What Makes An Irredundant Set Maximal?
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ABSTRACT. Two closely related types of vertex subsets of a
graph, namely external redundant sets and weak external re-
dundant sets, together with associated parameters are discussed.
Both types may be used to characterize those irredundant sub-
sets of a graph which are maximal.

1 Introduction

The well-known definitions of dominating sets, independent sets of graphs
and the associated parameters lower and upper domination numbers (y(G),
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I'(G)) and independence numbers (i(G), 8(G)) for a graph G = (V, E) may
be found (if necessary) in [9].

The closed neighborhood of a set X of vertices of a graph is denoted by
N[X] and is defined by

N[X]= XU {v eV |vis adjacent to some z € X}.

The notation N[z] for the closed neighborhood of the single vertex z, is
abbreviated to N[z]. For z € X C V, the private neighborhood of z in X,
denoted by PN(z, X), is defined by

PN(z,X) = N[z] - N[X — {z}].

The set X is an irredundant set of G if for all z € X, PN(z, X) # ¢.
The property of irredundance (originally considered in [6]) is a hereditary
property. The lower and upper irredundance numbers of G, denoted by
ir(G) and IR(G), are the smallest and largest cardinalities of maximal
redundant sets of G.

The reader is referred to [4] for a bibliography (circa 60 papers) of work
concerning irredundant sets and these two parameters. The work of Berge
[1] and Cockayne, Hedetniemi and Miller [6] established the following im-
plications for vertex subsets.

maximal minimal
independent () dominating () maximal

i (1)
independent dominating = irredundant

and dominating and irredundant

The implications I;, I of (1) imply the well-studied chain of inequalities
for any graph G:

ir(G) < ¥(C) £ i(G) < B(G) <T(G) < IR(G). )

In this paper we show that maximal irredundant sets may be charac-
terized in terms of external redundant sets (Section 2) and weak external
redundant sets (Section 4). This enables the extensions of the implication
scheme (1) and the inequality chain (2) in two ways. Properties of graph
parameters involving these two types of vertex subsets are also established
(Sections 3 and 4). The reader is referred to [8,9] for bibliographies of recent
work on the six parameters which appear in (2).

2 External redundant sets

The subset S of the vertex set V of graph G is an ezternal redundant set
(abbreviated er-set) if for all v € V — S, there exists w € SU {v} such that
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PN(w,SU {v}) = ¢ and if w € S, then PN(w, S) # ¢. This concept was
defined and generalized in [5]. The authors proved that external redundance
characterizes those irredundant sets of a graph which are maximal and that
any maximal irredundant set is also minimal external redundant. We now
give an alternative definition of external redundant sets which will clarify
the connection between er-sets and weak external redundant sets which will
be discussed in Section 4. This definition will be used in alternative proofs
of the results mentioned in the preceding paragraph. We will require the
following preliminary result concerning private neighborhoods. The proof
is easy and omitted.

Lemma 1. Let s€e SCV andveV -8.
(i) PN(s,SU{v}) = PN(s,S) — Np]
(ii) PN(v,SU {v}) = N[v] — N[S].

Let R=V—NIS], i.e. R istheset of vertices of G which are undominated
by S.

Theorem 2. S is an external redundant set if and only if for all v € N[R],
there exists sy € S such that ¢ # PN(sy,S) C N[v].

Proof: Suppose S is an external redundant set and suppose that v € N[R].
Then v € V — S and (by the definition of external redundant sets) there
exists w € S U {v} such that

PN(w,SU{v}) = ¢ and w € S = PN(w, S) # ¢. 3)

If w = v, then PN(v,SU {v}) = ¢. By Lemma 1(ii), N[v] — N[S] = ¢, i.e.,
N[v] C NI[S]. However, this is impossible since v € N[R]. Hence w € S
and from Lemma 1(i) and (3), we deduce that

¢=PN(w,SU{v}) = PN(w,S) — N[v]

Therefore
The required condition is satisfied by s, = w.

Conversely, suppose that S satisfies the condition of the statement and
let v € V-S. If v € N[R], then there exists s, = w € S such that
¢ # PN(w,S) C N[v]. Also, v € N[R] implies w # v. By Lemma 1(i),
PN(w,SU {v}) = PN(w,S) — N = ¢.

If v € N[R], then N[v] C N[S] and PN(v,SU {v}) = ¢. It now follows
that S is external redundant, as required. o

Corollary 8. If S is a dominating set of G, then S is external redundant.
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Proof: For S dominating, R = N[R] = ¢ and G is external redundant by
Theorem 2. o

The following example shows that the property of external redundance is
not superhereditary. Let G have V = {1,...,6} and E = {12,13, 15,23, 24,
34,35,45,46}. For S = {1,2,5} we observe that R = {6}. However, for
each s € S, PN(s,S) = ¢ and by Theorem 2, S is not an er-set. Now,
let S’ = {1,2}. For each v € N[R'] = {4,6} let s, = 2 € §’. Then
¢ # {4} = PN(s,,S') C N[v]. By Theorem 2, S’ is an er-set and so the
er-sets of G are not superhereditary.

Theorem 4. An irredundant set S of G is maximal irredundant if and
only if S is an er-set.

Proof: Suppose that S is maximal irredundant in G and, contrary to the
statement, S is not an er-set. Then by Theorem 2, there exists v € N[R]
such that for each s € S, PN(s, S) € N|[v), i.e., there exists z, € PN(s, S)
and z, ¢ N[v]. By Lemma 1(i), z, € PN(s,SU {v}). Furthermore there
exists r € RN N[v), i.e. r € N[S] and by Lemma 1(ii), r € PN (v, SU {v}).
We have proved that SU {v} is irredundant, contradicting the maximality
of S.

Conversely, suppose that S is an irredundant er-set and consider any
v € V = 8. If v € N[R], then by Theorem 2 there exists s, € S such that
PN(sy,S) C N]. By Lemma 1(i), PN(sy,S U {v}) = ¢. Otherwise, if
v & N[R), then N[v] C N[S] and by Lemma 1(ii), PN(v,SU {v}) = ¢. In
either case S U {v} is not irredundant and so S is maximal irredundant. O

Theorem 4 and the following simple result concerning hereditary and
superhereditary classes of subsets of a set will enable us to extend the
scheme of implications (1).

Proposition 5. Let S,T be families of subsets of a set V. Suppose that
S is hereditary (resp. superhereditary) and that S € S is maximal (resp.
minimal) if and only if S € T. Then S is minimal (resp. maximal) in T.

Proof: Let S be maximal in S. Then, by hypothesis, S € 7. Suppose
S’ ¢ 8 were in 7. Then since 7 is hereditary, S’ € §. Thus S’ is in
S and 7, hence, by hypothesis, is maximal in S, a contradiction. The
superhereditary case is similar. a

Corollary 6. If S is a maximal irredundant set of G, then S is 8 minimal
er-set.

Proof: Apply Proposition 5 to S, the family of irredundant sets of G and
T, the family of er-sets of G. By Theorem 4, the hypothesis of Proposition
5 is satisfied. o

The implications I; and Iy of the scheme (1) are also special cases of
Proposition 5. Theorem 4 and Corollary 6 permit the extension of this
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scheme as follows.
maximal
irredundant (I) minimal external

(4)
irredundant and = redundant

external redundant

The next result asserts that induced Py’s are present when vertices undom-
inated by external redundant sets exist.

Proposition 7. Suppose that vertex r is not dominated by the external
redundant set S and that s, is & vertex whose existence is asserted by
Theorem 2 (i.e. satisfying ¢ # PN(s;,S) C N[r]). Then there exists
sy € S —{s,} such that for all t € PN(s, S), G[{r, t, s,,5.}] is isomorphic
to P4.

Proof: Since PN(s,,S) C N[r], sr  PN(s,,S) and hence s, is adjacent
to some s, € S. Let t € PN(s,,S) C N[r]. Then tr, ts, and s,s. are
edges of G. The set S does not dominate r, hence rs, and rs). are not in
G. By the private neighbor property, ts’. is not in G. Hence G[{r,t, 5., 5.}]
is isomorphic to Py. ]

Note that Proposition 7 is a generalization of Corollary 1 of [3] which
establishes the same result for maximal irredundant sets S.

3 The parameters er(G) and ER(G)

For any graph G let er(G) and ER(G) be the smallest and largest cardinal-
ities of minimal external redundant sets of G. These parameters (together
with generalizations) were defined in [5]. The implication I3 of (4) facili-
tates the extension of the inequality chain (2) since it immediately follows
that

er(G) <ir(G) and ER(G)> IR(G). (5)

Examples are given in [5] to show that each of these inequalities may be
strict.

A corollary to the next result improves the inequality 7(G) < 2ir(G)-1,
which was established independently in [1,3]. For the external redundant
set S, as above, let R =V — N[S] and for r € R define

S, ={s€ S| ¢+#PN(sS) C N[r]}.
Observe that for each r € R, S, # ¢ (Theorem 2).

Theorem 8. Let S be external redundant such that R # ¢ and let M (S)
be & subset of S of smallest cardinality m(S), such that S, N M(S) # ¢
for each r € R. Then v(G) £ |S| +m(S) — 1.
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Proof: Label the vertices of S so that S = {sy,...,s:} and M(S) =
{s1,.-.,8m}, where m = m(S) (> 0). By the definition of M(S), for each
i=1,...,m, s; € S, for some r € R, ie. ¢ # PN(s;,S) C N[r]. Now
S does not dominate r and therefore s; ¢ N[r] and so s; € PN(s;, S).
But PN(s;,S) # ¢, hence there exists s € PN(s;,S)n(V —S). Fur-
ther, by definition of private neighborhoods, if i # j, then s; # s}. Let
D =SuU{s},...,s,}. For r € R, the definition of M(S) asserts the exis-
tence of 8; € S, N M(S). It follows that s{ € PN(s;,5) C N[r] and hence
r € N(s}). Thus {s},..., s}, } dominates R, S dominates N[S] and we con-
clude that D is a dominating set of G. Suppose D is minimal dominating.
Then the implications I> and I3 of (1) and (4) assert that D is minimal
external redundant, a contradiction since S C D. Thus D is a non-minimal
dominating set so that y(G) < |D| —1=|S|+m(S) — 1 asrequired. 0O

Corollary 9. For any graph G, 4(G) < 2er(G) — 1.

Proof: Let S be an er-set of minimum cardinality er(G). If S is domi-
nating, then v(G) < |S| = er(G) and thus (G) = er(G) < 2er(G) - 1.
Otherwise R # ¢ and by Theorem 8

7(G) < |S|+m(S) -1
=er(G)+m(S) -1
<2er(G)-1.

]

The proofs of Theorem 8 and Corollary 9 are almost identical to those of
[3, Theorem 3 and Corollary 2] which establish similar results concerning
maximal irredundant sets. Arguments like those used to establish Theorem
4 and Corollary 3 of [3], enable us to generalize those results also to external
redundance. We state these generalizations and omit the proofs.

Theorem 10. If v(G) = er(G)+k, (k > 1), then G has k+1 induced sub-
graphs isomorphic to Py with vertex sequences (a;, b;, ¢, d;), 1 =1,...,k+1,
where Uf:ll{b.-,c.-, d;} is a set of 3k + 3 vertices, i.e., no duplication occurs

among the b;, ¢; and d;, and foreach j=1,...,k+1,a; & vkt e, di}.

Corollary 11. If G does not have two induced subgraphs isomorphic to
P, with vertex sequences (a;, b;, ¢i,d;), i = 1,2, where b1, b2, c1,c2,dy,d2
are distinct and for i = 1,2, a; & {c1, c2, d1, d2}, then er(G) = v(G).

In [7] Cockayne and Mynhardt proved that for any graph G having n
vertices and maximum degree A > 2, ir(G) > 2n/3A. This result may also
be improved by replacing ir(G) with er(G). The proof is very similar to
that of (7] and for brevity we will omit parts of the argument which may
be found there.
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Theorem 12. For any graph G with n vertices and maximum degree
A > 2, er(G) > 2n/3A.

Proof: Let X be an external redundant set of G and for z € X, let
Bz = PN(z,X)Nn(V — X) and |Bz| = b;. Notice that z; # x5 implies
Bz, N Bz, = ¢. Partition X as follows. Let

Z = {z | z is isolated in G[X]}

Y={yeX-Z|B,=PN(yX)+#¢}
and

W=X-(YUu2).

Note that Z ={z€ X | 2€ PN(2,X)} and W = {we X | PN(w, X) =
¢}, which implies B, = ¢ for w € W. Denote B = Uzcx B, (disjoint
union), let C be the set of vertices of V — X which are adjacent to at least
two vertices of X and R=V -N[X] =V - (XUBUC). Fory €Y,
a vertex w annthilates y (or w is an annihilator of y) if By C N[w]. The
external redundance of X implies the following two facts:

Fact F1 For each v € R, there exists ¥ € Y such that v annihilates .

Fact F2 If v € By where ¥ € Y and v is adjacent to some r € R, then
there exists y € Y (possibly y = 3’) such that v annihilates y.

We now establish these facts. Let v be a vertex mentioned in the hy-
pothesis of F1 or F2. Then v € N[R] and hence (by external redundance
and Theorem 2), there exists y € X such that ¢ # PN(y, X) C NJv]. The
definition of W implies y W and for all z € Z, z € PN(z, X) — N[v}, i.e.
PN(z,Z) € N[v]. We conclude y ¢ Z. It now follows that y € Y. Hence
PN(y,X) = By and so B, C N[v], i.e. v annihilates y. Thus F1 and F2
are true.

The proof from this point is very similar to that of [7]. (In [7], W = ¢.)
We need further definitions. For y € Y, let R, = {r € R | r annihilates
y} and |Ry| = r,. It is possible that R, = ¢ for some y € Y; however, F1
implies that

R=UyeyR,. ©)
Recall that no y € Y is isolated in G[X]. Let
Yi={yeY||N@)nX|=1}

and

={yeY|INY)nX|>2}

To obtain an upper bound for |C|, observe that the number of edges from
C to X is at least 2|C|, while the numbers of edges joining C to Z, 13, Yz,
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> wew (A — 1) respectively (recall B, = ¢ for w e Vl}’) Therefore

2ICl < AlZl+(A-DNn|+(A-2)|Y2| +(A-1)|W|—|B|. (7)
From (6) we have

IR <Dy ®)

yeY

Since
n=|Z|+ V1| + |Y2| + |W| + |B| + |C| + |R],

(7) and (8) yield

1
< 5[(A+2)1Z]+ (A + DYy + AlYa| + (A +1)[W] + | B]

+22”'v]

yeEY
= 2[(A+2)1Z] + (A + DIVi| + AlYel + (A + DIW|+ Y5,
2€Z
+ Y (by +2r)]- 9)
yeY

Now b, < A for each z € Z and it is shown in [7, Theorem 2.1] that

Dby +2ry) < (24 - 1)(|Y1] + [Ya]).
yeY

Using these in (9), we obtain

n<(A+1)IZ]+5 AIY1I+( —)IYal + (A +1)IW]
< §A(IZI + Y|+ |Y2| + W),

provided that A > 2. Hence n < 3A|X|/2 as required. o

It is clear from the proof of Theorem 12 that it could be further improved.
Let X CV and Y, R, B be defined from X as in the proof of Theorem 12.
Call X an F12-set if it satisfies Facts F1 and F2. We have shown that any
external redundant set is an F12-set. The proof of Theorem 12 establishes
that any F12-set X in an n-vertex graph with maximum degree A (> 2)
satisfies | X| > 2n/3A.
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4 'Weak external redundant sets

We define a new type of vertex subset by removing the non-empty condition
in the characterization of external redundance given in Theorem 2. The
vertex subset S is a weak external redundant set (abbreviated wer-set) if for
each v € N[R] there exists s, € S such that PN(s,,S) C N[v]. It is clear
that any er-set is also a wer-set and that the properties are not equivalent.
For example, let G have V = {1,2,3,4} and E = {12,23, 31,34}. The set
S = {1,2} is a wer-set (PN(1,S) = PN(2,5) = ¢) but S is not an er-set
(defining condition is not satisfied for vertex 3 of V — S).

Using arguments almost identical to proofs of Theorem 4 and Corollary
6, the implication scheme (1) may be extended by

maximal
irredundant (13) minimal weak

=  external redundant (10)

irredundant and weak
external redundant

Further, the inequality chain (2) may be augmented with
wer(G) <ir(G) and WER(G) > IR(G), (11)

where wer(G) and WER(G) are the smallest and largest cardinalities of
minimal wer-sets.

Proposition 13. The class of wer-sets of any graph G is superhereditary.

Proof: Let S be a wer-set of G and let S’ D S. Let R, R (R’ C R) be the
sets of vertices which are undominated by S, S’ respectively. If v € N[R/],
then v € N[R] and since S is a wer-set, there exists s, € S such that
PN(s,,S) € N[v]. Moreover, s, € S’ and PN(s,,S’) C PN(s,, S). Hence
8y € S’ satisfies PN(sy,S’) C N[v]. Therefore $’ is a wer-set as required. O

On the one hand, the superhereditary property makes the wer-sets more
appealing than er-sets since the four properties involved in the combined
implication schemes of (1) and (10) i.e. independent sets, dominating sets,
irredundant sets and wer-sets are alternately hereditary and superhered-
itary. However, the following simple characterization perhaps lessens the
appeal of wer-sets.

Proposition 14. A set S is weak external redundant if and only if it is
maximal irredundant or not irredundant.

Proof: Let S be a wer-set. If S is irredundant, then by (10), S is maximal
irredundant. Otherwise S is not irredundant as required. Conversely, any
maximal irredundant set is a wer-set by (10) and if S is not irredundant,
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then there exists s € S for which ¢ = PN(s,S) C N[v] for any v € N[R].
Thus S is a wer-set. o

Also lessening the appeal of wer-sets is the final result which shows that
the parameter W ER(G) is equal to the upper redundance number I R(G)
for all graphs G.

Theorem 15. For any graph G, WER(G) = IR(G).

Proof: Suppose that S is a minimal wer-set of G having largest cardinality
WER(G) and let S’ be a subset of S of maximum cardinality which is
irredundant in G. If $’ = S, then IR(G) > |9'| = |S| = WER(G).
Otherwise there exists v € S — S’ and by choice of $’, 8§’ U {v} is not
irredundant. By Proposition 14, SU {v} is a wer-set and the minimality of
S implies that $’U{v} = S. Now S’ is not maximal irredundant (otherwise,
using (10), S’ is a wer-set which is contrary to the minimality of S). Hence

IR(G) > |8'| +1 = |S| = WER(G).

In each case IR(G) > WER(G) and the result follows from (11). o
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