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ABSTRACT. It is shown that if H is a connected graph ob-
tained from H; and H2 by joining them with a bridge, then
r(Kx, H) < r(Kk, H1) + r(Kk, H2) + k — 2. We give some ap-
plications of this resulf.

1 Introduction

In this paper, a two-colored complete graph K, means that each edge of K,
is colored either red or blue. Let G and H be two graphs. The Ramsey
number 7(G, H) is the smallest positive integer p such that for any two-
colored K, there is either a monochromatic red G or a monochromatic blue
H. The chromatic surplus s(G) is the minimum number of vertices in the
smallest color class taken over all proper vertex colorings of G by x(G)
colors.

Theorem 1.1 [1] If H is a connected graph of order n > s(G), then
(G, H) 2 (x(G) - 1)(n — 1) + 5(G).
Reference [1] defined a graph H of order n > s(G) to be G — good if
(G, H) = (x(G) — 1)(n = 1) + s(G).
For the case G = Ky, H is also called k—good.
Theorem 1.2 [3] All trees are k—good for any k, i.e.,
(K, Ta)=(k-1)(n-1)+1,

where Ty, is a tree of order n.
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Note that each edge of a tree is a bridge. In section 2, we prove that if
H has a bridge e, then »(K, H) has approximate summability relative to
the Ramsey numbers of components of H —e.

In section 3, we give some applications of this summability.

2 H contains a bridge

Before strictly proving the theorem, we give a lemma which will be used in
the proof.

Lemma 2.1 If H is a connected graph of order m, then
r(Kk—i, H) +im —k+1 < r(Ki, H)
fori=1,2,...,k—1.

Proof: Consider a two-colored K,, where p = r(Kx_;, H) — 1, such that
there is no red Kj_;, and no blue H. Then consider this two-colored K,
and ¢ disjoint blue copies of K,,—;, and join these graphs completely in
red. We obtain a two-colored K., where

r=p+ilm—1)=r(Kk_;, H) -1+ i(m—1).

It is easy to see that there is no red K} in this two-colored K., and also
no blue H. So we have

r(Kk—i, H) +i(m — 1) < (K, H).
Now for 1 =1,2,... ,k—1,
7(Kk—i, H) +im —k+1 < r(Kg—i, H) + i(m — 1) < (K, H).
Thus we prove the lemma..

Theorem 2.1 Let H be a connected graph obtained from Hy and Hy by
joining them with a bridge. Then

(Kk, H) < 7(Ki, H1) + r(Ki, H2) + k — 2.

Proof: Suppose H; and H; have order m and n respectively. Consider
two-colored K, where

p=1r(Ki, H) +r(Ki, H2) + k - 2.

If there is no red K and no blue H, we will derive a contradiction.
It is trivial for the case k=1 or k = 2, so we suppose k > 3.
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Assume that e is the bridgein H which joins H; and Hs, and e = uv,
where ueV'(H;) and veV(H;). We will find i vertex disjoint blue copies of

H;y: Hfl), Hfz), cen ,Hfi), with u3,u2,...,u; corresponding to u respec-
tively, such that uj,us,... ,u; span a completered K; for i =1,2,... ,k—
1.

For i = 1, by Theorem 1.1 r(Ki,H3) +k -2 > (k—1)n > 0, so
p > r(Kg, H1) and there is no red Kj, thus there exists a blue H fl).

Suppose that we have blue H §" JH §2) senes Hfi) satisfing the properties
we mentioned previously, 1 < ¢ < k — 2. Outside these H fl), H §2), e Hl(‘)
there are

p—im=r(Kyg,H\) +r(Ki,Hs) + k- 2 —im

vertices remaining.

By Lemma 2.1,

T(Kk, Hl) —im+k—-22> T(Kk_i,Hl) -120,

so p—im 2> (K, H2). Then thereisablue H, outside H}l),Hfz), ceey Hl(i).
Denote this blue copy of Hy by Hél) with v; corresponding to v. The
edge u;v; isred for j =1,2,... 14, since otherwise we get a blue H.

If we delete v;, we still can get another blue copy of Hy with e
corresponding to v. In this way we obtain s blue copies of Hp : de-
noted as H{Y, H{?,... H{) outside HV,H®, ... H® with distinct
v1,%2,...,Vs corresponding to v, where

s=r(Ke, H1) +k—1—im.

Also any wu; is joined to any v for 5=1,2,... ,i, and [ =1,2,...,s in
red.
By Lemma 2.1 again,

s =1r(K, H)+k-1-im> T(Kk_i,Hl).

So the subgraph spaned by {v;,vs,...,v;} contains a red Kj_; or a blue
H,.

Ared Kji-; together with {u;,us,...,u;} will give us ared K} there-
fore it is not possible. Thus we get another blue copy of H; outside
H fl) JH §2), cey Hfi). Denote this copy by H§‘+l), with u;4; corespond-
ing w. Since Hf”l) is completely joined to wu;,us,...,u; in red, then
U1, U2, ..., %, Uiy are completely joined in red. Then by induction we get
k — 1 blue copies of H; :

HO,HP, ... B,
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with uy,ug,...,uk—1 coresponding to u. Also {u1,u2,...,uk—1} span a
red Ky_;.

Outside Hfl), H?). o H ?‘_1) there are p—(k—1)m vertices remaining.
By Theorem 1.1 in section 1,

p—(k—1)ym = r(Kg,H)+r(Ke,H2)+k—-2-(k-1)m
> (k=1)(m-1)+1+7(Ke, H2)+k—-2—-(k—1)m

(K, Ha).

Since we supposed that there is no red Kj, there is a blue H; which is
disjoint from H§l), H§2), ceey ka_’) with vertex v* corresponding to v.

If for some i wuv* is blue (i = 1,2,... ,k — 1), we get a blue H, so
this is not possible. Thus for each i = 1,2,...,k — 1, u;v* is red,thus
we get ared K with vertex set {uy,ua,...,uk—1,2*}. This contradiction
completes the proof of Theorem 2.1.

3 Applications

In this section we give some applications of the result in the previous section.

Corollary 3.1 [2] If both connected graphs Hy and Ha are k—good, then
the graph H obtained from Hy and Hy by joining them with a bridge is
k—good.

Proof: Suppose that the orders of H, and Hy are m and n respectively.
The order of H is m + n. By theorems 1.1 and 2.1 we have:

(k—)(m+n-1)+1 < r(Kx, H)
< r(Kk, Hi) + r(Kk, Ha) + k — 2
= (k=1)(m-1)+14+(k-1)n-1)+1+k-2

(k-1)(m+n-1)+1.

So r(Kk,H)=(k—1)(m+n—1)+1, thus H is k—good.

Here we see that when both H; and Hs are k—good, the inquality in
Theorem 2.1 becomes an equality, so the result in the theorem is sharp.

Corollary 3.2 Let H be a connected graph obtained from nontrivial graphs
H, and H, by joining them with a bridge. Ifr(Kg, H2) = o(r(Kk, Hy)),then
r(Ki, H) ~ r(Kk, H1) as k — oo.

Proof: Since H contains at least one edge, we have r(K, H2) > m(Kk, K2)
= k. Then by the condition we have and Theorem 1.2, H is not a tree.
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Suppose that H; contains a cycle Cp,. By a result in [4], there is a constant
¢ > 0 such that

k )(m—n/<m—2)

> —_
T(Kk, Hl) Z r(Kk,Cm) 2 C (logk

Therefore k = o(r(Kjx, H)). But by Theorem 2.1,
T(Kk, H) < T(Kk, Hl) + T(Kka H2) +k—- 2’
thus we finish the proof.

Corollary 3.3 Let H be a graph, and let Sy be the subgraph of H by re-
cursively deleting all end vertices (vertices of degree 1). If Sy is nontrivial,
then r(Kg, H) ~ r(Kk, Sy) as k — oo.

As a special case, let H be a unicyclic graph containing cycle C,,, then
(K, H) ~ r(Kk,Cy) as k — oo.
Acknowledgment. The author is grateful to the referee for his careful
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