowing interest-
ing variations on the standard notion of visibility. Under stair-case visibility
(s-visibility, in short) two points inside a polygon are visible if they can be
connected by a stair-case path (a path consisting of only horizontal and/or
vertical line segments and monotone along x- and y-axis) without intersect-
ing the exterior of the polygon. The notion of s-visibility has been useful
for decomposing orthogonal polygon onto simpler components [4]. Also,
concepts of rectangular visibility (r-visibility) and distance limited visibil-
ity (d-visibility) have been introduced [6]. (It may be noted that under
d-visibility, two points inside a polygon are visible if the length of the line
segment [connecting them is no more than d and ! does not intersect with
the polygon [6].) Recently, algorithms for computing visibility region from
a point under diffuse reflection/refraction have been considered {7].

In this paper we consider problems dealing with the sweeping (or graz-
ing) of the interior/exterior of a polygon by a rope whose one end is at-
tached to a fixed point which we call the anchor point. The set of points
that can be reached by the free-end of the rope is the grazing area. Figure 1
shows examples of grazing area in the exterior of a convex polygon. An
example of grazing area in the interior of a simple polygon is shown in
Figure 6. The specific problems addressed are as follows.

(IGAP) Internal Grazing Area Problem: Given a polygon @, an in-
ternal point o on its boundary, and a rope of length L, find the grazing
area inside the polygon when one end of the rope is anchored at o. Exter-
nal Grazing Area Problem (EGAP) is similarly defined when the grazing
area is outside the polygon.

MaxGAP (Maximum Grazing Area Problem): Given a convex polygonal
obstacle Q of n vertices and a rope of length L, find an anchor point on
the boundary of the polygon that maximizes the grazing area. MinGAP
(Minimum Grazing Area Problem) is defined similarly.

Grazing area problems can be viewed as variations of standard visibility

problems. Two points a and b in the presence of a polygonal obstacle are
L-visible if they can be connected by a rope of length L. (L-visibility is

194

like diffuse-visibility limited by length L). Then we can view IGAP/EGAP
as the problem of computing the visibility polygon under L-visibility. Sim-
ilarly, MaxGAP can be viewed as the problem of placing a single guard to
maximize the visibility area, under L-visibility. In [9], the notion of graz-
ing area has been applied to compute the area of intersection between two
closed 2-D objects, which also contains an O(n?) time algorithm to locate
an anchor point that minimizes the grazing area inside a convex polygon.

In section II, we develop preliminaries for grazing in the exterior of a
convex polygon and characterize two types of grazing areas: (a) simple
grazing area, and (b) non-simple grazing area. We prove that the anchor
point yielding the maximum simple grazing area is given by one of the 3n
points on its boundary. In section III, we present a non-trivial algorithm to
compute the maximum simple grazing area in O(n) time, which is optimal
within a constant factor. In section IV, we present an optimum O(n) time
algorithm to solve IGAP for simple polygons by constructing the geodesic-
tree (shortest path tree) induced by the problem instance. We, then, show
how to extend the algorithm to compute grazing area in the exterior of
simple polygons without increasing its time complexity. We conclude by
discussing the extension of grazing area problems.

I1. Preliminaries

The vertices of the convex polygonal obstacle @ in clockwise order are
Vg, U1, V2, -.., Un—1 and the edge (v;,vit1) is denoted by e;. The length of e;
is denoted by {; and the angle between e;_; and e;, as shown in Figure 3, is
referred to by ;. All additions and subtractions on indices are done modulo
n. When the length of the rope is greater than one half the perimeter p
of the obstacle, the grazing area completely encloses the obstacle. This
type of grazing area is similar to a polygon with a hole and we call it a
non-simple grazing area (Figure 1a). For the other case (L < p/2), the
grazing area is like a simple polygon and we call it a simple grazing area,
(Figure 1b).

It is straightforward to solve IGAP/EGAP for convex polygons by ex-
pressing the grazing area in term of I;’s, 0;'s, and the length of the rope L.

195

(a): General Grazing Area (b): Simple Grazing Area
Figure 1: Two Types of Grazing Areas

Figure 2: Illustrating the Proof of Lemma 2

Lemma 1: EGAP/IGAP for a convex polygon can be solved in O(n) time.

Proof: Here, we sketch the algorithm for solving EGAP. (Algorithm for
IGAP is similar.) The edges bounding the grazing area consist of the edges
of the polygon and the circular arcs corresponding to the external angles
of the polygon. By knowing the lengths of the edges of the boundary of
the grazing region, its area can be easily determined in O(n) time. For the
case of simple grazing area, the lengths and radii of all bounding arcs can
be determined in O(n) time, in a straightforward way, by scanning the

196

Figure 3 Figure 4

Figure 5

boundary of the polygon in the left (counter clockwise) and the right (clock-
wise) sides, starting from the anchor point. The case of the non-simple
grazing area is similar, except for the determination the point where the
arcs from the left and the right side meet (point 7 in Figure 1a). Meeting
point I can be determined by performing “advance and check” process as
follows. Starting from the anchor point, edges of the polygon are examined
by advancing in the left and the right sides of the anchor point. Each ad-
vance can be done by selecting an edge either from the left or from the right
side; however, to make a balanced advance, the next edge is selected from
that side which makes the total length of scanned edges in one side to be
as close as possible to the total length of scanned edges in the other side.
During each advance, circular arcs corresponding to newly scanned edges

197

in each side are checked for intersection. The “advance and check” process
stops whenever the arcs from left and right sides intersect. All these checks
take O(n) time. O

A point ¢ is said to be covered by the rope if that point lies on the
grazing area. If we slide the anchor point from v; towards v;+1, the set of
vertices covered by the rope may change. We increase the total number
of vertices to 3n by adding 2n steiner vertices, so that, when the anchor
point slides between adjacent vertices (in the new set), the set of non-steiner
vertices covered by the rope do not change. Let v{ (respectively v{) be the
farthest point on the boundary that can be covered by the rope from the
clockwise (respectively, counter clockwise) direction when the anchor point
is at v;. Points vf and v? are the steiner vertices induced by v;. Including
such 2n steiner vertices, there are now a total of 3n vertices and 3n edges.
We assign new labels to these vertices and edges in their order of occur-
rence in the clockwise traversal of the boundary as wg, w), w2, -, w3n_1
and go, g1, -, 03n-1, Tespectively. Note that non-steiner vertices have two
labels, w; and v;. The new set of edges g; ’s are called the sub-edges.

In the rest of this section and in Section III, unless otherwise stated, we
use the term grazing area to indicate simple grazing area, i.e., we assume
that L is less than one half the perimeter of the obstacle.

Lemma 2: Solution for MaxGAP in the exterior of a convex polygon is
given by one of the vertices (including steiner vertices) of the polygon.

Proof: We prove the lemma by showing that any anchor point lying
on the interior of a sub-edge can not yield the maximum grazing area.
Consider two points p; and p, on a sub-edge e separated by a distance 2.
Let p, be the mid-point of the segment (p;,p-) (Figure 2). We denote by
A(pm), A(pt), and A(p,) the grazing area when the anchor point is on ppm,
pi, and p,, respectively. If A(py,) is maximum then we must have:

2A(pm) > A(pr) + Alpr) (1)

The free space , outside of the polygon, can be partitioned into half plane
H and infinite sectors Sy, S2, 53, ..., Sr as shown in Figure 2. In Figure 2,
the boundary of the grazing area, corresponding to the anchor points at
Pm, D1, and p,, is shown by dotted, solid, and dashed arcs, respectively. Let
A(Si,q), and A(H,q) denote the portions of the grazing area lying on S;

198

and H, respectively, when the anchor point is on a point g. Since A(H,p;),
A(H,p;), and A(H,pn) are equal, we have:

A(H: Pl) + A(H, pr) = 2A(H1 Pm) (2)

The grazing areas A(Si, pm), A(Si, 1), and A(S;, pr) can be written in term
of sector angle -y; and some radius r; as:
Yi 2

A(Si,pm) = 57

A(Sipr) = 3 (ri +
A(Siypr) = 5 (ri = ¢)?
By inspecting the above three equations we have:
A(Si, pr) + A(Si, pr) > 2A(Si, pm) (3)
From equations 2 and 3, we have:

A(pr) + A(pr) > 2A(pm) (4)

This implies that equation 1 can not be true and hence the anchor point
yielding the maximum grazing area can not be in the interior point of an
edge. m}

Here onwards, for the purpose of convenience, we use a slightly different
notation for grazing areas (in comparison to that used in Lemma 2). We
use A; to denote the grazing area when the anchor point is at vertex v;.
When the anchor point is at v;, let the furthest vertices covered by the
rope in the clockwise and the counter clockwise directions be v;+m and
vi_x, respectively. Then A; can be written as follows.

2
A = % +9,'L2
+ 0;01(L — L)% + Oiga(L — i — Lig1)? + 0ipa(L = b — Ligy — Lign)?
+ Oipm(L — L = ligy —lig2 — - — ligm—1)?
+ 0 (L —lica)? +0ia(L—limy —li2)® + -
40 (L= Loy —licg — - = Lig)?

Let us analyze the variation of simple grazing area when the anchor
point varies along a sub-edge ¢; = (wi,w;i41) lying on edge e;. Let the

199

anchor point be at a distance = from w; towards w;1. Let é be the length
of the line segment (w;,vj41), i-e., 8 is the distance from w; to its nearest
non-steiner vertex in the clockwise direction (Figure 4). The grazing area
as a function of distance = from w;, denoted by A (z), can be expressed
as:

At = 2
+0;41(L =8 +2)* + 0542(L = 6 — lj41 + 7)°
+ o 0L =6 = Lipn = ljya — -+ = Ljpm—1 + 2)°
+0;(L+6—U -2 +0;_1(L+6-1; — ;1 —2)°
+ "'+0j_k(L+6—lj—lj_1—-lj._z—"-—lj_k—:l:)2
+ $17° (6)

where ¢ = 0;.m41 if w; is a steiner vertex such that the non-steiner vertex
corresponding to w; lies in the clockwise direction; otherwise, ¢, = 0.
Notice that the superscript '+’ in A (z) emphasizes that the distance =
increases in the clockwise direction. A7 (z) can be rewritten as:

Af(z) = afz?+bfz+cf (7)

where
af = O +0ipa+ -+ 0ium+ 0+ 01+ + 0k +
bt = 2{0;41(L —8) + 0j42(L -6~ 1 — lj41) +---

+0jam(L—6 -1 —liy1 — - = ljam-1)}

—2{0(L+ 86— L) +0;_1(L+6 U — L) +---

+ 0L+ 61—y == L)}
R
o = =

(s

(9

+ {0;41(L — 6)2 + 0j02(L — 8§ — 1j11)® — O503(L — 6 — iy — L) + -

+ 054m(L =8 = Ly — Lz — - = Lixm-1)?}
+{0;(L+6-1)2+6;\(L+6—1; — ;1) +---
+0; k(L +6— U — Loy~ b2 — - = 1;x)?}

Observation 1: From equation 7 we find that the grazing area as a func-
tion of x has the form of a parabola. The second derivative of the area

200

(10

: : : .
function with respect to z is a} ie., S35 = o}

the sum of positive angles (equation 8), and hence the parabola is in the
first quadrant with its arms going towards the positive y-axis.

Observation 1 is useful to compute the minimum grazing area efficiently
(discussed in the Conclusion).

. The coefficient a}f is

ITI. Algorithm for Maximum Simple Grazing Area

Lemma 1 and Lemma 2 can be directly used to compute the maximal
simple grazing area in O(n?) time. To speed up the algorithm we have
to find ways of avoiding O(n) computations per vertex. The idea is to
relate grazing areas corresponding to adjacent vertices and use this fact to
compute A;;; from A;. An inspection of the expressions for A; and A;1,
(equation 5) shows that the number of terms present in A;4; but not in
A; is O(n). Hence, it does not seem possible to compute A;41 from A; in
constant time by a straightforward comparison of the corresponding terms.

Consider the variation of grazing area when the anchor point varies
along a sub-edge g; = (wji, wi+1). This variation can be expressed in two
ways. The grazing area as a function of distance z from w;, which was
denoted by Af(z) earlier, is given by equation 7. The same variation
can be viewed as a function of distance = from w;4,, which we denote by
Ai;1(z), and can be written as:

Aiga(@) = e +b 4+, (11)

The superscript '—’ in A7, () emphasizes that the distance x increases in
the counter clockwise direction.
Our goal is to compute all coefficients (af,b7,c}),1 < i < 3n, and

T 7T ?

(a7,b7,¢7),1 < i < 3n, efficiently. Functions A (z) and A; (z) can be

T ?V)
used to relate coefficients (af,b},cf) and (a7 ,b;,¢;). Similarly, func-

tions A} () and A7, (z) can be used to relate coefficients (a;", b}, c;") and

(@10 0531 i 1)-

Lemma 3: Coefficients a], b}, and ¢ can be computed from coefficients

T Y
a;,b;, and c; in constant time.

201

Proof: The expression for A; () is:

A7 (z) = a7z +bjz+cf (12)
where,
af = O +0iat -+ 0i4m +0;+0i1 4+ 0+ b (13
b7 = —2{0;41(L—08)+0j42(L -8 -1 —Ligy)+---
+0i4m(L =8 — b =Ly — -+ = Ljym-1)}
+2{0,(L+6-L)+ 8,1 (L+6—1; — b))+
+0j_k(L+5—lj—lj_l—-"'—-lj..k)} (14
_ wL?
¢ = 3
+ {0;01(L = 6)2 +0j42(L — 6 = 1j11)? = 0j43(L — 6 — L1 — Lj42)* + -
+0i4m(L =8 — b1 — Lipz — - = Lixm-1)?}
+{0(L+6—L)Y +0; ((L+8—1;—1;1) + -
F O (L8 —l =l =iy — - =1 k)?} (15

In equation 13, ¢ = 0;_i4, if w; is a steiner vertex such that the non-
steiner vertex corresponding to w; lies in the counter clockwise direction;
otherwise, ¢> = 0. Comparing coefficients aj’ , bi+ , and c;”, given by equa-
tions 8-10, with a;", b and ¢, given by equations 13-15, we observe that:

1) 13

at = af +é1—¢2 (16)
bf = —b (17)
¢t = ¢ (18)

a

Lemma 4: Coefficients a;,, b, ,, and ¢;}, can be computed from coeffi-
cients af, b}, and ¢} in constant time.

Proof: Functions A} (z) and A7, ,(|lg:| — z) are equal in the interval
lgi|- By Taylor’s theorem of calculus, the coefficients of equal powers of

(in A} (z) and A, (lgi| —)) should be equal, which results in:

ai"_*_, = a?’ (19)

202

1 = —2aflg| - b} (20)
o +bFlgi| + atlgil® (21)

Cit1

]

Theorem 1: The anchor point yielding the maximum simple grazing area
in the presence of a convex polygonal obstacle can be computed in O(n)
time.

Proof: We first maintain the vertices w;'s and the data associated with
them (e.g., coordinates of w;'s, angle 0;’s, etc) in a doubly linked circular
list C. Each node of C also contain pointers to the nearest non-steiner ver-
tices on both sides (clockwise and counter clockwise). Such a list C can be
made from the original list of non-steiner vertices v;’s in O(n) time. In O(n)
time, we can compute a; ,b; ,c; and the corresponding area A7 (x =0)
by traversing the doubly linked list and using equations 13-15. We relate
the coefficients of area functions corresponding to adjacent sub-edges and
propagate the computation from the current vertex to the next by walking
in the list C and using Lemma 3 and Lemma 4. During each advance, we
update the value of the maximum grazing area. Since there are 3n vertices
in total, the total time is bounded by O(n). The correctness of the algo-
rithm follows from Lemma 2. Q

IV. Grazing in the Presence of Simple Polygons

In this section we consider the computation of the grazing area from an
interior boundary point o when the polygon Q is simple (not necessarily
convex). As mentioned earlier, the length of the rope is L and the anchor
points is fixed at o. We use 1(Q, L,0) to denote an instance of IGAP. An
example of the grazing area inside a simple polygon is shown in Figure 6,
where the region that cannot be reached by the rope is shown shaded. Our
approach to solve IGAP is to partition the polygon into carefully chosen
triangles and obtain the solution by computing grazing areas in each tri-
angle by introducing appropriate rope lengths and anchor points. Unlike
the triangles in the standard triangulation, where triangle vertices must be
the vertices of the polygon, the triangulation appropriate for computing

203

grazing area may have the vertices of their triangles at any point on the
boundary of the polygon.

Let SP(o,v;) denote the geodesic path (i.e., shortest path) connecting
o to v;. The union of the shortest paths, SP(0,v;),1 < i < n, forms the
shortest path tree T. Figure 7 shows the shortest path tree rooted at the
anchor point 0. The shortest path tree partitions the polygon into funnel
polygons [8]. Note that a funnel polygon is a simple polygon consisting of
a pair of walls and a lid: the pair of wall consist of two outward convex
chains sharing a common vertex (apex of the funnel); and the lid is the line
segment that connects the end of the walls. In Figure 7, vertices of one of
the funnels are o, a, b, ¢, d, and e with lid bc, apex o, and walls oab and oedc.

Figure 6: Hlustrating grazing area in the interior of a simple polygon

In addition to the diagonals of the polygon given by the edges of the
shortest path tree T, we introduce a few chords (called extension chords)
as follows. (Note that a chord of a polygon is a line segment in its interior
with end points on the boundary.) Each edge of the tree T forming the
wall of the funnel is extended in the forward direction (parent to children)
to meet the boundary of the polygon. The structure of the funnel guaran-
tees that the extension chords formed as above meet the boundary of the

polygon without intersecting any other tree edges or chords. Thus we have
the following observation.

PR

.
.
.
.-
.-

.
-

Figure 7: Illustrating the shortest path tree induced by an anchor point

205

Observation 2: The set of edges of the shortest path tree T and the set of
extension chords partition the polygon into triangles. The partitioning thus
achieved, which we denote by R(Q), is referred to as the triangulation
induced by instance I(Q, L,0). Figure 8 illustrates an example, where
extension chords are shown as solid lines.

Figure 8: Triangulation obtained by extending the shortest path tree

Lemma 5: Triangulation R(Q) contains O(n) vertices.

Proof: Tree T contains n + 1 vertices (n vertices of @ and the anchor
point 0). Each chord formed by extending a funnel edge introduces only
one steiner vertex. The total number of the edges of the polygon used for
creating extension chords is no more than the total number of reflex vertices

r in the polygon. Hence the total number of vertices in R(Q) is at most
n+r+1. 0

Let ¢y, 12, ...tx be the triangles of R(Q). We refer to the vertex of the
triangle ¢; from which the diagonal/chord originates as its tip vertex fi-
Let d; be the length of the shortest path from anchor point o to fi.

Lemma 6: The set of points in triangle ¢; that can be reached by a rope of
length L anchored at o is the same as the set of points that can be reached
by a rope of length L — d; anchored at f;.

Proof: Let p be any point in ¢; that can be reached by a rope of length L
anchored at o. Let $P(o,p) be the shortest path connecting o to p. Clearly
the length of SP(o,p) is no more than L; otherwise, the rope anchored at
o would not reach p. Since f; is a vertex of the shortest path tree T' rooted
at o, SP(o0,p) must pass through vertex f;. Thus the distance between f;
and p is no more than L — d;, which implies that p can be reached by a
rope of length L — d; anchored at f;. O

Lemma 6 implies that the solution for the original instance (@, L, 0) of
IGAP can be obtained by solving the straightforward instances, I(t;, L —
di, fi),1 < i < k. (certainly, we need to consider only those instances for
which L — d; is positive.) A formal sketch of the algorithm follows.

Algorithm Internal Grazing

Input: A simple polygon Q, boundary point o in its interior, and rope

length {.

Output: Grazing Area.

Step 1: Generate the shortest path tree T for Q rooted at o.

Step 2: Introduce chords by extending the edges of the walls of all funnels
to obtain the triangulation R(Q).

Step 3: Report the output by aggregating the solutions for instances,
I(t;, L —d;, fi),1 < i <k, such that L — d; is positive.

Theorem 2: IGAP for simple polygons can be solved in O(n) time.
Proof: Computation of the shortest path tree in Step 1 can be done
in O(n) time by using the balanced decomposition algorithm given in [8].
Once we have the shortest path tree T rooted at o , Step 2 can be done
in O(n) time by checking the intersection of the lines passing through the
tree edges with the lids of the corresponding funnels. Within the same time
complexity, shortest paths d;’s can be obtained from the shortest path tree.
There are only O(n) grazing area computations in Step 3, each of which
can be solved in constant time; hence Step 3 also takes O(n) time. a

The approach described above can be modified to solve the external
grazing area problem (EGAP) for simple polygons in linear time by trans-
forming an instance of EGAP to at most three instances of /GAP. This
is stated in the following theorem.

Theorem 3: EGAP for simple polygons can be solved in O(n) time.

Proof: Let I(Q, 0, L) be an instance of EGAP. We enclose polygon @
by a large square U such that no boundary point of U is within distance
L from any boundary point of Q. This can be easily done by making the
diagonal of the square U sufficiently larger than the diameter of the convex
hull of Q. The above condition implies that the end of the rope never
touches the boundary of U.

We first consider the case when the anchor point o is on the convex hull
of Q (Figure 9a). We construct an extremely narrow tunnel zyz'y’ near the
anchor point 0. By the introduction of the tunnel, we can view the region
bounded by the tunnel and the boundaries of @@ and U as the interior of the
simple polygon W with ordered vertices z, vn, Vn-1, .-, 2, 91,2, ¥, d, a, b, ¢, v,
and z. Now, the solution for the EGAP instance I(Q, o, L) is given by the
union of the solutions for /GAP instances I(W,z, L) and I(W,z’, L).

The other case is when the anchor point is inside the convex hull of Q.
In this case the anchor point is in a cave polygon (denote it by K) formed
by a convex hull edge and part of the boundary of @ (Figure 9b). Consider
the shortest path tree rooted at o inside the cave polygon K. We extend the
two edges of the tree incident at the convex hull vertices (labeled as g and
h in Figure 9b) to meet the boundary of U at ¢’ and h'. Let Z denote the
polygon formed by the union of K and the polygon with ordered vertices
g,h,k',d, and g’. Let Z' denote the polygonal region in the interior of U

208

<

(@)

(b)
Figure 9: Converting an EGAP instance to IGAP instances

209

but to the exterior of the union of W and Q. Observe that the solution
for the EGAP instance I(Q, 0, L) is given by the union of the solutions for
IG AP instances I(Z,0,L), I(Z',g,L — 5(9)), and I(Z', h, L — s(h)), where
s(h) and s(g) denote the lengths of shortest paths from o to h and g, re-
spectively. 0O

V. Conclusions

We have presented an O(n) time algorithm for computing the maxi-
mum simple grazing area in the presence of a convex polygonal obstacle;
the algorithm is optimal within a constant factor. The algorithm can be
easily modified to compute the minimum simple grazing area within the
same complexity: the equations of the parabola corresponding to each 3n
sub-edges of the polygon are examined to identify the candidate anchor
points (one per sub-edge), and the minimum grazing area corresponds to
one of these anchor points. We conjecture that Lemma 2 is valid even for
non-simple grazing area. It is interesting to note the following observation
for non-simple grazing area.

Observation 3: For the case of non-simple grazing area, when the anchor
point moves along an edge, the meeting point moves along an ellipse. In
Figure 5, points e,#, and j are on the ellipse whose focii are points a and n.

Observation 3, together with some other insight may be useful for devel-
oping a sub-quadratic time complexity algorithm to compute the maximum
non-simple grazing area for convex polygons.

We have presented an O(n) time algorithm to solve JGAP for simple
polygons. We have explained how to modify the algorithm to solve EGAP
for simple polygons, without increasing its time complexity. It would be
interesting to develop efficient algorithms to compute the grazing area in-
side a polygon with holes.

Acknowledgments: The authors gratefully acknowledge the stimulating technical discus-
sions with Professor Simeon Ntafos. We are grateful to an anonymous referee for her/his
comments and corrections which helped us to improve the paper. For this research,
Laxmi P Gewali was partially supported by grants from DOE and CRAY Research Inc.

210

References

[1

2

3

[4

[7

(8

[0

] T. C. Shermer, “Recent results in art galleries”, Proceedings of the IEEE, Vol.
80, No. 9, Sept. 1992.

] H. ElGindy and D. Avis, “A linear time algorithm for computing the visibility
polygon from a point,” Journal of Algorithms, Vol. 2, 1981, pp. 186-197.

] S. Ntafos and M. Tsoukalas, “Optimum placement of guards”, Third Canadian
Conference on Computational Geometry, Vancouver, British Columbia, (1991),
122-125. Also in “Information Sciences”, 1993.

] R. Motwani, A. Raghunathan and H. Saran, “Covering orthogonal polygons with
star polygons: the perfect graph approach,” Journal of Computer and Systems
Sciences, Vol. 40, 1990, pp. 19-48.

] L. Gewali, M. Keil, and S. Ntafos, “On covering orthogonal polygons with star-
shaped polygons”, Information Sciences, Vol 65, 1992, pp. 45-63.

| S. Ntafos, “Watchman routes under limited visibility”, Computational Geometry:

Theory and Applications, Vol. 1, No. 3, (1992) pp 149-170.
] B. Aronov, A. R. Davis, T. K. Dey, S. P. Pal, and D. C. Prasad, “Visibility

with reflection”, Proceedings of the eleventh acm symposium on computational
geometry, pp. 316-325, 1995.

] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan, “Linear time
algorithms for visibility and shortest path problems inside triangulated simple
polygon”, Algorithmica, Vol. 2, No. 2, 1987, pp. 209-233.

] R. Venkatasubramanian, “On the Area of Intersection Between Two Closed 2-D
Objects”, Information Sciences, Vol. 82, (1995), pp. 25-44.

211

