Transitive Closure Algorithms for Causal
Directed Graphs

Michael J. Gilpin
Department of Mathematical Sciences
Michigan Technological University
Houghton MI. 49931

Robert O. Shelton
Information Systems Directorate

NASA JSC

Abstract

A causal directed graph (CDG) is a finite directed graph with
and-gates and or-nodes in which nodes indicate true or false condi-
tions and where arcs indicate causality. The set of all nodes implied
true by a set of conditions (nodes declared true) is called the tran-
sitive closure of that set. Theorems 3-5 evaluate the number of
distinct transitive closures for common CDG’s. We present linear-
space, linear-time algorithms for solving three transitive closure
problems on CDG’s: 1) determine if a particular node is implied
by a set of conditions, 2) find the transitive closure of a set of con-
ditions, and 3) determine the minimal set of initial conditions for
a given transitive closure of an acyclic CDG. Implicit in Problem
3 is that every transitive closure of an acyclic CDG is generated
by a unique minimal set of initial conditions. This is proved in
Theorem 6.

1 Introduction

Basic terminology for causal directed graphs (CDG’s) is introduced in
Section 2. In Section 3 conditions and transitive closures of CDG’s
are discussed. The function ¢(G), which counts the transitive closures
of a CDG is introduced, and theorems are proven which evaluate t(G)

JCMCC 25 (1997), pp. 23-32

for elementary CDG’s. In Section 4 we develop algorithms with linear
complexity and linear space requirements for solving the following three
problems.

Problem 1: Given a CDG, determine if a particular condition is
implied by an initial set of conditions.

Problem 2: Given a CDG, determine all conditions implied by an
initial set of conditions.

Problem 3: Given a transitive closure of an acyclic CDG, determine
the minimal set of initial conditions which cause that transitive closure.

Causal graphs are of interest to NASA where nodes indicate “health”
(functionality) of system components. A typical CDG used by NASA
may have 20,000 nodes, so linear complexity and linear space require-
ments for CDG algorithms are desirable. Fault trees are discussed in [1]
and [2]. Both of these references contain extensive bibliographies to the
literature of applications of digraphs to fault-tree analysis. Algorithms
for finding transitive closures are discussed in [3], [4], [5] and [6].

CDG’s are also of interest in logic where truth values are assigned
to predicates formed by conjunctions (and-statements) and disjunctions
(or-statements) of a given finite set of propositions. Here it is convenient
to use addition to denote “or,” and to use multiplication to denote “and.”
In this setting one asks questions such as: what is the truth value of
(A+ B)x (B4 C)x(C+ D) given A, B and D are true? See Cook’s
Theorem [7] for a related, but much harder problem.

The authors thank Dennis Lawler who suggested Problem 2. Thanks
are also due Steven Schnurer and Don Kreher for discussions and guid-
ance to the literature of fault-trees during the development of this paper.

2 Causal Graphs

We define a causal directed graph (CDG) to be a finite directed graph
(perhaps with “and-gates”) in which nodes indicate true or false condi-
tions and where arcs indicate causality.

If G is a CDG and the directed edge (a,b) is in e(G), then if a is
assigned the value TRUE, then b must also be assigned the value TRUE.
CDGs also involve and-gates which play the role of conjunction. If all
nodes connected to arcs leading into an and-gate are marked TRUE,
then all nodes connected to arcs leading away from that and-gate are

marked TRUE.

We use circles to denote nodes of a CDG and solid rectangles to
denote and-gates. Figure 1A shows an example of a CDG having an
and-gate. In Figure 1A the and-gate has incoming edges from nodes
b and ¢ and an outgoing edge to node e. Thus if b and ¢ are marked
TRUE, then node e is marked TRUE.

A set of conditions of a CDG is an assignment of the value TRUE to
a subset of nodes of the graph. thus we denote the set of conditions of
a CDG by the set A of nodes that have been assigned the value TRUE.
Once we are given a set of conditions of a CDG, other nodes in the graph
are marked TRUE according to the Rules of Inference.

In our algorithms (Section 4) we treat and-gates as nodes of CDG’s.
Thus in our algorithms and-gates are treated as nodes which are true if
and only if all their immediate ancestors are true.

3 Transitive Closures

Terminology: Throughout G is a directed graph. We use the term sub-
graph to mean a vertex-induced subgraph. We say G is the disjoint
union of the subgraphs G, G, ..., Gy in case v(G), v(G2),...,v(Gy)
are pairwise disjoint sets and v(G) = Ui, v(G;). For example, the
graph in Figure 1B is the disjoint union of the subgraphs {a, b, ¢, d} and
{e, f}. The transitive closure of a set of conditions A is the set of all
nodes of G implied TRUE by those conditions. We denote the tra.nsitive
closure of a set of conditions A as T(A). Note that T(0) = 0, T(G) =

and T(T(A)) = T(A) for any A C v(G). For any directed graph G we
define ¢(G) to be the number of different transitive closures of G. A set
of nodes A of G is called a minimal causal set for G in case no proper
subset of A has the same transitive closure as A.

Let a and b be nodes of G. We say a influences b and we write @ —; b
in case there exists A C v(G) with b € T(A) and b ¢ T(A — {a}). For
example, in Figure 1A, b —; e since e € T({b,c}) but e & T({c}). We
say a directed graph has an influential cycle in case for some integer
n > 1 there exist nodes aq,as,...,a, With ax —; ap4; for 1 < k < n,
and a; = a,. If G has no influential cycles, we say G is influentially
acyclic. Note that a —; b implies there exists a conventional directed
path (possibly through and-gates) from a to b. The converse is not

25

(A) (B)
Figure 1

necessarily the case, i.e. there can be a conventional path from a to
b, with @ +; b, thus a graph containing conventional cycles can be
influentially acyclic.

The disjoint subgraphs G1,Ga2,...,Gn of G are called mutually in-
dependent in case ¢ # j implies no node in v(G;) influences any node in
v(G;). For example, the subgraphs {a,b} and {c,d} in Figure 1A are
mutually independent. Let A and B be subgraphs of G. Then A is said
to be indifferent to B in case no node in B influences a node in A.

Let v(G) be the disjoint union of non-void subsets A and B. We say
A strongly implies B and we write A =, B in case A is indifferent to B
and whenever anynode in A is TRUE then every node in B is TRUE. For
example, in Figure 1B the subgraph {a,b,c,d} strongly implies {e, f}.
We say the subgraph A weakly implies B and we write A =, B in case
A is indifferent to B, B C T(A), and for any A’ C A and B’ C B,
A ¢ T(A') implies T(A'’U B'Yn B = T(B').

We state two lemmas which allow us to compute ¢(G) for some ele-
mentary CDGs.

Lemma 1 Let G be the disjoint union of the subgraphs A and B.
i) If A= B, then t(G) = t(A)+ t(B) — 1, and
ii) if A=y B, then t(G) = (t(A) — 1)¢(B) + 1.

Proof: Suppose A =, B. There are #(B) transitive closures of G
in which no node of A is marked TRUE. There are {(4) — 1 transitive
closures of G in which at least one node in A is marked TRUE. Summing
the states of these mutually exclusive cases yields #(G) = ¢(A4)+t(B) -1
which proves i). Now, suppose A =,, B with v(G) the disjoint union of
A and B. In the one case where every node of A is TRUE, then every
node of B must be TRUE. The subgraph A has ¢(A) — 1 other transitive
closures, each of which can correspond to any of the ¢(B) transitive
closures of B. Summing we obtain ¢(G) = 1 + (#(A) — 1)¢{(B). a

Lemma 2 Let G be the disjoint union of the mutually independent sub-
graphs G1,Ga,...,Gy. Then t(G) = [T, UG)).

Proof: Since the subgraphs G1,Gy,...,G, are mutually independent,
any transitive closure of G is the union of transitive closures of the sub-
graphs Gy, Gy, ..., Gy. Thus, transitive closures of G occur in [T, #(G;)
ways.]

As an immediate consequence of Lemmas 1 and 2 we have:

Theorem 3 Let G be the disjoint union of A and B where A is the
disjoint union of the mutually independent sets Ay, A, . .., A, and where
B is the disjoint union of the mutually independent sets By, By, ..., Bn.

i) If A = B, then t(G) = [Tfy t(Ai) + [T7%1 £(A;) - 1, and
i) if A=y B, then t(G) = 1+ (T2 #(A:) — 1) x (TTRy #(B;)

We define two terms before stating our next result. By a directed
interval of length n we mean a directed graph with nodes vy, vs,...,v,
and with edges (v;, v;31) for 1 <7 < n. A lattice of r rows and ¢ columns
is a rectangular grid of r rows and ¢ columns of nodes »; ; in the plane
with edges of the form

(Vijs Vitr,;) and (Vi 5, Vi541)

with all arcs leading upwards or from left-to-right.

27

Theorem 4 Let G be a CDG:
i) if G is a cycle, then t(G) = 2,
ii) if G is a directed interval of length n, then t(G) =n + 1,

iii) if G is a lattice of r rows and ¢ columns, then (G) = ("+°), and

iv) if G is a full, regular, k-ary tree of depth n, then t(G) = ¢}(2),
where ¢i(z) = 1+ zF.

Proof: i) is trivial, and ii) is a special case of iii).

To prove iii) let G be a directed lattice with 7 rows and ¢ columns.
Then any transitive closure T of G is completely determined by the
count of marked nodes in the rows of G. For T a transitive closure,
let z; denote the number of marked nodes in the i** row of G. Then
0<z <23 < ...<2, <¢c For0<j<oec,letb; denote the
number of terms of {z;}/_, equal to j. Then 0 < b; for 0 < j < ¢,
and {b;}$_, completely determines {2;}/_,, so completely determines
T. But Y50 b; = 1,50 {(G) = ("F°).

To prove iv) we let T;, denote the full k-nary tree of depth n. Then
To consists of only a root node, and #(7p) = 2. For n > 0, Theorem 3 i)
implies the recurrence t(T,) = 1 + (#(Tn-1))*. Thus, t(Ty) = (¢%)*(2)
where the 0** power of ¢ is the identity function. a

Theorem 5 Let G be a CDG having no and-gates. Then t(G) = t(G")
where G' is the reversal graph v(G') = v(G) and (a,b) € v(G') iff (b,a) €
v(G).

Proof: Let G be a CDG and let V be any transitive closure of G.

Let z € V and let y € V = G — V. Then there is no path from
x to y, so there is no path in the reversal graph G’ from y to z. So,
V is a transitive closure of G'. Likewise, if W is a transitive closure of
G', then W = G — W is a transitive closure of G. This establishes a
bijection between transitive closures of G and transitive closures of G,
which proves the theorem. m]

We now apply our results to compute ¢(G) for the graphs in Figure
1. Let G be the graph in Figure 1A and let A; = {a,b}, A2 = {c,d}

28

and B = {e, f,g}. Then A; is a 2-cycle, A, is a directed interval of
length 2, and B is a binary tree of depth 1. By Theorem 4, {(A4;) = 2,
{(A2) = 3 and ¢(B) = 1+ 2% = 5. Note A, U Ay =, B. So, by Theorem
3,:(G)=(2%x3-1)x5+1=26.

Now let G be the graph in Figure 1B and let A = {a,b,¢,d} and
B = {e, f}. By Theorem 4, {(A) = (g) and #(B) = 3. Since A =, B it
follows from Lemma 1ii that {(G) =6+3~1=8.

4 Transitive Closure Algorithms

The algorithms presented here solve Problems 1-3 by breadth-first
searches with modifications that account for and-gates. Each algorithm
is linear, both in complexity and space requirements, in the number of
arcs of the graph. Our algorithms employ an abstract data structure
which we call dual stacks. The ADT dual stacks has the following oper-
ations:

o Initialize: Defines New_stack and Old_stack and sets stack pointers
to initial values

e Push_new_stack, Push_old_stack
e Pop._new_stack, Pop_old_stack

o Clear_new_stack, Clear.old_stack

Swap_stacks

o New_stack.size, Old_stack_size

In writing code for CDGs it is convenient to view and-gates as nodes
of the graph. And-gates are assigned an In_degree equal to the number of
their immediate ancestors, whereas nodes are assigned an In_degree of 1.
When a node (or and-gate) is marked TRUE then the In_degree of each
of that node’s children is decremented. So, after assigning the initial set
of conditions, nodes are marked TRUE whenever their In_degree is less
than 1.

Pseudo-code for obtaining the transitive closure of a set of conditions
(Problem 2) is as follows:

29

I.

5.

Read in CDG. This process results in the following:

. An array Exit_list that contains the out-arcs from

each node.

. Arrays In_degree and Out_degree.
. Designation of And_gates.
. Initialized attribute arrays:

Visited, And_gates and Initial_node.
Nodes of initial condition set pushed onto New_stack.

II. Call a recursive subroutine (ALL_CAUSED), pseudo-code
as follows:

ALL_CAUSED (void)

Swap.stacks

Clear_new_stack

while 0ld_stack_size > O
BEGIN

NODE = Pop_old_stack
for each CHILD of NODE

BEGIN
if not Initial_node(CHILD) and not Visited(CHILD)
BEGIN
if And_gate(CHILD)
BEGIN
decrement In_degree(CHILD)
if In_degree(CHILD) equals O
mark CHILD as Visited
push CHILD on New_stack
end if And_gate
else
mark CHILD as Visited
push CHILD on New_stack
end if not Visited
end for each CHILD

end while

30

if New_stack_size > O
call All1_CAUSED
else return

IITI. Print transitive closure (Initial and Visited nodes)

‘Algorithms for determining if a target node is in the transitive closure
of an initial set for CDG’s (Problem 1) and for determining the mini-
mal causal set for acyclic CDG’s (Problem 3) are obtained with minor
changes. C language source code and QuickBASIC source code for Prob-
lem 1 and example data are available by anonymous ftp from Michigan
Technological University on the host math.mtu.edu (141.219.151.128)in
the directory /pub/cdg.

We conclude by showing that minimal causal sets for influentially
acyclic CDG’s are unique.

Theorem 6 If G is an influentially acyclic CDG, then each transitive
closure of G is generated by a unique minimal causal set.

Proof: Let V be any transitive closure in G and suppose that A and B
are distinct minimal causal sets for V. Let A be A— B and B be B — A.
Because A and B are assumed to be minimal and distinct, neither A nor
B is empty. Let ag be any node in A. Since ag € V = T(B), it follows
that ap € T(B) for a non-void collection of subsets § of B. Among all
such subsets of B, let By be minimal. Observe that at least one node
bo € Bo must belong to B, for otherwise ag would be in the transitive
closure of a set of other nodes in A, and thus ap would not be part of
the minimal causal set A. Since ag € T(o) and since Bg is minimal with
respect to this property, there must exist by € By with ag & T(Bo— {bo}).
Thus by —; ag. Likewise, there exists a; € A with ay —; bg.

Repetition of the argument produces a sequence of nodes aq, bg, a;,
b1, ...in G where each term in the sequence is influentially implied by the
next. Since G is finite there must exist two terms of the sequence that
are the same. Thus, G contains an influential cycle. This contradiction
completes the proof. a

Note that Theorem 6 also holds if acyclic CDG’s are defined in the
usual sense, but with the stipulation that paths may include edges pass-
ing through and-gates. With either interpretation of acyclic graphs, the

31

proof of the theorem also shows that for acyclic CDG’s, the minimal
causal set is the set of orphans of the transitive closure where orphans
are defined to be nodes with no ancestors within the transitive closure.

References

[1] D. L. Iverson and F. A. Patterson-Hine, Object-Oriented Fault
Tree Models Applied to System Diagnosis, Proceedings of the SPIE
Applications of Artificial Intelligence VII, Orlando, FL, (April 19,
1990).

[2] D. L. Iverson, Automatic Translation of Digraph to Fault-Tree
Models, Proceedings of the 38-th Annual Reliability and Main-
tainability Symposium, Las Vegas, Nevada, (January 21-22, 1992),
©IEEE 1992.

[3] S. Warshall, A Theorem on Boolean Matrices, J. Assoc Computing
Machinery, 9 (1963), 11-12.

[4] H. S. Warren, A Modification of Warshall’s Algorithm for the Tran-
sitive Closure of Binary Relations, Comm. ACM, 18 (1975), 218-
220.

[5] I. J. Sacks, Digraph Matrix Analysis, IEEE Transactions on Relia-
bility, R-34 (1985), 437-446.

[6] R. W. Stevenson, J. G. Miller, and M. Austin, “Failure Environment
Analysis Tool (FEAT) Development Status”, American Institute of
Aeronautics and Astronautics, ©1991 by R. W. Stevenson, et al.

[7] S. A. Cook, The Complexity of Theorem Proving Procedures, Pro-
ceedings of the 3rd Annual ACM Symp. on Theory of Computing,
New York, (1982), 231-233.

32

