Some Ramsey Numbers of Graphs with Bridge

Yusheng Li

Department of Mathematical Sciences
The University of Memphis
Memphis, Tennessee 38152

ABSTRACT. It is shown that if H is a connected graph obtained from H_1 and H_2 by joining them with a bridge, then $r(K_k, H) \leq r(K_k, H_1) + r(K_k, H_2) + k - 2$. We give some applications of this resulf.

1 Introduction

In this paper, a two-colored complete graph K_p means that each edge of K_p is colored either red or blue. Let G and H be two graphs. The Ramsey number r(G,H) is the smallest positive integer p such that for any two-colored K_p there is either a monochromatic red G or a monochromatic blue H. The chromatic surplus s(G) is the minimum number of vertices in the smallest color class taken over all proper vertex colorings of G by $\chi(G)$ colors.

Theorem 1.1 [1] If H is a connected graph of order $n \geq s(G)$, then

$$r(G,H) \ge (\chi(G)-1)(n-1) + s(G).$$

Reference [1] defined a graph H of order $n \geq s(G)$ to be G - good if

$$r(G, H) = (\chi(G) - 1)(n - 1) + s(G).$$

For the case $G = K_k$, H is also called k-good.

Theorem 1.2 [3] All trees are k-good for any k, i.e.,

$$r(K_k, T_n) = (k-1)(n-1) + 1,$$

where T_n is a tree of order n.

JCMCC 25 (1997), pp. 225-229

Note that each edge of a tree is a bridge. In section 2, we prove that if H has a bridge e, then $r(K_k, H)$ has approximate summability relative to the Ramsey numbers of components of H - e.

In section 3, we give some applications of this summability.

2 H contains a bridge

Before strictly proving the theorem, we give a lemma which will be used in the proof.

Lemma 2.1 If H is a connected graph of order m, then

$$r(K_{k-i}, H) + im - k + 1 \leq r(K_k, H)$$

for $i = 1, 2, \ldots, k-1$.

Proof: Consider a two-colored K_p , where $p = r(K_{k-i}, H) - 1$, such that there is no red K_{k-i} , and no blue H. Then consider this two-colored K_p and i disjoint blue copies of K_{m-1} , and join these graphs completely in red. We obtain a two-colored K_r , where

$$r = p + i(m-1) = r(K_{k-i}, H) - 1 + i(m-1).$$

It is easy to see that there is no red K_k in this two-colored K_r , and also no blue H. So we have

$$r(K_{k-i},H)+i(m-1)\leq r(K_k,H).$$

Now for i = 1, 2, ..., k - 1,

$$r(K_{k-i}, H) + im - k + 1 \le r(K_{k-i}, H) + i(m-1) \le r(K_k, H)$$

Thus we prove the lemma.

Theorem 2.1 Let H be a connected graph obtained from H_1 and H_2 by joining them with a bridge. Then

$$r(K_k, H) \le r(K_k, H_1) + r(K_k, H_2) + k - 2.$$

Proof: Suppose H_1 and H_2 have order m and n respectively. Consider two-colored K_p , where

$$p = r(K_k, H_1) + r(K_k, H_2) + k - 2.$$

If there is no red K_k and no blue H, we will derive a contradiction. It is trivial for the case k = 1 or k = 2, so we suppose $k \ge 3$. Assume that e is the bridge in H which joins H_1 and H_2 , and e = uv, where $u \in V(H_1)$ and $v \in V(H_2)$. We will find i vertex disjoint blue copies of H_1 : $H_1^{(1)}, H_1^{(2)}, \ldots, H_1^{(i)}$, with u_1, u_2, \ldots, u_i corresponding to u respectively, such that u_1, u_2, \ldots, u_i span a complete red K_i for $i = 1, 2, \ldots, k-1$.

For i = 1, by Theorem 1.1 $r(K_k, H_2) + k - 2 \ge (k - 1)n > 0$, so $p > r(K_k, H_1)$ and there is no red K_k , thus there exists a blue $H_1^{(1)}$.

Suppose that we have blue $H_1^{(1)}, H_1^{(2)}, \ldots, H_1^{(i)}$ satisfing the properties we mentioned previously, $1 \le i \le k-2$. Outside these $H_1^{(1)}, H_1^{(2)}, \ldots, H_1^{(i)}$ there are

$$p-im = r(K_k, H_1) + r(K_k, H_2) + k - 2 - im$$

vertices remaining.

By Lemma 2.1,

$$r(K_k, H_1) - im + k - 2 \ge r(K_{k-i}, H_1) - 1 \ge 0$$

so $p-im \ge r(K_k, H_2)$. Then there is a blue H_2 outside $H_1^{(1)}, H_1^{(2)}, \ldots, H_1^{(i)}$. Denote this blue copy of H_2 by $H_2^{(1)}$ with v_1 corresponding to v. The edge u_jv_1 is red for $j=1,2,\ldots,i$, since otherwise we get a blue H.

If we delete v_1 , we still can get another blue copy of H_2 with v_2 corresponding to v. In this way we obtain s blue copies of H_2 : denoted as $H_2^{(1)}, H_2^{(2)}, \ldots, H_2^{(s)}$ outside $H_1^{(1)}, H_1^{(2)}, \ldots, H_1^{(i)}$ with distinct v_1, v_2, \ldots, v_s corresponding to v, where

$$s = r(K_k, H_1) + k - 1 - im.$$

Also any u_j is joined to any v_l for $j=1,2,\ldots,i$, and $l=1,2,\ldots,s$ in red.

By Lemma 2.1 again,

$$s = r(K_k, H_1) + k - 1 - im \ge r(K_{k-i}, H_1).$$

So the subgraph spaned by $\{v_1, v_2, \ldots, v_s\}$ contains a red K_{k-i} or a blue H_1 .

A red K_{k-i} together with $\{u_1, u_2, \ldots, u_i\}$ will give us a red K_k therefore it is not possible. Thus we get another blue copy of H_1 outside $H_1^{(1)}, H_1^{(2)}, \ldots, H_1^{(i)}$. Denote this copy by $H_1^{(i+1)}$, with u_{i+1} coresponding u. Since $H_1^{(i+1)}$ is completely joined to u_1, u_2, \ldots, u_i in red, then $u_1, u_2, \ldots, u_i, u_{i+1}$ are completely joined in red. Then by induction we get k-1 blue copies of H_1 :

$$H_1^{(1)}, H_1^{(2)}, \ldots, H_1^{(k-1)},$$

with $u_1, u_2, \ldots, u_{k-1}$ corresponding to u. Also $\{u_1, u_2, \ldots, u_{k-1}\}$ span a red K_{k-1} .

Outside $H_1^{(1)}, H_1^{(2)}, \dots, H_1^{(k-1)}$ there are p-(k-1)m vertices remaining. By Theorem 1.1 in section 1,

$$p-(k-1)m = r(K_k, H_1) + r(K_k, H_2) + k - 2 - (k-1)m$$

$$\geq (k-1)(m-1) + 1 + r(K_k, H_2) + k - 2 - (k-1)m$$

$$= r(K_k, H_2).$$

Since we supposed that there is no red K_k , there is a blue H_2 which is disjoint from $H_1^{(1)}, H_1^{(2)}, \ldots, H_1^{(k-1)}$ with vertex v^* corresponding to v.

If for some i u_iv^* is blue $(i=1,2,\ldots,k-1)$, we get a blue H, so this is not possible. Thus for each $i=1,2,\ldots,k-1$, u_iv^* is red,thus we get a red K_k with vertex set $\{u_1,u_2,\ldots,u_{k-1},v^*\}$. This contradiction completes the proof of Theorem 2.1.

3 Applications

In this section we give some applications of the result in the previous section.

Corollary 3.1 [2] If both connected graphs H_1 and H_2 are k-good, then the graph H obtained from H_1 and H_2 by joining them with a bridge is k-good.

Proof: Suppose that the orders of H_1 and H_2 are m and n respectively. The order of H is m+n. By theorems 1.1 and 2.1 we have:

$$(k-1)(m+n-1)+1 \leq r(K_k, H)$$

$$\leq r(K_k, H_1) + r(K_k, H_2) + k - 2$$

$$= (k-1)(m-1) + 1 + (k-1)(n-1) + 1 + k - 2$$

$$= (k-1)(m+n-1) + 1.$$

So $r(K_k, H) = (k-1)(m+n-1)+1$, thus H is k-good.

Here we see that when both H_1 and H_2 are k-good, the inquality in Theorem 2.1 becomes an equality, so the result in the theorem is sharp.

Corollary 3.2 Let H be a connected graph obtained from nontrivial graphs H_1 and H_2 by joining them with a bridge. If $r(K_k, H_2) = o(r(K_k, H_1))$, then $r(K_k, H) \sim r(K_k, H_1)$ as $k \to \infty$.

Proof: Since H_2 contains at least one edge, we have $r(K_k, H_2) \ge r(K_k, K_2) = k$. Then by the condition we have and Theorem 1.2, H_1 is not a tree.

Suppose that H_1 contains a cycle C_m . By a result in [4], there is a constant c > 0 such that

$$r(K_k, H_1) \ge r(K_k, C_m) \ge c \left(\frac{k}{\log k}\right)^{(m-1)/(m-2)}$$
.

Therefore $k = o(r(K_k, H_1))$. But by Theorem 2.1,

$$r(K_k, H) \le r(K_k, H_1) + r(K_k, H_2) + k - 2,$$

thus we finish the proof.

Corollary 3.3 Let H be a graph, and let S_H be the subgraph of H by recursively deleting all end vertices (vertices of degree 1). If S_H is nontrivial, then $r(K_k, H) \sim r(K_k, S_H)$ as $k \to \infty$.

As a special case, let H be a unicyclic graph containing cycle C_m , then $r(K_k, H) \sim r(K_k, C_m)$ as $k \to \infty$.

Acknowledgment. The author is grateful to the referee for his careful reading and comments.

References

- [1] S. Burr, Ramsey numbers involving graphs with long suspended paths, J. London Math. Soc. (2) 24 (1981), 405-413.
- [2] S. Burr and P. Erdös, Generalizations of a Ramsey-theoretic result of Chvátal, J. Graph Theory, 7 (1983), 39-51.
- [3] V. Chvátal, Tree-complete graph Ramsey numbers, J. Graph Theory, 1 (1977), 93.
- [4] J. Spencer, Asymptotic lower bounds for Ramsey functions, *Discrete Math.*, 20 (1977), 69-76.