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Abstract

The harmonious chromatic number of a graph G, denoted h(G), is
the smallest number of colors needed to color the vertices of G so that
adjacent vertices receive different colors and no two edges have the same
pair of colors represented at their endvertices. The mired harmonious
Ramsey number H(a,b) is defined to be the smallest integer p such that if
a graph G has p vertices, then either 2(G) > a or a(G) > b. For certain
values of a and b, we determine the exact value of H(a,b). In some other
cases, we are able to determine upper and lower bounds for H(a,b).

Given a graph G. let |G| denote the number of vertices. ¢(G) the number of
edges, a(G) the (vertex) independence number, cl(G) the clique number, A(G)
the maximum vertex-degree, w(G) the number of components, x1(G) the edge
chromatic number and x2(G) the total chromatic number of G. Also, let G
denote the complement of G: The Ramsey number R(a.b) is defined as

R(a,b) = inf{p: |G| = p=> cl(G) > a or a(G) > b},

that is, R(a, b) is the smallest integer p such that any graph on p vertices either
has a complete subgraph with a vertices or an independent set of b vertices. One
way to generalize this concept is as follows: let f and g be functions from the
set of all graphs to the nonnegative integers. Then the mized Ramsey number
R(f.g;a.b) is defined by

R(f.gia,b)=inf{p:|Gl=p = f(G) > aor g(G) > b}.

When no confusion results, f and g are often suppressed in the notation.
Achuthan(1], Fink[4] and Wang[11] studied the mixed Ramsey numbers for the
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pair of functions y2(G) and A(G) and Lesniak-Foster, Polimeni and Vanderjagt[6)]
investigated them for the pair y,(G) and a(G) and for the pair x,(G) and A(G).

In this paper we study the mixed Ramsey numbers for the harmonious chro-
matic number and the independence number. The harmonious chromatic num-
ber of a graph G. denoted A((G). is the smallest number of colors needed to color
the vertices of GG so that adjacent vertices receive different colors and no pair
of colors occurs on more than one edge. For background on this parameter, see
(7] and [12]. We define the mized harmonious Ramsey number H(a.b) to be
H(a,b) = R(h,«:a.b), that is,

H(a,b)=inf{p:|G|=p=> h(G) > a or a(G) > b}.

We will derive several upper bounds, lower bounds, and exact formulas for
H(a,b) for various values of a and b.

We have not been able to find a general formula for H(a,b). However,
formulas have been found for special cases, as provided in the next several
theorems. The proof of the first of these is straightforward and will be omitted.

Theor_em 1 H(l,n)=H(n,1)=1 and H(2.n) = H(n,2) = n, forn > 1.

Theorem 2 I[fa > 3 and b> ( “;1 ) thenH(a,b):b-!—( a1 )

a=(3").

and let G consist of 4 independent edges together with b — A — 1 additional
independent vertices. Then |G|=A+b-1, A(G)=a—1, and a(G) = b~ 1,
so H(a,b) > A+b.

Now, let G be a graph with A + b vertices, and suppose h{(G) < a— 1. Then
¢(G) € A. and so

Proof Let

a(G) 2 w(G) 2 p(G) — 9(G) 2 b.

Therefore. H(a,b) < A+b. [ |

To prove our next theorem. two background results will be needed. Turdn[10}
proved the following fundamental result, which gives a lower bound for the
number of edges in a graph in terms of its order and its independence number:

Theorem 3 (Turan's Theorem) Let G be a graph with p vertices and with

o(G) < A. Then
2o (3] -3 1812 &)

Let 7(G) denote the maximum number of edge-disjoint triangles in a graph G.
Schénheim(9] obtained an explicit formula for 7(Ky,):
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Theorem 4

e 5[5

ezcept when m =5 (mod 6), in which case the formula is less by 1.

Theorem 5 Let a and b be positive integers, a > 3, that satisfy one of the
following conditions:

l.a=24 (mod6)and( 1)-2r(1{_1)+l<b<( 21)

2
a-— ; . a—-1
2.e¢=0,1,3,5 (modﬁ)and( 2 )—Zr(lia_1)5b§< 2 )
Then (

H(a,b) = 3

Proof Since the formula is easily verified for 3 < a < 6, we can assume that
a > 7. Throughout the proof, let

= (%)

Fla,b) = I'i#] .

We first show that H(e,b) > F(a.b). Let p := F(a,b) — 1 and let G :=
(36 -3 —-p)R2U(p—2b+2)K3. Then a(G) =b~1and |Gl = p. Also ¢(G) < A
and

and let

p—20+2= [AT4] < 7(Ka-1).

Hence 2(G) < a — 1, and so H(a,b) > F(a,b).

We now show that H(a,b) < F(a,b). Let p := F(a.b) and let G be any
graph with |G| = p and a(G) < b— 1. If < 1A+ 2, then

pP_|_
= =3.

4

Otherwise, if b > 1.4 + 2, we see that

p
—_— =2
[ 6—1]




In either case, by Theorem 3, we have that

(") 2 e
p b—-1 P h—1 p 2
2 p'.b-l_‘- 3 lb—lJ_ 2 lb—lJ

> A+1,

and therefore, h((G) > a. Hence, H(a.b) < F(a,b), and the result holds. |
For some other values of a and b, the next theorem gives a lower bound for

H(a.b).

Theorem 6 Ifa.b>3 anda > ( b-2-1 )+1, then

H(a,b)Za-i-(b;l). (1)

Proof Let A := I.E‘bf;;'lJ B := ( bZI ). and

G = {b-1-(a+B-1)+(b-1)A} R4
U {a+B-1-(b-1)A}Kas-

Observe that A > b — 2. Let vi,v},...,vj_, be any b — 2 vertices of the ith
component of G. For 1 < i < j < b~2, color L; and v{“ with color

(i-l)b—(";l )+j—.i+'2.

Finally, color all other vertices with distinct colors. This is easily seen to be a
harmonious coloring of G, and so

b=2

hG)<a+B-1-) k=a-1

k=1

Also, a(G) = b -1 and |G| = a + B — 1. Therefore, H(a,b) > a+ B. |
In general, inequality (1) cannot be replaced by equality, as will be shown

later in this paper. However, for certain values, the inequality is sharp. To
prove this, we need two lemmas. The proof of the first is straightforward and
will be omitted.

Lemma 1 For any gravh G. o(G) > p(G) — ( h(2G') ) - |
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Lemma 2 If |G| = 8 and h(G) = 4, then a(G) > 4. Moreover, if u is a vertex
such that (G —u) < 3, then there is another vertez v with the same color as u
that 1s in a triangle.

Proof Since h(G) = 4. G has at most 6 edges. By a complete enumeration
of all graphs with at most 6 edges. the lemma is easily verified.

Theorem 7 We have, for small b, the following formulas for H{u.b):
1. Fora>3, H(a,3)=a+1.
2 Fora>4, H(a,4)=a+ 3.
3. Fora>7, H(a.3)=a+6.

Proof We will prove only the last part, since the others follow similarly.
Let a > 7. By Theorem 6, H(a,5) > e+ 6. Let G be a graph with a + 6
vertices, and assume that G has a harmonious coloring with a ~ 1 colors. Let
V1, V4, ..., Va1 be the color classes and let p; = |V;|. Then without loss of
generality, py > ps > -+ > pa_y.

Case 1: p1 > 3. Then clearly a(G) > 5.

Case 2: py = 4. Since p(G) —4 > a — 2. it follows that p» > 2. So, by
Lemma 1, a«(G) > 5.

Case 3: py = p» = 3. Again, by Lemma 1. o > 5.

Case 4: p; = 3 and p2 < 3. It follows that p; = 2 for i = 2,3,...,6. Let
Vi = {u;, v;}, where, without loss of generality, v; € Vg(1}), for 2< i < 6. Let
H = G[{uz,us. . ... us}]. Suppose that H is not complete. We may assume that
ua is not adjacent to uz. Then V] U{uo, uz} is an independent set of 5 elements.
Otherwise. if H is complete. then {va, v3,....vs} is such a set.

Case 5: p1 < 3. It follows that p; = 2 for i = 1.2,...,7. Let # = G[\, U
VaU---UVz]. Suppose that degy (u) < 2 for some vertex u. Then, without loss
of generality. u € Vi, and Ng(u) C VaUV3. So by Lemma 2, G[V,UVsUVsU V5
has an independent set of 4 vertices and hence a > 5.

Otherwise, H is 3-regular. Then V; = {u;,»;} for 1 < i <7, where, without
loss of generality, u; is adjacent to va, v, and v;. Note that if Ky C H or
R4 — ¢ C H, then clearly a(H) > 5. Now, we may assume that o(G[{u;} U
Vs UV U V7)) < 4, for i = 2.3,4. For otherwise, an independent set in one
of these induced subgraphs together with u; would form an independent set of
order 5. Then by Lemma 2. u; is contained in a triangle in G[{u;}UVzUVsU V5]
for i = 2.3,4. Now, since H is 3-regular and does not contain A’y — e, these
triangles must be vertex-disjoint, and without loss of generality, these triangles
must consist of vertices {us, vs, us},{us, vs, u7}, and {ug4,v7,us} respectively.
Again, since H doesn’t contain K4 ~ e, we may assume that v, is adjacent to
vs, vg, and vr. Then {vy, uy, us, ug, u7} is an independent set and so a(G) > 5.

The five cases exhaust all possibilities, so the result follows.

The next theorem provides an upper bound for H(a, b).
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Theorem 8 Fora.b> 3 let ¥ := %{“;—’2 and Q := lﬁ@J . Then

H(a. b)<[(b—l)[ +1+2§'}”+1. (2)

Proof Let G be a graph with r vertices such that o(G) < b—1 and A(G) <
a — 1. Then by Theorem 3,

a-1 ro|_b=t) | _b=1f r |
( 2 )2IE(G)IZrl,,_1J‘ 2 lb—lJ_ 2 '.b—lj'

Simplifying, we find that

lb:lj:’-birl l,,r J lb_lJ+xIr>o

Let f(z) := |z1®> —2z|z| + |z] + ¥, for £ > 0. Then the following facts are
evident:

(a) f(z) is continuous.

(b) f(x)=z—z*+ ¥, forz=0,1,2,...

(¢) f(zx)>0,for0<z< 1.

(d) f(z) is strictly decreasing for x > 1.

(e) If n is a positive integer and n < z < n+ 1, then f(z) = n* - 2zn+

n+4 V.

From (a)-(d), we conclude that f(z) has exactly one positive root z* and
Q <" < Q+ 1. Then from (e). we deduce that

Q 1 ¥

z =_—2-+-1-

272

Observe that f(z) < 0 for £ > z*. Now. let r" = (b — 1)z". Then, since
(7] + 1 > r*, it follows that no graph of order {r*| + 1 exists with o < b -1
and h < a — 1. Therefore. H(a,b) < [r"] + 1.

Inequality (2) happens to be sharp for certain diagonal values (i.e., where
a = b). This is proved in the next theorem.

Theorem 9 If n is a prime power. then
HnP+n+2.n'+n+2)=n>+2n"+2n+2.

Proof Let G := (n*+n+1)Kn+1. Since n is a prime power. it is well-known
that there exists a projective plane 7 of order n containing .V = n 24+n+1 points
and lines. (See [8]) Let py, pa2,....px and Ly, La, ..., Ly be the points and lines
of m respectively. Then by coloring the vertices of the ith copy of R4 with the

“colors” (points) that are contained in L;, we obtain a harmonious coloring of G



using N colors. So A(G) < N = n*+n+1. Then, since p(G) = n®+2n2+2n+1,
and a(G) = n®+n+1, we obtain that H(n®+n+2,n*+n+2) > n3+2n2+2n+2.
Now using the notation of Theorem 8, we see that if a = b = n® +n + 2,
then ¥ = n® + n and Q = n + 1. Therefore, by this same theorem, we see that
Hn*>+n+2.n24+n+2)=n3+2n>+2n + 2. Hence, the result follows. N
The previous theorem allows us to find the asymptotic value of H(k, k).

Corollary 1 H(k. k) 1s asymptotically equal to k*-3,
Proof For k > 2, let
-1+ V=7
p— —-2——'.

It is well-known (2]that if z is sufficiently large, then there is a prime r such
that

Therefore, if £ is sufficiently large, then there exist primes ry and ra such that
rk—xfs rn<zg<r 51:;:-!-2:;:‘
Therefore,

(zk =2 + 2z — 2i)° + 2ze — zi) + 2
< H(kk)
< (@e+z7 P+ Az + 27 + Az +27) + 2

So. H(k,k) = 2} + o(z}) = k*S + o(k15). N
The next theorem is proved using a classic result on Ramsey numbers. (See
[3]). The proof is due to Andras Gyarfas(3].

Theorem 10 For m > 1. H(2™,4m) > 2™+ — 1.

Proof It is well-known that R(2m,2m) > 2™. Consider a Red-Blue edge-
coloring of K'am_; that contains no monochromatic A'a,. Let {vi,v2,...,vam_1}
be the vertices of A'am_;. Let graph G have vertices

V(G) - {31,32, ey Tamo1, Y1, Y2, . --:y'.""—l}

where z; ~ z; if »; and u; are joined by a blue edge, and y; ~ y; if v; and v;
are joined by a red edge, and where all other vertices in G are non-adjacent.
Then clearly A(G) = 2™ — 1. Now assume that G has an independent set of
4m vertices. This set contains 2m z;’s or 2m y;’s. Therefore Kam_; contains a
monochromatic K, which is a contradiction. Hence, a(G) < 4m — 1. There-
fore, H(2™.4m) > p(G) + 1 = 2™+l ~ 1.

In Table 1 , we present all values of H(a,b) that we have found for small a
and b, either by the theorems of this paper or by ad hoc methods. Based on
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evidence from this table. it is natural to conjecture that H(a.b) = H(b,a) for
all a,b > 1. But this is not the case. For by Theorem 10. H(1024.40) > 2047,
while by Theorem 8, /{(40, 1024) < 1763, rather a large difference. The first
part of this example also shows that the inequality (1) in Theorem 6 cannot be
replaced by equality.

T[T 2 3 4] 5 6 7 8] 9 10 11 12]13 14 15 16]
Ifr 1 1 t]1 1 1 1]t 1 1 1]1 1 1 1]
2001 2 3 45 6 7 8| 9 10 11 12[13 14 15 16
31 3 4 5|6 7 8 9|10 11 12 13|14 15 16 17
4flt 4 5 7{8 9 10 11[12 13 14 15[16 17 18 19
511 5 6 8110 11 13 14|15 16 17 1819 20 21 22
6llt 6 7 9l11 13 15 16{18 19 21 22(23 24 25 26
711 7 8 10|13 15 17 19(20 22 23 25([26 28 29 31
3l1 8 9 11|14 22123 25 26 28|29 31 32 34
9T 9 10 12[15 3133 34 36 37
)1 10 11 13|16 37 38 40 41
11 11 12 1417
1211 12 13 1518
BT 13 14 1619
141 14 15 17|20 53
1501 15 16 1821
16011 16 17 19]22

Table 1. Values of H(a,b) for small ¢ and 5.
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