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Abstract
Let H and Y be fixed digraphs, and let & be a fixed homomor-
: phism of H to Y. The Homomorphism Factoring Problem with re-
| spect to (H, h,Y) is described as follows:
HFP(H,h,Y)
INSTANCE: A digraph G and a homomorphism gof G to Y.
QUESTION: Does there exist a homomorphism f of G to H
such that ko f = ¢g? That is, can the given homomorphism
¢ be factored into the composition of A and some homomor-
phism f of G to H?
We investigate the complexity of this problem and show that it differs
from that of the H-colouring problem, i.e., the decision problem “is
there a homomorphism of a given digraph G to the fixed digraph
H?”, and of restricted versions of this problem. We identify directed
‘ graphs H for which any homomorphism factoring problem involving
i H is solvable in polynomial time. By contrast, prove that for any
fixed undirected graph Y which is not a path on at most four vertices,
‘ there exists a fixed undirected graph H, which can be chosen to be
‘ either a tree or a cycle, and a fixed homomorphism & of H to Y
i such that HFP(H, %,Y) is NP-complete, and if Y is such a path then
HFP(H,k,Y) is polynomial.

JCMCC 25 (1997), pp. 33-53



1 Introduction

We use the definitions and notation of [5). All digraphs in this paper are
assumed to be finite and have no multiple arcs. Moreover, they are loopless
unless explicitly stated otherwise. Graphs are usually viewed as special
digraphs in which each undirected edge is regarded as two oppositely ori-
ented arcs, that is, as their equivalent digraph. Thus, definitions made for
digraphs implicitly hold for undirected graphs.

Suppose G,H and Y aresets,and h: H — Y and g: G — Y are func-
tions. A fundamental question is whether there exists a function f : G — H
such that h o f = g, that is, whether the function g can be factored into
the composition of the functions f and h. In this paper we consider this
question when G,H and Y are (the vertex-sets of) directed graphs, and
f,g, and h are digraph homomorphisms. This version of the question was
suggested by G. Sabbidussi and C. Tardif. Some definitions are required
before we can make a formal statement of the homomorphism factoring
problem.

Let G and H be digraphs. A homomorphism of G to H is a function
f : V(G) — V(H) such that f(u)f(v) € E(H) whenever uv € E(G). If
there is a homomorphism of G to H, we write G — H,or f: G — H to
emphasize the function f. If f : G — H is a homomorphism, we use f(G)
to denote the graph with vertex set f(V(G)) and edge set {f(z)f(y) : zy €
E(G)}. Note that f(G) is a subgraph of H. If f(G) = H, that is, both
f and the induced function from E(G) to E(H) are onto, then we say H
is a homomorphic image of G. Note, however, that given a graph G, all of
its homomorphic images are graphs as well; hence, a given homomorphism
problem can be meaningfully restricted to graphs.

A homomorphism of a graph G to K, is an n-colouring of G. For
this reason, a homomorphism of a digraph D to a digraph H is called an
H-colouring of D [20, 28]. If there is a homomorphism D — H, we say
that D is H-colourable. The literature contains many papers dealing with
homomorphisms of graphs and digraphs. See, for example, [7, 11, 13, 15,
18, 19, 20, 31, 12, 29, 30, 22]. Other references, more specific to the problem
we will consider, will be listed momentarily.

We now state the formal definition of the homomorphism factoring prob-
lem. Let H and Y be fixed digraphs and h : H — Y a fixed homomorphism.

HFP(H,h,Y): The homomorphism factoring problem with respect
to Hhand Y

INSTANCE: A digraph G and a homomorphismg:G— Y.
QUESTION: Does there exist a homomorphism f : G — H such
that ho f = g7

Each homomorphism factoring problem is clearly in NP.
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Homomorphism factoring problems can be viewed in terms of vertex-
coloured digraphs. We regard H as a digraph which has been Y-coloured
— that is, each vertex of H has been assigned a colour, which is a vertex of
Y, so that if u is adjacent to v in H, then the colour of u is adjacent to the
colour of v in Y. An instance of the problem consists of a digraph G and a
Y -colouring of G. The problem is to decide if there exists a homomorphism
of G to H which maps vertices of G to vertices of the same Y-colour in H
— that is, if there exists an H-colouring of G with the property that each
vertex z of G is coloured by a vertex z of H of the same Y-colour of z, with
respect to the given Y-colourings of G and H.

The complexity of deciding the existence of a homomorphism to a fixed
digraph H has received considerable attention in the literature [1, 2, 3, 4,
6, 7, 9, 10, 16, 17, 20, 21, 22, 23, 24, 25, 28, 32]. It is stated formally as
follows:

H-COL: The H-colouring problem
INSTANCE: A digraph G.
QUESTION: Does there exist a homomorphism G — H?

For graphs, Hell and Nesetfil [20] have shown that H-COL is polynomial
if H is bipartite, and NP-complete if H is non-bipartite. For digraphs,
although many families of digraphs have been completely classified, there
is, as yet, no such clear distinction (see [2, 3]).

Furedi, Griggs, and Kleitman [13] asked if knowing G is 3-colourable
makes C5-COL any easier. (Ks-colourability is a necessary condition for Cs-
colourability, since Cs — K3.) This question is answered in the negative in
(6], where it is proved that for any non-bipartite graph H, the H-colouring
problem remains NP-complete even if the input is restricted to graphs G
such that G — K, where k is fixed, unless Ky — H when the problem is
(trivially) polynomial.

A more general version of this problem is stated below. It is closely
related to, but different than, the homomorphism factoring problem. Let
H and Y be fixed digraphs.

RHP(H,Y): The restricted homomorphism problem with respect
toHand Y

INSTANCE: A digraph G and a homomorphismg:G—Y.
QUESTION: Does there exist a homomorphism f: G — H?

It is clear that if H-COL is polynomial, then so is RHP(H,Y) for any Y. In
a personal communication, Hell and Nesetfil conjectured that, for graphs,
RHP(H,Y) is NP-complete whenever H-COL is NP-complete, unless Y —
H in which case it is polynomial. That is, the information that the input
graph admits a homomorphism to a fixed graph Y is no help unless it makes
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the problem trivial. In [8] we present some tools and verify the conjecture
whenever H is a circulant graph and Y is any graph. We also give examples
which show the conjecture is not true if extended to digraphs.

If there exists a homomorphism h : H — Y, then the existence of a
homomorphism g : G — Y is necessary for the existence of a homomor-
phism f : G — H. The restricted homomorphism problem asks if f exists,
while the homomorphism factoring problem asks if f exists subject to the
condition that ho f = g.

Let Y be a directed graph which contains a vertex, say y, with a loop.
Any digraph G admits a homomorphism to Y: map all vertices of G to y.
Furthermore, if h : H — Y is chosen to be the constant homomorphism
h(z) = y for all z € V(H), then there exists a homomorphism f: G — H
such that ho f = g if, and only if, G — H. Hence, in this case, H-
COL, RHP(H,Y) and HFP(H, h,Y) are all polynomially equivalent. Given
this, and the fact that there is, as yet, no complete classification of H-
colouring problems for digraphs, it seems unlikely that we will be able to
determine the complexity of HFP(H,k,Y) for all digraphs H and Y, and
homomorphisms h: H — Y.

The following is a brief outline of the remainder of the paper. In section
two we describe some homomorphism factoring problems that are solv-
able in polynomial time. The main result of our study is in section three,
where we show that for“almost all” graphs Y, there exists a graph H and
a homomorphism k : H — Y, such that HFP(H,h,Y) is NP-complete.
The complexity of H-COL, RHP(H,Y) and HFP(H,h,Y) is compared in
section four. Finally, in section five, we examine a related class of graph
homomorphism problems.

2 Polynomial Problems

Let G and H be digraphs. A homomorphism r : G — H is called a
relraction if there exists a homomorphism ¢ : H — G such that roc is
the identity map on H. If there exists a retraction of G to H, then H is
called a retract of G. It follows from the definition that a retract of G is
also an induced subdigraph of G. A digraph is called a core if it is has no
proper subdigraph which is a retract. Every digraph G contains a unique
(up to isomorphism) subdigraph H which is both a core and a retract of G
(12, 30]; we call H the core of G.

Proposition 2.1 Suppose that h: H =Y is a retraction. For any homo-
morphism g : G — Y there ezists a homomorphism f : G — H such that

hof=g.
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Proof. Since A is a retraction, there exists ¢ : Y — H such that hocis
the identity mapon Y. Let f =cog. Thenhof=hocog=g. O

Corollary 2.2 Ifh : H — Y is a retraction, then HFP(H,h,Y) is polyno-
mial.

Corollary 2.3 Let H and Y be digraphs such that Y is the core of H.
Then for any homomorphism h : H — Y, HFP(H,h,Y) is polynomial.

Proof. Since Y is the core of H, any homomorphism A : H — Y is a
retraction. O

In contrast to Corollary 2.3, if h is not a retraction, it is possible for Y
to be a retract of H and HFP(H,k,Y) to be NP-complete. We will prove
this in Section 4.

We now describe several classes of graphs for which the homomorphism
factoring problem is polynomial regardless of the choice of Y and h (cf.
Theorem 3.3).

A graph G is called homomorphically full if every homomorphic image
of G is a subgraph G. Six equvialent characterizations of these graphs are
presented in [7], among them the statement that if / is a homomorphically
full graph and u and v are nonadjacent vertices of H, then either N(u) C
N(v) or N(v) C N(u).

Lemma 2.4 Let H be a homomorphically full graph, letY be any graph and
leth: H—Y be a homomorphism. For any homomorphismg : G - Y,
there exists a homomorphism f: G — H such that ho f = g if, and only

if, 9(V(G)) € h(V(H)).

Proof. Clearly if g(V(G)) € h(V(H)), then ho f # g for any f :
G — H. On the other hand, suppose g(V(G)) C h(V(H)). Since H is
homomorphically full, for any pair of non-adjacent vertices u and v in H,
either N(u) C N(v) or N(v) C N(u). Thus, A is a retraction of H to h(H).
The result now follows from Proposition 2.1. 4

Corollary 2.5 Let H be a homomorphically full graph, let Y be any graph
and leth: H — Y be a homomorphism. Then HFP(H,h,Y’) is polynomial

Proof. By Lemma 2.4, an instance (G,g) of HFP(H,h,Y) is a YES
instance if, and only if, g(V(G)) C h(V(H)). Q

An edge-coloured digraph, G, is a (k+1)-tuple (V(G), E1(G), E2(G), ...,
E(G)) where V(G) is the set of vertices and each E;(G) is a binary relation
on V(G) called the edges of colour i. Given two edge-coloured digraphs G
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and H, a homomorphism f : G — H is a function f : V(G) — V(H)
such that f(u)f(v) € E;(H) whenever uv € E;(G). Edge-coloured digraph
homomorphism problems have been studied in [10]. In particular, we define
problem H-colouring where H is a fixed edge-coloured digraph analogously
to the case where H is a fixed digraph.

Let G, H, and Y be digraphs and let (G, g) be an instance of HFP(H,
h,Y). The following construction transforms the digraphs G and H, using
the homomorphisms g and h, into edge-coloured digraphs G, and H., such
that (G, g) is a YES instance of HFP(H, 4,Y) if, and only if, G. — H..

Suppose Y and H are digraphs and h : H — Y is a homomorphism.
Let V(Y) = {yo,¥1,---,¥¢} and let C = V(Y) x V(Y); the set C is the
set of edge colours of our new edge-coloured digraph. We construct the
edge-coloured digraph H, as follows:

e V(H,)=V(H);

o for each arc uv of H where h(u) = y; and h(v) = y;, add the arc uv
in colour (y;,y;) to H..

Let G, H, and Y be digraphs and let h : H =Y and g : G — Y be
homomorphisms. It is easy to check that G. admits a homomorphism to
H_ if and only there exists a homomorphism f : G — H such that hof = g.
That is, if and only if (G, ¢) is a YES instance of HFP(H,h,Y). This gives
the following proposition.

Proposition 2.6 Let H,Y, h, and H. be defined as above. Then HFP(H,
h, Y') polynomially transforms to H.-colouring.

We now describe two edge-coloured digraph H-colouring problems that
are polynomial, and use them to obtain more polynomial homomorphism
factoring problems.

Let H be an edge-coloured digraph with the property that there is an
enumeration of the vertices ho, ki1, hz, ..., hy such that if (h;, h;) is an arc
of some colour, then |i —j|=1and fori=0,1,2,...n—1, there is at least
one arc between (h;, hiyy). If all arcs are the same colour, such a digraph
is a superdigraph of an oriented path and a subdigraph of the undirected
path of length n. Call such an edge-coloured digraph H a quasi-path. The
algorithms in [16] or in [9] can easily be modified to prove the following
theorem.

Theorem 2.7 [16, 9] Let H be an edge-coloured quasi-path. Then H-
colouring is polynomial.

The H-colouring problem is also polynomial when the edge-coloured
digraph H has the property that each vertex is incident with at most one
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in-arc of each edge colour and at most one out-arc of each edge colour.
This follows from the fact that when a vertex is mapped into such an
edge-coloured digraph, the image of each of its neighbours is uniquely de-
termined. Examples of such graphs and digraphs are K», directed paths,
and directed cycles. All of these are well known polynomial H-colouring
problems.

Let h : H — Y be a homomorphism from a digraph H to a digraph
Y. We say h is a local injection if, and only if, for each vertex v € V(H),
the function h is an injection on each of the in-neighbourhood and the
out-neighbourhood of v.

Two immediate corollaries of Proposition 2.6 and the two comments
above are given below.

Corollary 2.8 Let H and Y be digraphs such that H is a quasi-path (one
edge colour), and h : H — Y a homomorphism. Then HFP(H,h,Y) is
polynomial

Proof. The edge-coloured digraph H., constructed as above, is also a
quasi-path. Testing for the existence of a homomorphism to a quasi-path
is polynomial. G

Corollary 2.9 Let H andY be digraphs andh: H — Y a homomorphism.
If h is a local injection, then HFP(H,h,Y’) is polynomial.

Proof. Since h is one-to-one on the in-neighbourhood of each vertex of
H, each vertex of H,, constructed as above, has at most one in-arc of each
edge colour. Similarly, each vertex of H. has at most out-arc of each edge
colour. Therefore, H.-colouring is polynomial and hence HFP(H,A,Y) is
polynomial. O

3 NP-completeness Results

In this section we will show that for “almost all” graphs Y, there exists a
graph H and a homomorphism h : H — Y such that HFP(H,h,Y) is NP-
complete, and otherwise the problem is always polynomial (see Theorem
3.3). In fact, H can be chosen to be a tree or a cycle. This result also allows
construction of a new class of H-colouring problems which are solvable in
polynomial time.

Recall that we denote the path of length n by P,;,. We assume throughout
that V(B,) = {0,1,...,n} and E(P,) = {i(i + 1);i = 0,1,...,n — 1}.
Similarly, we denote by C, the cycle of length n, and assume V(C,) =
{1,2,...,n} and E(P,) = {i(i +1);i=1,...,n -1} U {nl}.
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S N = O

Figure 1: An example of HFP indicator construction

'We now introduce the principal tool we use for proving NP-completeness
of homomorphism factoring problems. It is a variation of the indicator
construction in [20], which has proved to be a powerful tool for constructing
polynomial reductions between digraph homomorphism problems [1, 2, 4,
6, 10, 24, 25, 26).

Let H and Y be two digraphs and let A : H — Y be a homomorphism.
Let I be a digraph with distinguished vertices i and 7, and let ¢t : I — Y
be a homomorphism. The indicator construction with respect to (I,i,j,t)
transforms H and Y into two new digraphs H# and Y #, either of which
may contain loops. The vertex-set of H# is V(H) and uv € E(H#) if, and
only if, there is a homomorphism r : I — H such that r(i) = u, r(j) = v,
and hor =t. The vertex-set of Y# is V(Y) and the edge-set is the single
arc t(3)t(). In cases of interest to us this arc will be a loop.

Consider the example in Figure 1. The graph H is Cy and the graph Y
is Cs. The numbers beside the vertices in H describe the homomorphism
h: H —Y; all vertices labeled with 0 are mapped to the vertex labeled 0
in Y, etc. Similarly, the graph I is P3 and the homomorphism ¢ : I — Y is
also marked in the figure. The pair uv is an arc of H# if, and only if, there
is a homomorphism r : I — H with { mapping to u (labeled with 0 - so
that hor(i) = t(¢)), j mapping to v (labeled with 0), and each other vertex
z of I mapping to a vertex y of H with h(y) = t(z), i.e., to a vertex having
the same label (this is requied in order that k o r(z) = ¢(z)). The digraph
Y# contains the single arc from (i) = 0 to t(j) = 0. Note that even if one
begins with graphs the result of the construction will be digraphs which are
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Figure 2: The construction of #G from G.

not necessarily graphs.

An important point is that the homomorphism A : H — Y is also a
homomorphism from H# to Y#. To see this, note that given an arc uv of
H# there is homomorphism r : I — H such that r({) = u, r(j) = v, and
hor=t Nowt:I oY, t(i)=(hor)(i)=h(u), and t(j) = (hor)(j) =
h(v); therefore, h(u)h(v) is an arc in Y#. Hence, HFP(H# h,Y#)is a
well-defined problem. )

Lemma 3.1 Let H andY be digraphs andh : H —'Y be a homomorphism.
Let I be a digraph with distinguished vertices i and j andt : I — Y be a
homomorphism. Let H* and Y# be the result of the indicator construction
with respect to (I,4,5,t). Then HFP(H¥, h,Y#) polynomially transforms
to HFP(H,h)Y).

Proof. Let (G,g) be an instance of HFP(H# h,Y#), where g : G —
Y# is a homomorphism. Let #G be the digraph obtained by taking a copy
of V(G) and for each arc uv € E(G) putting a copy of I in #G and identi-
fying ¢ with u and j with v. See Figure 2 for an example. The transformed
instance of HFP(H,h,Y) is the pair (#G, #g), where the homomorphism
#g: #G — Y is defined as follows: (recall V(Y) = V(Y#))

_ v) ifveV(G
*o(v) = { tg((v) otherwis(e.)

The construction can clearly be accomplished in polynomial time.
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To see that #g is a homomorphism consider an arc uv € E(¥G). (In
fact, uv belongs to some copy of I.) If neither u nor v belong to V(G),
then #g(u)#g(v) = t(u)t(v) € E(Y) since t : I — Y is a homomorphism.
If u € V(G), then #g(u) = g(u) = (i), since g : G — Y# and the only
arc in Y# is t(i)t(j). If v € V(G), then similarily #¢(v) = (j) and hence,
#g(u)#g(v) = t(i)t(j) € E(Y). If v ¢ V(G), then v belongs to some copy
of I and #g(u)*g(v) = t(i)t(v) € E(Y). If u ¢ V(G) and v € V(G), the
argument is similar.

Finally, we show that there exists a homomorphism f : G — H# such
that ho f = g if, and only if, there exists a homomorphism #f: #G — H
such that ho #f = #g,

Suppose there exists f : G — H# such that ho f = g. For each arc zy
of H#, fix a homomorphism rzy : I — H such that r,y(i) = z, rzy(§) = ¥,
and horyy =t. Define #f:V(#G) — V(H) by

f(v) if v € V(G)
#f(v) =< Ty@)y)(v) if v belongs to the copy of I in #¥G

that replaced the edge zy € E(G).

A similar argument to the above for # g shows that # f is a homomorphism.
Further, if v € V(G), then ho #f(v) = ho f(v) = g(v) = #g¢(v), and if
v belongs to the copy of I in #G that replaced the edge zy € E(G), then
ho#f(v)=ho i) ) (V) = t(v) = #9(v).

On the other hand, suppose there exists a homomorphism #f : #G —
H such that ho #f = #g. Define f : G — H# by f(v) = #f(v), for
all v € V(G). Then f(z)f(y) = #f(z) # f(y), and we claim this is an arc
of H#. To see this, recall the each arc zy € E(G) was replaced, in #G,
by a copy I, of I. Hence, #f | Ly is a homomorphism of I to H, and so

#f(z)#f(y) is an arc of H#. O

Let k,m > 1 be integers. We define Si m to be the generalized star
obtained from m copies of P, by choosing exactly one distinguished vertex
in each copy of Py, either vertex 0 or vertex k, and then identifying all these
distinguished vertices. We refer to the copies of P; as branches of Sk m.

Suppose ¢ is a homomorphism of P; to a graph Y such that ¢(0) = t(k).
Then ¢ induces a natural homomorphism s of Sg,m to Y: map each copy of
Py in Sp m to Y using t.

A good indicator for a graph Y is a quadruple (P%,0, k,t), where ¢ is
a homomorphism of P to Y such that ¢(0) = t(k), and which also has
following property: (*) If s is the natural homomorphism (induced by t) of
Sk,m to Y, and r is a homomorphism of Pi to Si , such that sor = ¢, then
r maps P, identically onto some branch of Si ,,,. At first glance, property
(*) may seem strange, but it turns out to be exactly what we need to prove
our main result.
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Lemma 3.2 There erists a good indicalor for each connecled graph Y ¢
{POsPI)P2’P3}o

Proof. We construct a good indicator for Y in each of the following
three cases

Case 1: Y contains a cycle. Let C = co,¢1,...,64-1,c0 be acyclein Y.
Note that n > 3. Define ¢t : P, — Y by ¢(k) = ¢t (mod n), k£ =0,1,...,n.
The quadruple (P,,0,n,t) is a good indicator for Y if condition (*) is
satisfied. Let r : P, — Sp ;m be a homomorphism such that sor = ¢, where
s is the natural homomorphism, defined as above. Then, since s o 7(i) =
Ci (mod n), for all 4, 0 < i< n, it follows that (*) holds.

Case 2: Y contains a vertex of degree at least three. Let y be a
vertex in Y with neighbours u,v,w. Let ¢ : Ps — Y be defined by:

() =t2)=t4) =6 = y
t(l) = u
t3) = v
t(5) = w

Again, (Pg,0,6,t) is a good indicator if (*) is satisfied. Consider the
natural homomorphism s : Sg,m — Y. There are m vertices of S¢ ,, mapped
to v by s. Hence any homomorphism r : Ps — Sgm, such that sor =1,
must map vertex 3 of Ps to one of these vertices. Such a mapping has a
unique extension to a homomorphism of Ps to Sg ., under the condition
sor =t. Hence, (*) is satisfied.

Case 3: Y is a path of length at least four. Label the first five
vertices of such a path with yo,y1,¥2, ¥3,y4. Define a homomorphism ¢ :
P12 =Y so that for i =0,1,...,12, t(i) equals yo, y1, ¥2, ¥1, Y2, Y3, ¥4,
Y3, Y2, Y3y Y2, Y1, Yo, respe‘:tively'

Similarly to the previous case (by considering images of vertex 6), any
homomorphism r : Pj3 — Siam such that sor =t has a unique extention
to a homomorphism of Py3 to Siam. It follows that (*) is satisfied, and
(P12,0,12,¢) is a good indicator.

The result now follows, since any connected graph without a cycle, with-
out a vertex of degree at least three, and without a path of length at least
four must be one of Py, P, P2, or P3. O

Theorem 3.3 For eack connected graph Y & {Po, Py, P2, P3}, there ezists
a graph H and a homomorphism h : H — Y such that HFP(H,h,Y) is
NP-complete. For each graph Y € {Po, Py, P, P3} and for all graphs H
and all homomorphisms h: H — Y, HFP(H,h,Y) is polynomial.
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Proof. First suppose Y is a connected graph and is not one of Py, P, Ps,
or P3. By Lemma 3.2 there exists a good indicator (P%,0,k,t) for Y.

Let D be a digraph for which D-colouring is NP-complete. Construct
the graph H by beginning with a copy D and replacing each arc uv € E(D)
with a copy of Py, identifying 0 with u and k with v. There is a natural
homomorphism h of H to Y: map each of these copies of P, to Y using ¢.

Consider HFP(H#, h,Y#), the result of the indicator construction with
respect to (Py,0,k,t) on HFP(H,h,Y). Since t(0) = ¢(k), the single arc in
the digraph Y# is a loop.

We claim that H# consists of a digraph isomorphic to D together with
several isolated vertices. This follows from the fact that (P,0,k,t) is a
good indicator. Clearly each arc of D gives rise to an arc in H#. We must
prove that H# has no other arcs.

Let r : P, — H be a homomorphism such that ko r = ¢. The function
r must map Pj into one or more copies of P, that replaced arcs of D.
However, in the latter case, these several copies of P, must all share a
common vertex. Since the diameter of r(P:) is at most k (because r is
homomorphism), r can be viewed as a homomorphism of P; to a copy of
Sk,m, for some positive integer m. Condition (*) asserts that r maps P,
identically onto some branch of Sk, i.e., there are no other arcs in H#.

Since Y# is a loop, HFP(H#,h,Y#) is polynomially equivalent to H#-
colouring (see the comment in the introduction). Moreover, since we can
assume any instance of H#-colouring is connected (and trivally contains
at least one arc), H#-colouring is polynomially equivalent to D-colouring.
Therefore, HFP(H,h,Y) is NP-complete.

Now suppose that Y € {Py, P, P,,P;}. Let H be a graph. Since a
graph G admits a homomorphism to a connected graph Y if, and only if,
each connected components of G admits a homomorphism to Y, we assume
in what follows that the input graph G is connected. Given a graph G
which is not connected, one can apply the algorithms described below to
each connected component of G.

An obvious necessary condition for (G,g) to be a YES instance of
HFP(H,h,Y) is that g(V(G)) C h(V(H')) for some connected component
H' of H. Suppose Y = Py, P, or P;, and h : H — Y is a homomorphism.
A homomorphism of a connected graph F onto Py, P, or P, must be a
retraction. Therefore, for each connected component H' of H, h is a re-
traction of H' to h(H’). Hence, (G,g) is a YES instance if, and only if,
9(V(G)) € h(V(H")) for some connected component H' of H.

Now suppose Y = P3, h is a homomorphism k : H — Y and (G, g) is
an instance of HFP(H,h,Y). If g is not onto Y, then as above (G,g) is a
YES instance if, and only if, g(G) C h(H’) for some connected component
H' of H. Therefore, assume g(G) = Y. Further suppose h(H') = Y for
some connected component H’' of H; otherwise, (G, g) is a NO instance.



Let W : (v = po)p1...(pn = u) be a shortest path in H from a vertex
v, such that h(v) = 0, to a vertex u, such that h(u) = 3. Since W is a
shortest path, no internal vertex of W is mapped to 0 or to 3. The vertices
in W have the consecutive images under h: 0,1,2,1, 2,1,2,...,1,2,3. It
is straightforward to check that there is a retraction r of H to W (recall
that W is a subgraph of H) such that hor = h. Let @ be the shortest
path in G between z and y where the  and y are taken over all pairs z
and y such that g(z) = 0 and g(y) = 3. This is the Shortest Pairs Problem,
which is polynomial [14]. Again there is a retraction ¢ from G to @ such
that got = g. Finally, (G,g) is a YES instance of HFP(H,4,Y) if, and
only if, there exists f : @ — P such that ho f = g. This is true if, and only
if, the length of Q is greater than or equal to the length of W. O

The above theorem applies only when Y is connected. However, the
answer for an instance (G,g) of HFP(H,A,Y) is YES if, and only if, the
answer is YES for each instance consisting of a connected component of G
and the restriction of g to that component. Since a homomorphic image
of a connected graph is connected, each of these instances involve a single
connected component of Y. Let Y7,Y5,...,Y, be the connected components
of Y, and for i = 1,2,...,n,, let H; be the subgraph of H induced by
h~Y(V(Y;)). Further, let h; be the restriction of h to V(H;). Note that
h; is a homomorphism of H; to Y;. The above discussion implies that
HFP(H,h,Y) is polynomial if each problem HFP(H;, h;,Y;) is polynomial,
and is NP-complete if some problem HFP(Hj, h;,Y;) is NP-complete. It is
therefore sufficient to consider homomorphism factoring problems in which
that graph Y is connected.

In the proof of Theorem 3.3 the result of the indicator construction,
H#, is always a digraph isomorphic to D together with some isolated ver-
tices. Since there exist bipartite digraphs, D, for which D-colouring is
NP-complete, we have the following result.

Corollary 3.4 Let Y be a connecled graph and suppose that Y & {Po,
Py, P, P;}. Then there ezists a bipartite graph H and a homomorphism
h:H —Y such that HFP(H,h,Y) is NP-complete.

The following two corollaries suggest that even a restriction of H to
special classes of graphs does not yield polynomial homomorphism fac-
toring problems. There exist oriented trees, T, such that T-colouring is
NP-complete, [16] and [22]. Also, there exists oriented cycles, C, such that
C-colouring is NP-complete, [23]. Since a good indicator is a path, if the
digraph D is choosen in the proof of Theorem 3.3 to be an oriented tree
(resp. an oriented cycle), then H is also a tree (resp. a cycle).

Corollary 3.5 Let Y be a connected graph and suppose that Y & {P,, P,
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Py, P3}. Then there ezisls a tree H and a homomorphism h: H — Y such
that HFP(H,h,Y) is NP-complete.

Corollary 3.6 Let Y be a connected graph and suppose that’Y & {P,, P,
P,, P3}. Then there ezists a cycle H and a homomorphism h : H - Y
such that HFP(H,h,Y) is NP-complete.

Theorem 3.3 is stated for graphs. However, the polynomial algorithms
presented in the final case works when Y is a directed path of length at
most 3. This gives the following.

Corollary 3.7 LetY be a directed path of length 0, 1, 2, or 8. Then for all
digraphs H and all homomorphisms h: H — Y, the problem HFP(H,h,Y)
is polynomial.

Using the above corollary and the following lemma, we have a new class
of H-colouring problems that are all polynomial. This result has also been
announced by Feder and by Hell, Nesetfil, and Zhu. Let Hom(G,Y) denote
the set of all homomorphisms from G to Y.

Lemma 3.8 Let H and Y be digraphs and h : H — Y a homomorphism
such that HFP(H,h,Y) is polynomial. Suppose that Y has the property
that for any digraph G the set Hom(G,Y') can be constructed in polynomial
time. Then H-colouring is polynomial.

Proof. We produce a polynomial time Turing reduction of H-colouring
to HFP(H,h,Y). Let G be an instance of H-colouring. Construct Hom(G,
Y). Denote the elements of Hom(G,Y) by g1,92,...,9m. For each g;, test
whether (G, g;) is a YES instance of HFP(H, h,Y). Since Hom(G,Y) can
be constructed in polynomial time and HFP(H,h,Y) is polynomial, this
process is a Turing reduction of H-colouring to HFP(H,A,Y).

We claim there exists an 7 (1 < i < m) such that (G,g¢;) is a YES
instance of HFP(H, h,Y) if and only if G is a YES instance of H-colouring.
On the one hand, the existence of such an i implies there exists f : G — H
such that h o f = g;. Trivially, G is a YES instance of H-colouring. On
the other hand, if G is a YES instance of H-colouring, then there exists
f :G — H. The homomorphism ho f : G — Y must be g; for some i since
Hom(G,Y) contains all homomorphisms from G to Y. Hence, (G,g;) is a
YES instance of HFP(H,A,Y). O

Corollary 3.9 Let H be a digraph such that H admils a homomorphism
to a directed path of length at most three. Then H-colouring is polynomial.
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Proof. Let Y be a directed path of length k, where k¥ < 3, and let
h : H — Y be a homomorphism. By the Corollary 3.7, HFP(H,h,Y)
is polynomial. It is easy to check that given any digraph G, there exist
at most k¥ homomorphisms from G to Y. Since Y is a fixed path, k is a
constant. Hence, by Lemma 3.8, H-colouring is polynomial. O

We conclude this Section by showing that if h is not a retraction, it is
possible for Y to be a retract of H and HFP(H,h,Y) NP-complete. Let
W & {P, P1, P;, Ps} be a digraph which is a not a core. By Theorem
3.3 there exists a digraph Z and a homomorphism ¢ : Z — W such that
HFP(Z,¢,W) is NP-complete. Let W’ be a digraph isomorphic to the core
of W, and set H = ZUW UW’ (disjoint union) and Y = WU W’ (disjoint
union). We claim that HFP(H,h,Y) is NP-complete. Since Z — W, the
digraph Y is a retract of H. Let h be the extension of ¢ to H obtained by
mapping the copy of W U W’ in H onto the copy of W’ in Y. It remains
to show that HFP(H, h,Y) is NP-complete. This follows from Proposition
3.10 below, which gives a version of proof by restriction for homomorphism
factoring problems.

Proposition 3.10 Let H be a digraph and h : H — Y a homomor-
phism. Suppose H' is an induced subgraph of H and Y' = h(H’) is an
induced subgraph of Y. Then HFP(H' /k'Y') polynomially transforms to
HFP(H,h,Y), where b’ denotes the restriction of h to V(H').

Proof. Let (G, g) be an instance of HFP(H', ', Y"). The same ordered
pair is the transformed instance of HFP(H, h, Y). The result is clear, since
a homomorphism f : G — H such that ho f = g also satisfies h'o f = ¢. O

By the Proposition, HFP(Z, ¢, W) polynomially transforms to HFP(H,
h, Y). Thus the latter problem is NP-complete, as claimed.

4 Comparison of Complexity

Consider a sequence cy_coL,CRHP(H,Y): CHFP(H,hY), Where c denotes
the complexity of problem II. If each element of the sequence is “poly-
nomial” or “NP-complete”, then there are eight possible sequences. We
investigate here which of these are possible.

In the introduction we remarked that if the directed graph Y contains
a vertex y with a loop, and A : H — Y is the constant homomorphism
h(z) = y for all z € V(H), then H-COL, RHP(H,Y) and HFP(H,h,Y)
are all polynomially equivalent. Since H-COL can be polynomial or NP-
complete, this takes care of the two sequences with identical terms. (Note
that there are also examples in which Y has no loops.)
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Consider the sequence NP-complete, polynomial, NP-complete. To see
that this is possible, we proceed as follows: Let H' be the graph consisting
of a fifteen-cycle and a twenty-cycle joined at vertex 0, and Y/ = Cs. Let
R’ : H — Y’ be the homomorphism which takes vertex ¢ of each cycle in H
to vertex ¢ (mod 5) of Y. Let ¢ be the homomorphism of P5 to Cs defined
by t(¢) = i (mod 5). The result of applying the indicator construction with
respect to (Ps,0,5,t) to H',h’, and Y’ is the digraph H# consisting of a
directed four-cycle and a directed three-cycle joined at a vertex, and the
digraph Y# which has a loop. Thus, HFP(H# k', Y#) is polynomially
equivalent to H#-COL. The latter problem is proved to be NP-complete in
[2]. Hence, HFP(H',h',Y") is also NP-complete. Now let H be the graph
H' UCs, and let Y = Y/ UC3. Then H-COL is NP-complete {20], and
since Y — H, RHP(H,Y) is polynomial. Let h be the extension of k' to a
homomorphism of H to Y that maps the copy of Cs in H to the copy of
C3 in Y. Then HFP(H,h,Y) is NP-complete by Proposition 3.10.

We now show that the sequence NP-complete, NP-complete, polynomial
is possible. For any positive integer k, C2r4+1-COL is NP-complete [20]. It
is proved in [26], and is implicit in [29] that for k > 2, RHP(Cat41, Cak-1)
is NP-complete. On the other hand, we have the following:

Theorem 4.1 For any homomorphism h : Cor41 — Cor—1, HFP(Coky1,
h, Cai—-1) is polynomial.

Proof. Let the vertices of Corqq be {I1,12,...,{2k41} and the vertices
of Cor—1 be {s1,s2,..., sax—1}. There is essentially one homomorphism
of Car41 to Cor—1, so without loss of generality we can assume h is the
following homomorphism:

h(ll) = h(lzk) = &
h(lak—1) = h(lak41) = s
h(l) = s for 2< i< 2k—2

Let (G, g) be an instance of HFP(C2k41,h,Ca2k-1). Let A C V(G) be
the vertices that are mapped by g to sg;_; and are adjacent to a vertex
mapped to sap—2. Similarily, let B C V(G) be the vertices that are mapped
by g to s; and are adjacent to a vertex mapped to s3.

We claim that there exists a homomorphism f : G — Caz41 such that
f oh = g if and only if there is no pair of vertices a € A and b € B such
that ab € E(G).

Suppose that such a homomorphism f and vertices a and b as above
exist. By the definition of A there exists 2 € V(G) such that az € E(G) and
9(2) = s2k—2. Since l2x_2 is the unique vertex of Car41 that is mapped by A
to Sok—2, we have f(z) = lap—_2. It follows that f(a) = lpx_1, and similarly,
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f(b) = 1,. However, l;_; and l; are not adjacent in Cyi41; hence, f is not
a homomorphism, a contradiction.

On the other hand, assume the vertices @ and b do not exist. Then the
following function is the desired homomorphism f:

l; ifguy=s;for2<i<2k -2

12k+1 if g(u) = 8$2k-1 and u ¢ A
flu) = lop-1 fueA

Ik ifg(uy=s1andu g B

11 ifueB

a

If H-COL is polynomial, then clearly so is RHP(H,Y) for any digraph
Y. Hence the two sequences beginning polynomial, NP-complete are im-
possible.

Consider the sequence polynomial, polynomial, NP-complete. That
such a sequence is possible follows from Theorem 3.3, with Y = P;, say.
(Since Y is bipartite and H — Y, H is also bipartite; thus, both H-COL
and RHP(H,Y’) are polynomial.)

The final sequence is NP-complete, polynomial, polynomial. This se-
quence can be realized as follows: Let H be a non-bipartite core. Both
RHP(H,H) and HFP(H,h, H), where h : H — H is any homomorphism,
are trivially polynomial; whereas, H-COL is NP-complete.

5 The Two Homomorphism Problem

In this final section, we examine a slightly different homomorphism fac-
torization problem. In some sense this problem is more restricted than
those studied in the rest of this paper, yet again almost all problems are
NP-complete.

Let Y be a fixed digraph:

THP(Y): The Two Homomorphism Problem for Y.

INSTANCE: A digraph H and a two homomorphisms h; : H - Y
and hp : H-Y.

QUESTION: Does there exist a homomorphism f : H — H such
that hy o f = hy?

We now state our main result for the Two Homomorphism Problem.

Theorem 5.1 Let Y a connected graph and Y ¢ {Po, P\, P2, P3}. Then
THP(Y) is NP-complete.
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Proof. By Corollary 3.4, there exists a bipartite graph H and a ho-
momorphism h : H — Y such that HFP(H,h,Y) is NP-complete. Since
any instance of HFP(H, h,Y) containing a non-bipartite graph G can easily
be determined to be a NO instance (since G 4 H), it suffices to restrict
attention to bipartite input graphs. We can also assume G contains at least
one edge. We present a polynomial transformation of (this restriction of)
HFP(H, h,Y) to THP(Y).

Let (G, g) be an instance of HFP(H, h,Y), where G is bipartite and has
at least one edge.

Let yoy; be an edge of Y. We begin by examining two special cases.
First, if g(G) is yoy1, then (G, g) is a YES instance of HFP(H, 4,Y) if and
only if H contains an edge uv such that h(u) = yo and h(v) = y,. Second,
if h(H) is yoy1, then (G,g) is a YES instance of HFP(H,h,Y’) if and only
if g(G) is the edge yoy1. Therefore, assume neither g(G) nor h(H) is yoy:.

Let H' be the union of G and H. Let f; be the homomorphism that
maps H to yoy; and is equal to ¢ on G. Similarly, let fo be the homo-
morphism that maps G to yoy; and is equal to h on H. The instance
(H', f1, f2) is a YES instance of THP(Y) if and only if (G,g) is a YES
instance of HFP(H, h,Y).

Suppose (G, g) is a YES instance of HFP(H,h,Y). This implies there
is f : G — H such that ho f = g. Let uv be an edge in G such that
f2(u) = yo and fa(v) = y1. Let t be the homomorphism H’ to H' defined

by:
f(z) ifzeV(G)
t(z)=< u ifz € V(H) and fi(z) = yo
v ifz € V(H) and fi(z) =

It is easy to check that foot = fi.

On the other hand, suppose (H’, f}, f2) is a YES instance of THP(Y).
Let t : H' — H' be a homomorphism such that fo ot = f;. Consider
t restricted to G. This is a homomorphism from G to H’'. Either {(G)
is a subgraph of G or {(G) is a subgraph of H. Since f1(G) is not yoy
and f2(G) is yoy1, it must be the case that ¢(G) is contained in H. By
restricting t to G, fi to G and f, to H, we have hot = g. Therefore, (G, g)
is a YES instance of HFP(H,A4,Y). O
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