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ABSTRACT. A covering of the complete directed symmetric graph
DKy by m-circuits, denoted by (v,m) — DCC, is a family of
m-circuits in DK, whose union is DK,. The covering number
C(v,m) is the minimum number of m-circuits in such a cover-
ing. The covering problem is to determine the value C(v, m) for
every integer v > m. In this paper, the problem is reduced to
the case m +5 < v < 2m — 4, for any fixed even integer m > 4.
In particular, the values of C(v, m) are completely determined
for m = 12, 14 and 16. As well as, a directed construction of
optimal (6k + 11,4k 4 6) — DCC is given.

1 Introduction

Let DK, denote the complete directed symmetric graph with v vertices,
where any two distinct vertices z and y are joined by exactly two arcs
(z,y) and (y,z). A covering of DK,, by m-circuits, briefly (v,m)— DCC, is
defined to be a collection of m-circuits whose union is DK,. A (v,m)-DCC
is said to be minimum if there is no (v, m) — DCC with fewer circuits. The
number of circuits in a minimum covering is called the covering number,
denoted by C(v, m). It is easy to see that

Clom) 2> T(w,m) = (21,
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where [z] is the least integer y satisfying y > z. If C(v,m) = T'(v,m) for
given v and m, then a minimum (v, m) — DCC is said to be optimal.

F.E. Bennett and J.X. Yin [1] determined the value of C(v,m) for m =
3,4:

T(v,3) v=0,1 (mod 3),v#6
T(©,3)+1 v=2 (mod 3) '
T(v,4) v#4

T(v,4)+1 v=4"

C(v,3) = {

C(v,4) = {

Furthermore, for any fixed even integer m, J.X. Yin [2] reduced the de-
termination of the value of C(v, m) to the case where m+3 <v < 2m —2,
And, he proved that C(v,m) = T(v,m) for m = 6, 8 and 10 except
C(6,6) =T(6,6)+ 1.

In this paper, we are interested in determining C(v, m) for more even m.
Firstly, directed constructions of optimal (2k+3,2k) — DCC, (2k+4, 2k) —
DCC, (4k—2,2k)— DCC, (4k —3,2k)— DCC and (6k+11,4k+6)— DCC
are given. Furthermore, C(v,12), C(v,14) and C(v, 16) are determined for
any v.

2 Reduction
J.X. Yin have proved the following result in [2].

Lemma 1. Let m > 4 be an even integer. If C(v,m) is determined for
any m+ 3 < v < 2m — 2, then C(v, m) is determined for any v > m.

Now, we will furthermore reduce the range to calculate the value of
C(v,m). To simplify our statement, we will use the following notations
(where Z is the integer ring, a,b,k € Z and k > 1):

[a,b] = {z€ Z;a <z < b},

[a,b)x ={z € Z;a <z < b and = = a (mod k)} where a =b (mod k).

As well as, the symbol | z] represents the greatest integer y satisfying y < =.

Lemma 2. There exists an optimal (m+ 3, m)— DCC for any even integer
m > 10.

Construction.
Let the vertex set of DK 13 be Z,,4+3. Define three m-circuits on Z,,3
by
M=(,1,2,...,m—1),
N={(1,00m+2,m+1,...,6,5),
P=(m-1mm+1,m+20m-5m-§,...,2,1).
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Furthermore, construct an m-circuit A = (ag,a1,...,am—1) on Zp43 as
follows:
when m = 0 (mod 4),

an=i+1,(0<i<F 1),

o [mt2-i0<i<zon
T Im+1-i(p i<’

when m = 2 (mod 4),

o < JiT10S i< 252
T litamci<go

Developing the m-circuit A module m+ 3, we obtain m+ 3 m-circuits. The
m + 6 m~circuits form a desired (m + 3,m) — DCC.

Proof: Firstly, T(m+3,m) = [(-'"—Hém—"'gz] =[m+5+2] =m+6 when
m > 6. All pairs (z,z + 1) are contained in M or P. When m —5 > 5 (i.e.
m 2 10), all pairs (z,z — 1) are contained in N or P. As for the circuit A,
we have the following observation:

(1) All a; are pairwise distinct:

when m = 0 (mod 4), {az2:}: = [1, 5] and {azi41}: = [37"‘ +3,m+
U2 +2,3m+1],

whenm =2 (mod 4), {ax}: = [1, Z2Ju[=+10 2 11] and {azi+1}i =
[Z+3,m+2.

(2) All differences a;41 — a; Tun over Z;, .5\ {1, -1}:
when m = 0 (mod 4), {a25+1 - 0.2.'}.' = [1;- +3,m+ l]g U [2, %]2,
{azi+2 —a2i11}i = [3, 3 + 12U [ +4,m]2 and ap — am—1 = F + 2;
when m = 2 (mod 4), {agiy1 — ax}i = [F +2,m+ 12U [2,F]s,
{a2i42 —a2i41}i = [3, B2V [R +3,m)2 and ap —ap—y = + 1.

Therefore, the construction is an optimal (m + 3, m) — DCC. n]

Lemma 8. There exists an optimal (m+4, m)— DCC for any even integer
m 2 14 and m $# 16.
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Construction.
Let the vertex set of DK +4 be Zpmi4. Construct m 4 8 m-circuits on
Zm+4

A = {ap, a1,...,am,—1) develop m + 4,
R= (‘r‘o, T1ye0. ,Tm_1),
N = {no,n1, ..., o 1),
P = (po,p1,---,Pm-1),
Q= {9091, - Gm-1)-

These parameters a;, 7;, n;, p; and g; are defined as follows.
Case l: m=4t-2,t > 4.
i+1 (0<it-1)
i+3 (t<i<2t-2)

Tgi =20+ 214+ 1, 74541 = 2t + 21 + 2, T2 = 2i+ 1, 74443 = 21+ 2
(05z$t—3),r4¢_3+,=4t—3+i(052‘55);

n'4i E— 2‘i, n4‘i+1 = 2’):-'— 1, n4i+2 =3 2t+21: +2, 'I'l4“+3 = 2t +21:+ 3
(0<i<t-38),n4-8+i=2t—4+1i(0<i<5);

Pai =20 —2i+ 1, pait1 = 20 — 26, paivo =4 — 20+ 1, paiy3 = 4t — 24
(0<i<t—3),ps-84i=5—-4(0<i<5);

Qi =4 —21+2, qaiv1 =40 —2i+1, quiy2 =2t — 24, gaiy3 =20 —2i - 1
(0<i<t—3),qa-8+i=2t+6—-1(0<i<5).

Qa2i41 =4t+1—i(0$i$2t—2), a2;={

Case 2: m=8t,¢t > 3.
8t+3—i (0<i<2%—1)
8t+1—i (2t<i<4t—1)

T4 = 20+ 1, r4i401 = A+ 20+ 3, 74i40 = A + 21 + 4, T4i+3 = 26 + 2
(0<i<y),

Tat+4+i = 2t+3+‘l (0 S 1 S 2t—1), Tet+4+i = 6t+9+1. (0 S 1 S 2t—5);

ng =4 +3+2i, ngip1 =20+ 1, ngip2 = 20+ 2, ngq3 =4 +2i 4+ 4
(0<ic<y),

N4tta+i =6t +5+1 (0 <i< 2t—l), Neetati =26 +7+1 (0 <1< 2t—5);

DP4i = 8t—21:+4, Pai+1 = 4t—2‘i+2, P4ai+2 = 4t—2'&+1, P4i+3 = 8t—-2'l+3
0<i<t—1),paeri =6t+4—1 (0Si$2t+l),psz+2+i =2t—2—1
(0O<i<2t—3);

Q4 = 4t —214-2, Q4i+1 = 8t —2:+4, qai42 = 8t—2i+3, q4i+3 = 4t —2i41
(0<i<t—1), gguti =26+2-4 (0 < i< 2t+1), goeyo+i = 66— 4
(0<i<at-3)

ax=1+1(0<i<4t-1), azi+1={
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Case 3: m=8t+4,t > 2.
8t+7—i (0<i<2t) _
8+5—1i (A+1<i<4t+1)

T4 = 2i + 1, T4i+1 = 4¢ + 21 + 5, T4i42 = 4¢ + 2i + 6, T4i+3 = 21 + 2
(0 <t< t), Tatpapi = 20+ 3 +4 (0 <1< 2t+1), Tet+6+i = 6t + 11 44
0<i<2t-3);

ng = 4t + 5+ 21, ngiy1 = 2+ 1, ngiys = 20+ 2, ngiy3 =4t +2i+ 6
(0 S i < t), N4t44+i = 6t+7+1 (0 < ) < 2t+1), Nge+6+4i — 2t+7+‘i
(0<i<2t-3);

Pai = 8t —2i+8, pgip1 = 4 —2i+4, paito = 4 —2i43, paiy3 = 8 —2i47
(0<i<t),patayi =6t +6—-1 (0<i<2A+1), peeyoti =26 —2—1
(0<i<2t-3);

Qi = 4 —2i+4, gair1 = 8t —2i+8, qaiy2 = 8. —2i+7, qaiy3 =44 —-2i+3
(0<i<t) qauiari =26+2-1(0< i < 2+1), gor6+i =66 +2—1d
(0<i<2t-3).

Proof: Firstly, T(m + 4,m) = [2mi) _ 1 4 7.4 12] = g 4 8,
when m > 12. Thus, we only need to prove that the construction is a

(m + 4,m) — DCC. For the Case 1 (m = 4t — 2), we have the following
verification.

ay =1+1 (05i54t+1) a2,~+1={

1° The differences a;+; — a; run over Zj,,» \ {1,2t +1,4¢t + 1}:
{a2i+1 — a2 }27% = [2t +2,4t}2 U [2,2¢ - 2],
{azi+2 — a2it1}2 3 = [3,2t — 12U [2t + 3,4t — 1]s,
ag — aq¢—3 = 2¢.
2° The pairs (z,z + 1) are contained in R or N, where z fill
[2t + 1,4t — 5] for (r4i,T4i41), 0 <i <t —3;
[1,2¢t — 5]a for (rait2,74i43), 0 <1<t -3;
[4t —-3,4t + 1] for (T4g_s+g,1‘4g_7+.'), 0<i<4;
[0, 2t — 6]2 for (n4i,n4i41), 0 <1 < —3;
[2t + 2,4t — 4] for (ngit2,n4i43), 0 <i<t—3;
[2t —4,2t] for (na¢—s+i, Nae-7+i), 0 <1 < 4.
3° The pairs (z,z — 1) are contained in P or Q, where z fill
[7,2t + 1]z for (pai,pait+1), 0 < <E—3;
(2t + 7,4t + 1]z for (Pait2,Pai+s), 0 < i<t —3;
(1,5] for (pae—s+isPat—7+i), 0 < < 4
[2¢t + 8,4t + 2] for (q4i, qai+1), 0 <<t —3;
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[6,2t]2 for (gai4+2,q4i+3), 0 <1<t —3;
[2t + 2,2t + 6] for (qa¢—8+4,Gae—7+i), 0 < i < 4.
4° The pairs (z, z + 2t + 1) are contained in R, N, P or Q, where z fill

(2t + 2,4t — 4] U [2,2t — 4] for (r4it1,74i42) and (74543, Taita),
0<i1<t-3;

[1,2¢ — 5]2 U [2t + 3,4t — 3]2 for (m4it1,m4i4+2) and (14443, N4ita),
0<i<t—3;

[6,2t]2U[2t +6,4¢t)2 for (pait1,Psi+2) and (Paiy3, Paita), 0 <3 < -3,

[2t+ 7,4t + 1o U [5, 2t — 1]5 for (gas+1, qai+2) and (Gaits, Gaita)s
0<i<t-3

0 and 2t +1 for (7'4t—3’7'0)) (ndt—SsnO)a (P-u—S,PO) and (q4t—3v q0)-
Obviously, when ¢ > 4, all pairs (z, z + 2t + 1) appear in the circuits
R, N, Por Q.

5° In such covering there are m — 12 = 2(2t — 7) repeated pairs, which
form 2t — 7 2-circuits (5,2t + 6), (6,2t + 7),...,(2t — 4,4t — 3) and
(0,2t +1). .

For the Case 2 and Case 3, the proofs are similar. We only point out
that the m — 12 repeated pairs form the following circuits:

when m = 8¢, ¢t > 3, a (G — 8)-circuit and a (% — 4)-circuit:
(6t+9,6t+10,...,8: +3,8t+4,2t + 7,2t +8,...,4t + 1,4t + 2),

(2t 2,2t —3,...,2,1,6t,6t —1,...,4¢ +4,4¢ + 3);
when m = 8t +4, ¢t > 2, two (Z — 6)-circuits:

(6t+11,6t+12,...,8t+ 7,8t +8,2t + 7,2t +8,...,4t + 3,4t +4),
(2t —2,2t—3,...,2,1,6t + 2,6t +1,...,4t + 6,4t + 5).
W]

Lemma 4. There exists an optimal (4m — 2,2m) — DCC for any integer
m > 5.

Construction.

Let the vertex set of DKym_2 be X = Z4m—5 U {000, 001,002}. Define
two 2m-circuits on the set X by

A= (000; ap, a, - - 'aa2m—2) and
B= (mlt bo, blv LERR] bm—2, 02, Cm-2,m—3,-.-,C1, CO))
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where

i 0<i<m-2) . _
8= L ' it1=—(+1) (0<i<m—2),
2 {i+1 (i=m-—1) a1 =—(i+1) (0<i<m-2)

bu=m+i(©<i<[222),  bapi=—(m+i) O<is< 252D,

co=2m—2+i(0<i< fmz——sl), Cipr=2m-3-i(0<i< lmz_sj)’

m=5 m—1
=17 (modd) _[2*  (modd)
om {"'T_z (m even) ’ om- —m=4 (meven)

Developing the 2m-circuits A and B modulo 4m—5 we can obtain 8m—10
2m-circuits. Denote A’ = (000, a9, al, . .-, 6hy,_5), Where af = a; + [2F3].
To cover the arcs (00;,005), 0 < % # j < 2, we replace the circuits A, B
and A’ obtained above with the following four 2m-circuits:

M = (cm—5,€m—6; - - -, €1, C0, 001, 002, 000, Ag, @1, - - - , G—1,9),

N= (63, b4, ey bm_a, bm_2,002, 01, 00, a.('), a'l, ey aﬁ_l, h),

P = (a;_1,a, ..., 02m-3,82m—2,000,002, Cm—2, Cm—3, Cm—4, Cm—5, G),
Q=(a;_y,84...,0,_ 3,85, 2,000,001, by, b1,bs, b3, H),

| where ¢t = 2[3] and

T I1m

| _ Jempty (m odd) h empty (m odd)
| g Z (m even)’

1 (m even)’

m-3, Tm—-2,  Tm
G=(1,2,...,] 5 Ll >

J, I_TJ, e ,4m - 6),
H=(34,...,2772)).

Then the obtained 8m — 9 2m-circuits form a desired (4m - 2,2m) — DCC.

Proof: Throughout the proof, m is always a fixed integer not less than 6.

1° T(4m —2,2m) = [4m=A0m=3)] _ 18, _ 104 £ =8m 9.

2° {aiy1 —ai}i =[2,4m — 62U {2m — 1},
{bir1 —bi}i = 2|3] —1,2m — 5] U [2m + 1,2| 32| - 3],,
{ai —cpi}i = [1,2|3] - 32U 21 %] = 1,4m - 73U {2m — 8}
It is easy to see that these differences fill Z},,_; = Z4m—s5 \ {0}.

3° The elements in A are distinct: {a:}; = [0,m — 2]U{m}, {a2i+1}s =
[3m—4,4m—6]. The elements in B are distinct: {by;}; = [m, |28-2]],
{bait1}i = [|2B=2]),3m — 5], {ex}i = [2m — 2, | 222 ], {caiy1}i =
(13%72],2m — 3], {em-3,cm—2} = {|352], [ 2FE]}-
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4° Tt is not difficult to see that all ordered pairs in the 2m-circuits A, B
and A’ and the pairs (00;,00;), 0 < i # j < 2, are contained in the
2m-circuits M or N or P or Q.

5° The elements in M (or N, or P, or Q) are distinct.

LEEES2 1, {ande U s} = L)
7'm 10J4 6];

3’" 3m =2 | (baiaai = 122

M: {c }-“[l3m+1

{azinn}i =L
N: {bz}i=[m+2,|——
(i} U{n} = [1m+11,
P: {an}sU{es)s = 125 | m - 21u{m,L21L =8| Im 23,
{amndi = m— 4,1 220 6 = 22 o T J,4m—61;
Q: {au}: U {bs}; = [m, L3mllu{L3m+4
{a2:+1}s—[|.7m 4

where R = {0,1} (if m odd) or {0, 1,2} (if m even).

j 3m - 6],

J,3m — 6,3m — 5},

L4m—5|UR, H=[3,21222]),

6° In this construction there are 2m — 6 repeated pairs, which form two
(m — 3)-circuits: (a;—1, g, cm—5,G) and (a;_y, h, bs, H). a

Lemma 5. There exists an optimal (4m — 3,2m) — DCC for any integer
m > 8.

Construction.

Let the vertex set of DKm_3 be X = Zgm—_7 U {001, 002,003, 004}. We
will construct two 2m-circuits on X by

= (001,@1,82, - -, Gm—1,002,b1,b2, ..., bm_1) and
= (003,€1,€2, . - ., Cm—1,004,d1,d2, ..., dm—1).
Developing A and C modulo 4m — 7, we obtain 2(4m — 7) 2m-circuits.
Denote
’ = (001,0'1, 0;’2, :1-;—17°°2vb’1) b,2)'° ' 1) and
(°°31 c’],)CZ) :n—pmlb ,1$ daa ©y m—l)s
where a! =a; + 1,0, =bi+1,cf=c+1,d{=d;+1,1<i<m-—1. To
cover the ordered pairs (co —i,00 —j), 1 <4 # j <4, we need to break up

four 2m-circuits A, A’, C and C’ and to form five new 2m-circuits M, N,
P, Q and R.
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Case 1: m is odd. Define

ag; = —i, a1 =1i-1,

T m-3 . Sm-—-T7 .
b2i=T+"a bi—1 = 5 b
62,'=2m—3—i,62,‘_1=‘i—1,
do; = —1, doi 1=3m-T7+ i,

where 1 <i < =1, Let

M= (Cm—ly°°4, 001,003, 41, @2, . . ., Gm—1, 002, b’ls év vee :b;n—«i)’

N = (a" _1,002,003,001,0'1,cé, ---,C’m_1,004,d1,d2,...,dm_4),

pP= (dm—4s dm-3, dm—2, dm_1, 003, 002, b1,..., bm—1,001, °°4)d’1) teey d:n—-7)’
Q = (din—g, A5, - - -, A1, 003, 004, 002, 001, €1, €2, - . - , Cm—1, Q)
R=(bn_y, :n—3,b;n—2vb1’n—11°°1’°°2’ 003,004, 0},03, . . ., Gy, _1, R),

where @ is a (m — 9)-sequence on the set [2m,3m — 10] and R is a (m — 7)-
sequence on the set [2F1, m —3]U [m, 3m-2]. Remark: when m =9, Q is
empty.
Case 2: m is even. Define
ag; = —1, by; = 5""2—6 —t,c=1t—1,dyy =3m —-T7+1, 1<i< %-—1),
Ggi-1 = i=1, b1 = B324i, 01 = 2m—3—i, dy_1 = —i, (1 < i < B).
Let

M = {cp,_1,004,001,003, €}, ], 85, ..., Gy, 009,07, b5, ..., b0, ),

N = (am-1,002, 003,001, ¢2,€3, ..., Cm—1,004,d1,da, ... ., dn_3),

P= (dm_a, dm_z, dm—l, 003, 002, bl, b2, ey bm—l, 01, ¥4, d’l, (%, ey d:n_s),
Q= (d;n—Gv d;n—sa teey d’m—ls ©03, 004, 002, 001, c&: c:li» SREX) cin-ua),

R = (b _5,bm_45---,b}_,001,002,004,003,¢1,a1,0z,...,0m_1, R),
where Q is a (m — 8)-sequence on the set [2m — 3,3m — 12 and R is a
(m — 8)-sequence on the set [§ — 1,m — 6] U [3m — 2, 2% — 7]. Remark:
when m = 8 both Q and R are empty.
Proof:

1° T(4m —3,2m) = [8m — 14 + £2] = 8m — 13, when m > 6.

2° - 6° are only for odd m > 9 (similarly, for even m > 8).
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2° The elements in A (or C) are distinct:

fonks = 22 4m -8, {amoadi= [0, 250,

Puk=Crtm-g,  Gaaki=lm-500,

fui= 22 om—a, feundi=10, 753,
{daiks = [7’" 2 4m -], {dai-ki = [3m-s, m-2,

3° The differences of ordered pairs in A and C are just all elements of
sz—7:

{a2i — az; 1}i = [3m —5,4m — 8]z, {a2i41 —a2i}i =[2,m 3]y,

{b2i — b2i—1}i = [2m — 3,3m — 62, {b2i41 — b2}i = [m,2m — 5],
{esi —coim1}i=[m—1,2m — 4]z, {c2iy1 —c2i}i = [2m —2,3m — 7],
{dai — doi—1}i = [1,m — 2], {d2i+1 — das}i = [3m — 4,4m — 9),.

4° It is not difficult to see that the 2m-circuits M, N, P, Q and R
contain all ordered pairs in A, C, A’ and C’, and contain all ordered
pairs (004,005), 1 <i# j < 4. Note that a3 =c; and dp—g =

m—6
5° The elements in M (or N, or P, or Q, or R) are distinct:
M omy= 22 (et = 0, 22502 4 g,
{b' '"-4-[ﬁf—l,m 3jum 5"‘7‘71;
N:ap =21 “,{4}'"- =1, 202 o - g
=t =fam -6, "1u[7"" 2 4m )
P: {di)p) = 7"‘2‘”,7"' =) B —[T—l,m 2u
-3, 2722,
()" = 5 am = U o =5, 70
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Tm — 17 7m 7 3

Q: {d)¥n s = (et = [0, 55U
[3m 5 ,2m —4],
{Q} = [2m, 3m — 10];
R:{t)}ri={m-2,m-1,2m—2,2m -1},
P =1L, 2 U ), (B = (2 m - 3] U
3m -9
[m, ——2—-]

6° In this construction there are 2m — 12 repeated pairs, which form a
(2m — 12)-circuit: (b},_4,Cm—1,Q, 95, _g:0pn_1, R). o

Summarizing the results of Lemmas 1 - 5, we obtain the following theo-
rem.

Theorem 1. Let m > 4 be an even integer. If C(v,m) is determined for
any m+5 < v < 2m —4, then C(v, m) is determined for any v > m.

Proof: In (1] and [2], the values of C(v,m) for m < 10 were determined
completely. Therefore we only need to consider the case m > 12. By
Lemma 1 - 5, the Theorem holds with the possible exception of (v,m) €
{(16,12), (20, 16), (21, 12), (25,14)}. In [3] and [4], J.C. Bermond and V.
Fabour proved that, for m € {4,6,8,10,12,14,16} and v > m, there is a
decomposition of DK, into arc-disjoint m-circuits if and only if v(v—1) =0

(mod m) except (v,m) = (4,4) and (6,6). Thus, C(16,12) = T(16,12)
and C(21,12) = T'(21,12) are obtained. As for the values of C(20,16)
and C(25,14) we give the constructions of optimal (20,16) — DCC and
(25,14) — DCC as follows.

An optimal (20,16) — DCC on the set Z19 U {oo}:

{c0,1,16,2,15,3,14,4,12,5,11,6,10,7,9,8), develop 19,
(0,1,4,5,6,7,8,9,10,11,12, 13,14, 17, 18, 2),
(0,10,1,2,3,4,14,5,15,6,16,7,17, 8,18, 9),
(0,17,15,13,11,9,7,5,3,1,18, 16, 14, 12, 10, 8),
(5,8,11,2,12,15,18,0, 3,6,4,7,10,13,16,17),
(17,1,11,14,15,16,0,8,6,9, 12, 3,13,4,2,5),

repeated pairs: (8,0), (17,5).

241



An optimal (25,14) — DCC on the set Z3s:

(24,1,23,2,22,3,21,4,11,5,10,6,9,7), develop 25,
(,44+1,i+10,i+19,i+5,i + 16,1+ 3,4+ 15,4 + 6,1+ 22,
i+21,i+9,i+23,i+12),0<i <8,
(1,11,21,6,16,2,18,19,8,7,22,12,13, 14),
(4,14,24,9,19,3,18,8,22,11, 10, 23, 7, 20),
(17,18,4,19,20,9,22,7,6,5,21,11,12,2),
(8,21,20,19,4,15,16,1,13,23,24,0,10,9),
(18,7,17,16,15,2,12,24,14,0,9, 10, 20, 5),
(15,14,13,12,11,1,16,17,7,21,5,20,10,0),
(15,0, 16,6,21,22,23,13,3,19,18,17,2,14),
(5,15,1,17,3,14,4,20,21,10, 11, 24, 8, 23},
(23,8,18,3,13,0,12,22,6,19, 9, 24, 15, 5),
repeated pairs: (5,23).

3 Another directed construction

Theorem 2. There exists an optimal (6k + 11,4k + 6) — DCC for any
integer k > 1.

Construction.

Let the vertex set of DKgx+11 be X = Zgx19 U {001,002}. An optimal
(6k+ 11,4k +6) — DCC consists of 9k + 19 (4k + 6)-circuits. Firstly, define
the following (4k + 6)-circuits on the set X:

A = (G dl,....abuy), 05 <572 and
. o , . k-1
B = (b bays) 0S5 < [,

where aj; = 3i, a},, =3i—1—6j, b}, =3i, b}, , =3i—-2-6j (0<i<
2k + 2). For a circuit 77 = (to, t1,...,tn), denote the circuits

T3 = (tm)tm—1,...,t1,t0) and TI+s= {to+s,t1+38,....tm+38).

Then {A7+5,A~9+50<j < [%52],5=0,1,2} and {B/+3, B~ 45,0 <
i< [%J,s =0, 1,2} produce

3k+9 (kodd)

k-2 k-1
6([T] + lTJ +2)= {3k+6 (k even)
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(4k + 6)-circuits.
Furthermore, construct a (4k + 6)-circuit on X by

P = (001,00, Cly... )c2k+lsd0rdla . '°sd2k+l)'

Developing the circuit P modulo 6k + 9 produces 6k + 9 (4k + 6)-circuits.
Breaking one of them (e.g., P) into two new circuits:

Py = (00,002,do, C0, C1, - - -, C2k41, A1, d2, - - - , d2k+1) and
P2 = (002,001, Co, d()v dl& ..o 1d2k+l,cla €2y ,c2k+l),
we obtain 9k + 19 (when k is odd) or 9k + 16 (when k is even) (4k + 6)-

circuits. When k is even, add three (4k + 6)-circuits Q + s, s = 0,1,2,
where

Q= (QO,QI,---,Q4k+5),

goi = 34, qoiq41 = 3i — E-;—‘t —4r§](0 <i<2k+2).

Finally, let us define the parameters ¢; and d; in P as follows.
\ Case 1: k=2t - 1.
When ¢ is odd,
c2i = 3i(0 <4 <2t —1),
| 9t —1+2i—3|5] (0<i<3S8)
c2ip1 =4 12t —6 —3i (352 <ig2—-2);
12t —1 (i=2t-1)
do; =9t —7-3i(0<i<2t—1),
126 —3-2i+3[%] (0<i<35)
| doiv1 =9t +2+3i (2 <i<2-2).
9 —3 (i=2t-1)
When ¢ is even,
e =3i(0<i <2t —-1),
9t —142i - 3|4 (0<i< ¥
Coit1 = 126 — 6 — 3¢ (32 <i<2t-2);
12t -1 (i=2t-1)
doi =9t —-4-3i(0<i<2t—-1),
12t -2 -2i+ 3| 81| (0<i< 3
doir1 =< 9% +543i (E2Z<i<2-2).
9 (i=2t—-1)
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Case 2: k= 2t.

When ¢ is odd,
3i 0<gig2t-1)
Coi = . )
3t—2 (i=2t)
9t+4+2i -3 (0<i<¥ES5)
12t — 6 — 34 (B2 <cic2t-2)
C2i+1 = 2 i
12t 43 (i=2t-1)
9t (i = 2¢)
%H—-4-3i (0<i<2t—-1)
d2i= . 3
6t—5 (i=2t)
120+1-2i+ 3|81 (0<i<38)
9t +11+3: (E2<ig2-2)
daiy1 = ) .
9t +2 (i=2t-1)
12t +2 (i=2t)

When ¢ is even,

{3i (0<i<2t—1)
C2i =

6t —2 (i=2t) ’
9 +2+2i—3|§] (0<i<3E)
12t — 6 — 3i (L <i<2-2)
C2i+1 = . 3
12t +4 (i=2t-1)
9t (i =2¢t)
dom 448 (0<i<2-1)
ET 18t-2 (i = 2t) '
12t +3-2i+3[%] (0<i<39)
9t + 11+ 3i (E<i<2-2)
dait1 = .
9t +1 (t=2t—-1)
12t + 2 (i =2t)

Proof:

1° The elements in AJ (for any fixed j) are distinct, since ag,. =0
(mod 3) and aj;,, = 2 (mod 3). Similarly, the elements in each
BJ (or Q) are distinct.

2° In each A7 there are only two differences of ordered pairs: —1 — 63
and 4 + 64, where 0 < j < [432]. It is not difficult to see that A7,
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A’ +1 and A7 + 2 cover just all ordered pairs (z,z — 1 — 65) and
(z,z+ 4+ 65), € Zgxyg. Similarly, for fixed 7,

B3, Bi+1 and B? +2 cover just all pairs (z, z—2—65) and (z, z+5+65);

A™3,A79 +1and A7 + 2 cover just all pairs (z,z + 1+ 64) and (z,z —
4 - 65);

B=3,B~3+1 and B3 +2 cover just all pairs (z, z+2+63) and (z,z—5—
65). And, Q cover just all pairs (z,z— 54 —4[%]) and (z, z+ 5104 4[ %)),
where = € Zgi1g. Therefore, the 3k + 9 circuits A7 + s, BI + 3, A~ + 3,
B~7 + s and Q (only for even k) cover all ordered pairs (z,z + y), where
T € Zgk+o and y run over the set

{£d;1<d< 3'“;2,45&0 (mod 3)}U{i3k;8,_3k;‘4,_3k;10}
when k£ =0 (mod 4),

{xd;1<d< 3k;7,d¢0 (mod 3)}
when k=1 (mod 4),

i1<a< EE2 450 (mod 3)} U Hts Bl
when k£ =2 (mod 4),

{#d1<d< Sk;5,d¢o (mod 3)}U{;{:3k;11}

when k = 3 (mod 4).

The number of these differences y is 2k + 6, no matter what value k is
congruent with.

3° The other 4k + 2 differences are occupied in the circuit P.

Below, we verify this conclusion only for the case k = 1 (mod 4). The
verifications are similar for the other cases. It is easy to see that

3k+9 kLl 3k+3 3k-1

{eair — en}i = {-8k -4} U [6, = —]s U U [-=5— - 6i, ——— - 61]),
{caiv2 —cai1}i = [Qk;- 15,6k+ 6ls U (U::I;l' 3k;5 + 6i, 3k;-9 + 61]),

{dass1 — dzs}i = {3k +4)} U [gk;9,6k+ 3s U (UL 3"; ! 16, 3’°2+3 +61)),
{d2i42 — dais1}i = [3, 3";— 3]6 U (LJ,k:xl_l - %;9 — 6, —3k;5 — 6i))
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These differences are pairwise disjoint, and

{3k+4}u(u L3k =1 +6i,3k+3

2 2
U 3k;5+6i, 3";9+6i])

+ 64])

k— —
— (BE+4UUT 3'“2 ! s6i, 3’°2+9 +6])
R g

{=3k+4} U (U ’[-3—’”'—5-6])

UUS _3'“;'3 —ei,— 21 e
= (@ +0),- 21,
5, 22, B, g S,
2222 6k + 356 u[g"+l5 6k + 6o _[-3—’°—+—9 —3Js.

Therefore, these differences contained in the circuit P are just

Zipo\ (21 < d < LT,

d#0 (mod 3)},

in which those %d are contained in the circuits A7 +s, B +s, A~ + s and
B7I + s (refer to 2°).

4° The elements in P are distinct.

In fact, we have the following list of ¢; and d;, where the elements z (i.e.,
¢; or d;) are classified into three parts modulo 3.

When k is odd

z =0 (mod 3) :[0, 3k]3

(c21)
e+ 1,352 s U L s (o)
BLEEE, slsu{et§’°—+§1} (dass1),
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9k +11 _ 7k+3

z=1 (mod 3) ;[ 53— ] +1s (c2i+1)
BT+ 1,50 (),

z =2 (mod 3) :[6[§’°T+§ J +2,3[ﬁ:_3 1 = 13U {~4} (c2i41)
R e S

BT - 1 de Ui 612 4 205 (de),

where p = 6k + 1 (when k = 1 mod 4) or 6k +4 (when k = 3 mod 4),
g =6k —1 (when k = 1 mod 4) or 6k +2 (when k = 3 mod 4), r = 3£719
(when k=1 mod 4) or 3.1 (when k = 3 mod 4).

When k is even

z =0 (mod 3) : [0,3k — 3|3 (cai)
Br 3 1015 + 6,3 E X2 U (enan)
BLE ] +6.71s (daisa),

z=1 (mod 3) :{p} (c2:)
By + 431752 s (cais)
{g} (das)
BLE+7,~8suT (dais1),

z=2 (mod 3) {61 .52) 42,5 75+ 2| ), (caiz1)
[% -1, g?k - 4]3 (d2f.)
BT +5,-105 U BLET 2] —1, 35—,

u{-7} (d2i41),

where p = 3k — 2 (when k = 0 mod 4) or 3 — 2 (when k = 2 mod 4),
q= %k—2 (when k=0 mod 4) or 3k — 5 (when k =2 mod 4), r = 6k + 3
(when k = 0 mod 4) or 6k (when k =2 mod 4), S = {3k} (Wwhen k=0
mod 4) or {3k, —6} (when k = 2 mod 4), T = {2 + 1} (when k = 0 mod
4) or ¢ (when k = 2 mod 4). O
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4 C(v,m) for m =12,14 and 16
Theorem 3. For all integers v > 12 we have C(v,12) = T'(v,12).

Proof: By Theorem 1, we need only to construct an optimal (v, 12) — DCC
for v = 17,18,19 and 20. In what follows, the number of circuits in an
optimal DCC is denoted by ¢ and the number of repeated arcs (ordered
pairs) in an optimal DCC is denoted by r.

An optimal (17,12) — DCC on the set Zy6 U {o0}, c =23, 7 =4.

(00,0,2,6,12, 3,11, 5,14, 9, 8,4), develop 16

(4,i+1,8+15,4+4,i+ 5, + 3,9+ 8,1+ 9, + 7,9+ 12,7 4+ 13,7 + 11),
0<i<3

(0,3,6,9,12,15,2,5,8,11,14, 1),

(3,0,13,10,7,4,1,14,11,8,5,2),

{1,4,7,10,13,0,2,15,12, 9,6, 3),

repeated pairs: (1,0,2,3).

An optimal (18,12) -~ DCC on the set Zis, ¢ = 26, r = 6.

{0,15,3,17,6,1,9,10,2,13,7,16), develop 18

(4,14+17,i4+3,i+1,i+6,i+5,i 4+ 9,1+ 7,i + 12,44+ 11,: 4+ 15,7+ 13),
0<:£5

(0,3,6,9,12,15,16,1,2,5,8,11),

(1,4,7,10,13,16,15,0,11, 14,17,2),

repeated pairs: (15,16), (1,2), (0,11).

An optimal (19,12) — DCC on the set Z35 U {0}, c =29, r = 6.

{c0,0,3,9,16,6,15,13,10,4, 14, 7), develop 18

(4,i+17,i4+3,i4+2,i+6,i+ 5,4 +9,i + 8,4+ 12,i + 11,3 + 15,1 + 14),
0<i1<2

(i+14,i+15,i+ 11,4+ 12,i+ 8,1+ 9,i +5,i +6,i + 2,1 + 3,1 + 17,1),
0<i<?2

(3,1 +2,i4+ 15,5+ 1, + 12,9+ 14,4+ 9,4+ 11, + 6,7 + 8, + 3,7 + 5),
0<i<2

(0,5,10,15,2,7,12,17,4, 9,14, 1),

{1,6,11,16,3,8,13,0,2,4,5,7),

repeated pairs: (1,0,2,4,5,7).
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An optimal (20,12) — DCC on the set Zy, c =32, r =4.

(19,2,18,3,17,4, 16,5, 15, 6, 14, 0), develop 20

(26,2 + 4,2 + 5,2 + 6,2 + 3,2 + 18,2 + 13,2 + 17, 2i + 19, 2i + 16,
2649,204+2),0<¢<9

(0,2,4,6,8,10,12,14,16,18,1,19),

(19,17,15,13,11,9,7,5,3, 1,18,0),

repeated pairs: (0,19), (1,18).

Theorem 4. For all integers v > 14 we have C(v,14) = T'(v, 14).

Proof: By Theorem 1, we only need to construct an optimal (v, 14) - DCC
for 19 < v < 24. But v = 21 and 22 satisfy the equation v(v —1) = 0

(mod 14). Therefore, by [3] (see the proof of Theorem 1), C(21,14) =
T(21,14) and C(22,14) = T(22,14). Using Theorem 2 (k = 2), we have
C(23,14) = T(23,14). As for v = 19,20 and 24 we give the following
constructions.

An optimal (19,14) — DCC on the set Z13 U {c0}, ¢ =25, r = 8.

(00, 1,17,2,16,3,15,4,14,5,13,6,12,7), develop 18
(2,3,4,5,6,7,8,9,17,16, 15,14, 13,12),
(11,8,5,2,6,10,14,0,17,4,1,16,13,12),
(9,6,3,7,11,12,13, 14, 15,16,2,17,0, 4),
(17,14,11,15,1,5,9,13,10,7,4, 8,12, 16),
(13,17,3,5,7,9,10,11,12,14,16,0,1, 2),
(15,12,11,10,9,8,7,6,5,4, 3,2,1,0),
(0,2,4,6,8,10,12,9,11,13,15,17, 1, 3),

repeated pairs: (9,17,4),(2,13,12),(11,12).

An optimal (20,14) — DCC on the set Zyp, c =28, r = 12.

(1,16,2,13,3,12,4, 11, 5,10,6,9,7,8), develop 20

(6,4 +4,i+8,i+12,i4+16,i +13,i 4+ 10,7+ 7,5+ 15,5 + 3,7 + 11,i + 19,
i+1,i+18),0<i<3

(11,13,12, 14, 16, 18, 2,10, 9, 8,7, 4, 6, 3),

(13,15,17,19,7,6,5,4, 3,2,1,0, 8,10),

(18,17, 16,15, 14,13, 0,19, 3,5,7, 9, 11, 10),

(10,12, 11,16,0,17,1,9,6, 8, 5,2, 19, 18),

repeated pairs: (0,2,19,1,3,11,16,13),(10,13), (10, 18).
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An optimal (24,14) — DCC on the set Zy4, c =40, r = 8.

(23,1,22,2,21,3,20,4,19,5,18,6,17,7), develop 24

(3,14+9,i+18,i+ 14,7+ 13,1+ 16,7+ 10,1+ 8,i + 4,1 +3,i + 6,1+ 7,
1+12,14+19),0<i <9,

(18,19,20, 21, 22, 23,0, 1, 2, 3,4, 5, 6, 11),

(9,7,14,8,6,4,2,0,22,5,3, 1,23, 21),

(19,4,11,5,23,6,13,7,1, 8,2,9,3,21),

(21,6,2,20,5,1,4,0,7,3,10,17, 18, 23),

(23,2, 5,10,4,22,20,18,12,6,0,3,7, 8),

(3,2,1,0,23,8,15,9,16,17,22,7,5,12),

repeated pairs: (23,21,9,18,12,3,7, 8).

Theorem 5. For all integers v > 16 we have C(v, 16) = T(v, 16).
Proof: By Theorem 1, we only need to construct an optimal (v, 16) — DCC
for 21 < v < 28. These constructions are listed as follows.

An optimal (21,16) — DCC on the set Z3;, c =27, r =12.

(20,1,19,2,18,3,17,4,13,5,12,6,11, 7,10, 8), develop 21
(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14, 15),
(0,20,19,18,17,16,15,14,13,12,11,10, 9, 8,7, 6),
(0,10,20,9, 19,8, 18,7, 17, 6, 16,5,4, 3,2, 1),
(0,11,1,12,2,13,3,14,4, 15,5, 16,17, 18, 19, 20},
(15,16,6,17,7,18,8,19,9, 20, 10,0, 1,2, 3, 4),
(6,5,15,4,14,3,13,2,12,1,11,0,20, 19, 18, 17),

repeated pairs: (0, 1,2, 3,4, 15), (0,20,19,18, 17, 6).

An optimal (22,16) — DCC on the set Zg2, c =29, r = 2.

(21,1,20,2,19,3,18,4,15,5,14,6,13, 7,12, 8), develop 22

(3,3 +3,2+6,i+9,i+ 12,1+ 15,:+ 18,i + 21,: 4+ 20,i 4 8,i + 7,5 + 17,
i+16,i+4,1+ 14,14+ 2),i=0,1

(1,11,21,2,5,8,9,10,20,19,18,16,15,14,12,13),

(0,1,2,3,4,5,6,7,8,11,14,17, 18, 19, 20, 21),

(20,18,6,16,14,13,12,11,10,9,7,5, 3,2,1, 0},

(20,1,21,19,17,15,13, 11, 12,0, 10,8, 6, 5,4, 2),

(2,12,10,11,9,19,7, 6,4, 3,13, 14, 15, 16,17, 20),

repeated pairs: (2, 20).
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An optimal (23,16) — DCC on the set Z3, c= 32, r =6.

(22,1,21,2,20,3,19,4, 15,5, 14, 6,13,7,12,8), develop 23

(,i+10,i 420, + 7,5 +19,i+18,i+ 21,5+ 1,i +4,i + 5,4+ 17, i + 15,
i+14,i+ 12,14+ 13,1+ 2),:=0,1

(i+4,i+7,14+10,i+ 22,74+ 20,i + 9,7+ 8,74+ 6,7+ 16,i + 3,7+ 13,4,
i+12,i+ 15,1+ 18,i+5),:¢=0,1

(6,9,12,1,22,11,10,8,18,7,5,3,15,2,14,17),

(22,9,21,19,17,20,0,3,15,4,2,12,10,13, 11, 14),

(3,6,7,8,9,10,11, 12, 22, 21, 20, 18, 17, 16, 14, 15),

(5,15,16,17,18,19,8,7,6,4, 3,2,1,0, 22, 21),

(14,13,12,11,9,19, 20,21, 22,0, 1,2, 3,4, 16, 5),

repeated pairs: (3,15), (14, 22,21, 5).

An optimal (24,16) — DCC on the set Zy4, c= 35, r =8.

(1,23,2,22,3,21,4,20,5,19,6,18,7,15,8,10), develop 24

G,i4+1,i+7,i+13,i+17,i+14,i + 11,i +8,i + 18,i + 4,4 + 23,i + 9,
i+10,i+5,i+6,i+3),i=0,1,2

(i+16,i+20,4,6+4,i+8,i+12,i+13,i+19,i+1,i+ 22,i + 2,5 +6,
i+ 5,1+ 11,7 415,74+ 10),i = 0,1

(6,16,22,17,12,18,19,20, 15, 21, 3,4, 14, 0,23, 5),

(4,5,15,1,0,19,14,9,8,7, 2, 21, 16,17, 18, 22),

(8,9,4,10,7,17, 3,13, 23,22, 21, 20, 19, 18,0, 6),

(5,4,3,2,12,11, 21,22, 23,20,17, 16,15, 14, 13, 8),

(6,10, 14,15,16,2, 1, 20, 21, 18, 17, 23,0, 3, 22, 19),

(0,21,7,11,10,9, 6,19, 23, 18,13, 12,22, 8,3, 4),

repeated pairs: (5,6,8), (0, 3,4), (6,19).
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An optimal (25,16) — DCC on the set Zps, c=38, r = 8.

(24,1,23,2,22,3,21,4,15,5, 14,6,13,7,12,8), develop 25

(3,1 +10,i420,i+19,i + 17,1+ 18,1+ 7,4+ 21,1 +8,i+9,i + 12,1 + 11,
i+24,i4+2i+1,i+13),0<i<6

(1+20,i4+5,i4+18,1+ 6,1+ 9,1+ 7,i + 17,1+ 2,%,i + 14,7 + 3,7 + 16,
i+19,i+22,i+10,i+8),i=0,1

(5,19,18,16,17,15,13,11,10,23,1,24,9, 8,6,7),

(24,12,10,9,22,0,1,2,3,4,5,6,20,7,8,21),

(18,21,9, 19,4, 2,15, 16, 14, 12, 24, 0, 13, 11, 23, 8),

(10,22,7,20,8,11,2, 16,5, 3,17, 6,4, 18, 1, 14),

repeated pairs: (10,8,18,1,13,11,2, 14).

An optimal (26,16) — DCC on the set Zog, c=41, 7 =6.

(25,1,24,2,23,3,22,4,13,5,12,6,11,7, 10, 8), develop 26

(3,1 +13,i+ 1,1 4+2,i+17,i+ 18,1+ 7,: + 23,1+ 22,14 12,4 + 11,7 + 24,
i+9,i+20,i+4,i+14),0<i<9

(10,24,12,0, 14, 3,15, 25, 13, 2, 16, 5, 17, 6,22, 21),

(11,12,13,14,15,16,17,7,19,4, 18, 8,20, 10, 9, 23),

{21,8,22,7,6,20,5,19,3,17,1,13, 25,11, 23, 10),

(19,9,8,7,21,6,18,2,14,24,11,10, 22, 25,12, 1),

(22,9,21,11,25,1, 15, 4, 16,0, 12, 24, 10, 23, 8, 19),

repeated pairs: (21, 10), (22,25,1,19).

An optimal (27,16) — DCC on the set Zy7, c=44, 7 = 2.

(26,1,25,2,24,3,23,4,17,5,16, 6,15, 7,14, 8), develop 27

(,i+12,i+24,i+25,i+14,i +3,i+ 17,i+ 4,5 +9,i 4+ 10,5 + 6,1 + 16,
i+15,14+20,7+18,:+1),0<:<10

(13,11,0,23,24,9,25,10,26,4, 14,1, 15,2, 16, 3),

(26,11,23,19,17,0,5,15,14,13,12,1,6,2, 7, 3),

(18,16, 14,12, 10, 8, 6,4, 2, 25,21, 24, 20, 23, 26, 22},

(9,12,15,18,21,22,25,1,4,7, 10, 13,2, 5,8,11),

(6,9,7,5,3,8,4,0,26,2,12,11, 14,17, 20, 21),

(21,17, 15,13, 16, 19, 22, 23, 8,9, 5,1, 24,0, 3, 6),

repeated pairs: (21, 6).
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An optimal (28,16) — DCC on the set Zg, c =48, r = 12.

(27,1,26,2, 25, 3, 24, 4,22, 5,21, 6,20,7, 19, 8), develop 28

GGyi+5,i+6,i+13,i+12,i+22,i + 18,5+ 19,3 + 11,1 + 20,4 + 27,
i+26,i+7,1+10,i+8,i+2),0<:<12

(10,7 +20,6+23,i +26,i + 1,6+ 4,6+ 7,0 +17,i +22,i + 27,i +9,
i4+5,i+25,i+19,i+15,i+11),i=0,1

(25,7,3,13,18,10,2,12, 8,4, 24, 22,16,21, 15, 20),

(11,3,4,5,15,7,1,27,25,6,0, 26,24, 18, 14,10),

(7,27,21,26,25,0,3,6,9,19,24,1,23,17,13,5),

(2,24,5,27,4,14,19, 26, 8,0,22,25,23,21,17,9),

(5,12,4,26,3,25,2,13,9,1,11,7, 14,6, 16,8),

repeated pairs: (11,10), (14,12,10,8,5,7),(13,11,9,2).
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