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ABSTRACT. A Freeman-Youden rectangle (FYR) is a Graeco-
Latin row-column design consisting of a balanced superimposi-
tion of two Youden squares. There are well known infinite series
of FYRs of sizes ¢ x (2¢+1) and (g+1) x (2¢+1) where (2¢+1)
is a prime power congruent to 3 (modulo 4). Any member of
these series is readily constructed from an initial column whose
entries are specified very simply in terms of powers of a prim-
itive root of GF(2g + 1). We now show that, for ¢ > 9, initial
colummns for FYRs of the above sizes can be specified more gen-
erally, which allows us to obtain many more FYRs, which are
unlike any that have previously appeared in the literature. We
present enumerations for ¢ = 9 and ¢ = 11, and we tabulate
new FYRs for these values of q. We also present some new
FYRs for ¢ =15.

1 Introduction with definitions

An rxt Youden square [7] is a rectangular array of ¢ symbols in r (< ¢t)
rows and ¢ columns such that each symbol occurs just once in each row and
no more than once in each column, the subsets of symbols in the columns
being the blocks of a symmetric balanced incomplete block design (SBIBD,
often called a symmetric 2-design).
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Preece [7], Bailey, Preece and Rowley [1] and Preece and Vowden [8]
considered what they termed ‘balanced superimpositions of one Youden
square on another’. The first such superimposition to have been published
seems to have been a 4 x 7 specimen given by Clarke [2] (page 99), who
obtained it from G.H. Freeman. We therefore, for ease of reference, rename
the ‘balanced superimpositions ...’ as Freeman-Youden rectangles (FYRs).
FYRs of size 5 x 11 include the following two examples, in each of which
the ith letter of each pair (i = 1, 2) belongs to the ith of the superimposed
Youden squares:

BI CJ DK EA FB GC HD IE JF KG AH

EK FA GB HC ID JE KF AG BH CI DJ

FH GI H)J IK JA KB AC BD CE DF EG (1)
JG KH Al B CK DA EB FC GD HE IF

DC ED FE GF HG IH JI KJ AK BA CB

and

BC CD DE EF FG GH HI 1J JK KA AB

EIl FJ GK HA IB JC KD AE BF CG DH

FK GA HB IC JD KE AF BG CH DI EJ (2
JH KI Al BK CA DB EC FD GE HF IG

DG EH FI GJ HK IA JB KC AD BE CF

Each of these two FYRs is cyclically generated from its first column, using
the cycle of letters (AB...K).

For a formal definition of an FYR, we say that the superimposition has 4
factors, namely ‘rows’, ‘columns’, ‘symbols S1 of the first Youden square’,
and ‘symbols S2 of the second Youden square’. The rows-factor is orthogo-
nal to each of the others in that each row has exactly one entry from each
column, exactly one for each symbol S1, and exactly one for each symbol
S2. The pairwise relationships of the other 3 factors are, however, relation-
ships of balance. Numbering these factors as 0 (for columns), 1 (for S1),

and 2 (for S2), we define an r x t FYR as an r x ¢ rectangular array such
that

1. each entry is an ordered pair z,y where z is drawn from a set S1 of ¢
elements, and y is drawn from a set S2 of ¢ elements;

2. if the elements from either S1 or S2 are disregarded, the array becomes
an r x ¢t Youden square;

3. if ny, is the ¢ x ¢ (0, 1)-matrix whose (%, j)th element (3,5 =.1,2,...,t)
is the number of times that the ith element of S2 is paired with the
jth element of S1, then ng; is the incidence matrix of an SBIBD;
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4. if nyo is the ¢ x ¢t (0, 1)-matrix whose (3, 7)th element (3,5 = 1,2,...,t)
is the number of times that the ith element of S1 occurs in the jth
column, and ngg is defined similarly for S2, and we write ng; for the
transpose of nyg, etc., then

70171220 + NO2N21110 = N12N20M01 + 121072027221
= ngong1n12 + n21n10n02 = fI 4+ gJ 3)

where f and g are integers, I is the ¢ x t identity matrix, and J is the
t x t matrix whose elements are all 1.

If the elements of S1 and S2 in each of the FYRs (1) and (2) are taken
in their natural orders, then (1) satisfies

n=njo =ng2 = n12 (4)
and (2) satisfies

n=mnjp =ngz =ny (5)
where n + n’ = J — I in both instances. Thus the matrix in (3) becomes

—37I 4+ 23J for (1)
and
81 + 22J for (2).

Each of the 5 x 11 FYRs (1) and (2) can be converted into a cyclically
generated 6 x 11 FYR by adding a row AA BB ... KK. These larger
FYRs still satisfy (4) and (5) respectively, but now with n+n'=J + I.

Suppose an FYR is of size ¢ x (2¢+ 1) or (g + 1) x (29 + 1) where g is
odd, ¢ > 1, and where (2¢+1) is a prime power congruent to 3 (modulo 4).
Then it is of ‘type 1’ if it can be written in such a form that it satisfies (4);
it is of ‘type 2’ if it can be written so as to satisfy (5). The existence of the
two types is implicit in [3] and explicit in [1, 6]. In order that a given FYR
of type 1 may be written so as to satisfy (4), a permutation of the factors
0, 1, 2 may be needed.

2 The well known series of FYRs of sizes g x (2¢+1) and (g+1) x
(2¢+1)

By relabelling A, B, ...,J,K as 0,1, ...,9,t (where t denotes 10), the initial
columns
(BI EK FH JG DC)

of the cyclically generated 5 x 11 FYR (1), and
(BC EI FK JH DG)
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of the cyclically generated 5x 11 FYR (2), can be rewritten as, respectively,
(1,8 4,¢t 5,7 9,6 3,2) (6)
and
(1,2 4,8 5,t 9,7 3,6). (7)
Each of these is of the form
(20,27 22,2249z, z4tT 28 84T B 284)) (8)

where z = 2 is a primitive root of GF(11) and where each integer equal to
a power of z is reduced modulo 11. Similarly, the initial columns of the
6 x 11 FYRs already discussed are of the form

(0,0 20,27 2,229 2 4T 28 28+ 2B 819), 9)

In (8) and (9), the entries z°, 22, . . . , 8 are the quadratic residues of GF(11),
but we choose j so that the entries z7, z217, . .., 2817 are the non-quadratic
residues. The quadratic residues form a well known difference set, modulo
11, as do the non-quadratic residues; if these difference sets are augmented
by including the element 0 additionally, we still have well known difference
sets, modulo 11. For the initial column (6), which is for an FYR of type 1,
the differences
£t~z i=0,2,4,6,8

are the non-quadratic residues, but for the initial column (7), which is for
an FYR of type 2, the differences are the quadratic residues.

If we disregard the ordering of each pair y, z in the initial column (6)
or (7), each set of pairs is a ‘starter’ in the sense of, for example, Kocay,
Stinson and Vanstone [5], Wallis [9 (p. 212), 10 (pp. 599 and 624)] and
Dinitz [4]. But we have imposed the following extra requirements on a
starter:

(i) Each of its pairs must consist of one quadratic residue and one non-
quadratic residue.

(ii) Each pair must be ordered, with the quadratic residue coming first.

(iii) The within-pairs ordered differences, second element minus first ele-
ment, must all be non-quadratic residues (for FYRs of type 1) or all
quadratic residues (type 2).

These requirements have the following further implication:
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(iv) If a type 2 FYR has an initial column comprising the set {(y, z)} of
ordered pairs formed from a starter satisfying (i), (ii) and (iii), then
the sets {(z — y,—y)} and {(—2,y — 2)} similarly constitute initial
columns of FYRs of type 2, arithmetic being within the relevant field.

A starter is ‘strong’ [9 (p. 267)] if its pairs y, z are such that all its sums
y + z are distinct and non-zero, addition again being within the relevant
field. Section 4 below shows that not all starters used for FYRs are strong,
even though (6) and (7), when regarded as starters, are strong.

The generalisation of the above results from the sizes 5 x 11 and 6 x 11
to the sizes ¢ x (2¢+ 1) and (g + 1) x (2¢ + 1) where g is odd, ¢ > 1, and
(2¢ + 1) is a prime power congruent to 3 (modulo 4), is so obvious that we
omit detail here. We merely note that the initial columns of the FYRs are
of the respective forms

(%77 %, 29 ... z%972 g2 (10)
and
(0,0 2,27 22,2217 ... zP4~% g29-247) (11)

where z is a primitive root of the appropriate Galois field. If (2¢ + 1) is
prime, the quadratic residues, the non-quadratic residues, the quadratic
residues augmented by 0, and the non-quadratic residues augmented by 0,
all form well known difference sets, modulo (2¢ + 1), and the FYRs are
cyclically generated, with cycles of length (29 4+ 1).

3 Adjugacy in FYRs of types 1 and 2

If we multiply each of (6) and (7) throughout by the primitive root z = 2,
reverse the order of each pair, and reorder the sequence of pairs so that the
quadratic residues are again in natural order, we obtain, respectively,

(1,7 4,6 5,2 9,8 3,t) (6a)
and
(1,6 4,2 5,8 9,t 3,7) (7a)

These too are initial columns of 5 x 11 FYRs of types 1 and 2 respectively.
In vocabulary taken from the theory of Latin squares, the FYRs obtainable
from (6a) and (7a) are adjugates of, respectively, the FYRs obtainable from
(6) and (7). In this aspect of adjugacy, the 5 x 11 FYR of type 2 that is
obtainable from the initial column

(1,t 4,7 5,6 9,2 3,8) (7b)
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is self-adjugate.

However, as is suggested by property (iv) above, another type of adjugacy
is available for our FYRs of type 2. Consider again the initial column (7)
for an FYR of type 2. If we label each entry of the FYR as f, g, h where f
is the column number (counting from 0), g is the member of S1, and h is
the member of S2, then the entries of the initial column are, in row order,

0,1,2 0,4,8 0,5t 0,9,7 0,3,6

So, because of the cyclic development (modulo 11) of the FYR, the succes-
sive rows contain the following entries where the second component of the
triple is 0:

t,0,1 7,0,4 6,0,5 2,0,9 8,0,3
Now, cyclically permuting each triple so that the zero comes first (which is
equivalent to a cyclic permutation of the factors 0, 1, 2), we have

0,1,t 0,4,7 0,5,6 0,9,2 0,3,8

which gives us the initial column (7b) above; we have moved from the pairs
¥, 2 in (7) to the pairs z—y, —y in 7(b). Thus the FYR obtainable from the
initial column (7b) is an adjugate of the FYR obtainable from the initial
column (7). Similarly the FYR obtainable from (7a), comprising the pairs
—~2z,y — z, is an adjugate of the FYR obtainable from (7b).

These concepts of adjugacy, appropriately generalised, are needed for
classifying our new FYRs. For convenience, we henceforth refer to two
initial columns as being adjugates of one another if the corresponding FYRs
are adjugates of one another.

4 The new Freeman-Youden rectangles of sizes 9 x 19 and 10 x 19

To obtain FYRs of sizes ¢ x (2¢+1) and (g+1) x (2¢+1), with g restricted
as already specified, initial columns of the form (10) or (11) are not needed.
More generally for the sizes ¢ x (29 + 1) we can use any starter whose q
pairs can be arranged so as to satisfy the conditions (i), (ii) and (iii) above.
For g > 9, this enables us to produce new FYRs.

We consider first ¢ = 9, for which we need the quadratic and non-
quadratic residues of GF(19). Using the primitive root z = 2 of GF(19),
we have, in systematic order,

quadratic residues (Q) 1 4 16 7 9 17 11 6 5
non-quadratic residues(N) 2 8 13 14 18 15 3 12 10

Accordingly, the 9 x 19 FYRs obtained by the well known construction are
the 4 type 1 examples and 5 type 2 examples whose initial columns are as
follows, where the SS numbers refer to ‘strong starters’ from the table of
Kocay, Stinson and Vanstone [5 (pp. 52-53)] and Dinitz [4 (p. 470)):
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type 1:
S546:

(1,15 4,3 16,12 7,10 9,2 17,8 11,13 6,14 5,18)
adjugate of SS46:

(1,14 4,18 16,15 7,3 9,12 17,10 11,2 6,8 5,13)
SS52:

(1,3 4,12 16,10 7,2 9,8 17,13 11,14 6,18 5,15)
adjugate of SS52:

(1,13 4,14 16,18 7,15 9,3 17,12 11,10 6,2 5,8)

type 2:
SS29:

(1,2 4,8 16,13 7,14 9,18 17,15 11,3 6,12 5,10)
adjugates of SS29:

(1,10 4,2 16,8 7,13 9,14 17,18 11,15 6,3 5,12)
(1,18 4,15 16,3 7,12 9,10 17,2 11,8 6,13 5,14)

SSs51:

(1,12 4,10 16,2 7,8 9,13 17,14 11,18 6,15 5,3)
adjugate of SS51:

(1,8 4,13 16,14 7,18 9,15 17,3 11,12 6,10 5,2)

But many 9 x 19 type 2 FYRs of different construction are available, in-

cluding one whose initial column is this:

(1,12 4,10 16,14 7,8 9,13 17,3 11,18 6,15 5,2).

To study this novel 9 x 19 example, we write down its “associated partial
Latin square” (APLS), of size 9 x 9, obtained as follows. Write the non-

quadratic residues, in order, in a border column

(1"1 T2 ... 1'9)’

to the left of the APLS, and the quadratic residues, in order, in a border

row
(c1 2 ... c9)
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above the APLS. Then the (¢, j)th entry of the APLS (3,5 =1,2,...,9) is
entered as r; —c; (modulo 19) if this is a quadratic residue, but is left blank
otherwise. So the APLS is

1 416 7 9 17 11 6 5

5T 1 17 5 y 167

sl 7 4 11 1+ 16

13 9 16 6 4* 7

14 1™ 7 5 16 9

18 | 17 119 1 7 (13)
15 11 6 17 4 o

3 6 5% 11 16 17

12 | 1% 5 1 6 7

0] 9 6 1 4 5

where entries with asterisks are those that correspond to the pairings in the
initial column (12). These entries constitute a transversal of the APLS, i.e.
they are all different and there is one in each row and one in each column
of the APLS. Indeed, any transversal of the APLS will give us the initial
column of a 9 x 19 FYR of type 2.

The pattern of asterisks in (13) shows that initial column (12) has some
symmetry. If we multiply (12) throughout by z2, with z still taken as
the primitive root 2 of GF(19), and then again multiply by z2, we obtain
successively (after re-ordering the 9 entries of each outcome, to put the
quadratic residues in natural order) two further initial columns

(1,8 4,10 16,2 7,18 9,13 17,14 11,12 6,15 5,3)

and
SS50:

(1,12 4,13 16,2 7,8 9,15 17,14 11,18 6,10 5,3).
A further multiplication by z2, followed by re-ordering of entries, returns us
to (12). But we can also move to adjugates by multiplying (12) by = = 2,
and reversing the ordering of each pair, to obtain (again after re-ordering
of entries) this further initial column:

(1,8 4,10 16,14 7,18 9,13 17,3 11,12 6,15 5,2).
Multiplying this by z2 and z* we also obtain, as before,

(1,8 4,13 16,2 7,18 9,15 17,14 11,12 6,10 5,3)

and
(1,12 4,13 16,14 7,8 9,15 17,3 11,18 6,10 5,2).
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Thus (12) belongs to a set of 3 + 3 = 6 initial columns that meet our
requirements for an FYR of type 2; these 6 initial columns correspond to 6
transversals in the APLS.

More usually for ¢ = 9, an initial column that meets our requirements for
type 2 belongs to a set of 9 + 9 = 18 distinct possible initial columns, not
343 = 6; these 18 are obtained from any one of themselves by multiplication
by z? and z as just described. This is true of each of the following initial
columns, each of which is from a different set of 18 possibilities; none of the
18 is based on a strong starter:

(1,2 4,10 16,14 7,18 9,13 17,3 11,8 6,15 5,12), (14)

(1,2 4,15 16,14 7,13 9,18 17,3 11,8 6,10 5,12) (15)
and
(1,2 4,13 16,14 7,18 9,15 17,3 11,8 6,10 5,12). (16)

Thus we have accounted for 6 + 18 + 18 4+ 18 = 60 transversals of the
APLS, apart from the 5 transversals on or parallel to the main diagonal.
Complete enumeration by computer confirms that 5+ 60 = 65 is indeed the
total number of distinct possible initial columns that meet our requirements
for an FYR of type 2; of these 65 initial columns, the first 5+ 6 = 11 are
based on strong starters, and the remaining 18 + 18 + 18 = 54 are not. The
situation is summarised by our tabulation of the new initial columns (12),
(14), (15) and (16) in Table 1.

Table 1
Initial columns for new 9 x 19 Freeman-Youden rectangles of type 2

Set Set Text Initial column

no. size ref.
1 6 (12) (1,12 4,10 16,14 7,8 9,13 17,3 11,18 6,15 5,2)
2 18 (14) (1,24,1016,14 7,18 9,13 17,3 11,8 6,15 5,12)
3 18 (15) (1,24,1516,14 7,13 9,18 17,3 11,8 6,10 5,12)
4 18 (16) (1,24,1316,14 7,18 9,15 17,3 11,8 6,10 5,12)

Of the 52 inequivalent strong starters in the table of Kocay, Stinson and
Vanstone [5 (pp. 52-53)] and Dinitz [4 (p. 470)], only 6 satisfy condition
(i) above. These are strong starters 29, 46, 50, 51 and 52, which have
already been referred to, plus strong starter 30, which cannot be ordered
so as to satisfy condition (iii); this anomalous strong starter, rearranged
so that condition (ii) is satisfied and so that the quadratic residues are in
ascending order, is as follows:

[1,2 4,13 16,18 7,14 9,15 17,12 11,3 6,10 5,8].
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Exhaustive enumeration of transversals of the APLS, and exhaustive enu-
meration of eligible starters, are not the only ways of finding initial columns
that meet our requirements for an FYR of type 2. For example, the APLS
(13) for the intial column (12) contains the following two 2 x 2 subsquares:

11 1=«
17« 7

(rows 2 and 4) and 1112 71* (rows 5 and 8).

Clearly, the asterisks may all be shifted to the opposite positions, to create
a new admissible pattern of asterisks; the corresponding initial column
belongs to the same set of 18 initial columns as does (14). A similar shift
of asterisks would have been possible even if the pattern had been

o117 1k
17« 7 39 7.

Other simple shifts of asterisks are possible too; for example, in the aster-
isked APLS for the initial column (16) we may change

1 5 . 1 5% .
7 11 1 to 7 11 1«
11 . 5« 11 . 5

Having found the 60 new possible initial columns for 9 x 19 FYRs of type
2, we now turn to the possibility of type 1 FYRs of the same size. For this
we need the “complementary partial Latin square” (CPLS), in which the
differences ; — c; are entered if they are non-quadratic residues:

1 4 16 7 9 17 11 6 5
2 14 12 10 15
8 18 10 2 3
13112 15 2 8
14113 10 3 8
18 14 2 12 13
15 | 14 18 8 10
3] 2 18 15 13
12 8 15 3 14
10 13 3 12 18

In this sparser array, there are no transversals except parallel to the main
diagonal, so no new type 1 FYRs of size 9 x 19 are found.

If we add the pair 0,0 to each of the 60 new initial columns for 9 x 19
FYRs of type 2, we obtain 60 new initial columns for 10 x 19 FYRs of type
2. But we have no new type 1 FYRs of size 10 x 19.
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5 The new Freeman-Youden rectangles of sizes 11 x23 and 12x 23

As q increases, subject only to (2¢ + 1) being a prime power congruent to
3 (modulo 4), we can expect the numbers of non-isomorphic FYRs of sizes
g % (2¢+ 1) and (g + 1) x (2 + 1) to increase, reflecting the ever greater
room to manoeuvre when searching for transversals in the ¢ x ¢ APLS and
the ¢ x ¢ CPLS. Indeed, for ¢ = 11, unlike g = 9, the CPLS has transversals
that are not parallel to the main diagonal; so new 11 x 23 and 12x 23 FYRs
of both of types 1 and 2 are found.

Computer enumeration shows that there are 336 possible initial columns
for an 11 x 23 FYR of type 2 that is analogous to our 9 x 19 FYRs of type
2. This total of 336 is (as expected) much larger than the corresponding
total of 65 for size 9 x 19. Continuing the approach already used, these two
totals can be partitioned as follows:

9x19 (type 2): 65=5+1.(3+3)+3.(9+9)
11 x 23 (type 2) : 336 =6+ 0+ 15.(11 +11)

Specifically there are, for size 11 x 23, the 6 possible initial columns of
form (10), plus 15 sets of possible initial columns, each such set containing
11 + 11 = 22 members; these 15 sets are analogous (except as described
below) to the corresponding 3 sets, each of size 9 + 9 = 18, for size 9 x 19.
Representative members of the sets are in Table 2. The other 21 members
of each set are obtained by multiplying the representative member by suc-
cessive even powers of the primitive root z = 5 of GF(23), as described
above for 9 x 19 FYRs, and by multiplying by successive odd powers and
reversing pairs, again as above.

Unlike for the 4 new sets of 9 x 19 FYRs of type 2, the 15 new sets
of 11 x 23 FYRs of type 2 can be grouped, in threes, into 5 ‘adjugacy
classes’ which, in the notation of Table 2, are a, b, ¢, d and e. Thus, for
example, the initial columns that are labelled al, a2 and a3 in Table 2 are
adjugates of one another, and so the corresponding FYRs are in the same
adjugacy class a; if the entries in al are denoted , z, then those in a2 and
a3 are, respectively, z — y, —y and —z,y — z. The same relationships hold
for adjugacy classes b, ¢, d and e.

Turning now to 11 x23 FYRs of type 1 that are analogous to the FYRs so
far considered, we find that there are 49 possible initial columns, namely 5
that are of the form (10), and 44 others that fall into 2 sets each comprising
11 4 11 = 22 members. Representative members of the 2 sets are in Table
2.

An oddity of Table 2, when regarded as a table of starters, is that it
contains just one strong starter, namely that for b2. Thus Table 2 gives us
just a single set of 22 FYRs based on a strong starter.
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If we add the pair 0,0 to each of the new initial columns for 11 x 23
FYRs, we obtain corresponding new initial columns for 12 x 23 FYRs.

Table 2
Initial columns for new 11 x 23 Freeman-Youden
rectangles of types 1 and 2

Set Initial column
code
“Type I:
A (1,15 2,22 4,11 8,7 16,21 9,19 18,14 13,5 3,20 6,17 12,10)
B (1,15 2,7 4,21 8,5 16,14 9,19 18,10 13,20 3,22 6,17 12,11)

Type 2:
al (1,5 2,10 4,20 8,17 16,22 9,11 18,21 13,14 3,15 6,19 12,7)
a2 (1,10 2,14 4,22 8,21 16,19 9,15 18,11 13,17 3,5 6,7 12,20)
a3 (1,17 2,20 4,10 8,11 16,5 9,22 18,19 13,15 3,7 6,4 12,21)

bl (1,52,10 4,20 8,17 16,22 9,11 18,7 13,14 3,21 6,19 12,15)
b2 (1,10 2,14 4,22 8,21 16,19 9,15 18,20 13,17 3,11 6,7 12,5)
b3 (1,17 2,5 4,10 8,20 16,11 9,22 18,19 13,15 3,7 6,14 12,21)

¢l (1,52,10 4,20 8,14 16,17 9,11 18,21 13,22 3,15 6,19 12,7)
2 (1,72,14 4,22 8,21 16,19 9,10 18,11 13,17 3,5 6,15 12,20)
3 (1,14 2,20 4,10 8,11 16,5 9,17 18,19 13,15 3,7 6,22 12,21)

dl (1,52104,17 8,14 16,11 9,21 18,20 13,22 3,19 6,7 12,15)
d2 (1,17 2,5 4,22 8,21 16,20 9,10 18,7 13,19 3,11 6,15 12,14)
d3 (1,14 2,11 4,7 8,20 16,22 9,17 18,19 13,15 3,21 6,10 12,5)

el  (1,52,20 4,10 8,11 16,17 9,22 18,7 13,15 3,19 6,14 12,21)
e2  (1,72104,228,17 16,20 9,11 18,21 13,14 3,15 6,19 12,5)
e3 (1,10 2,14 4,7 8,21 16,11 9,15 18,19 13,17 3,5 6,22 12,20)

6 Some new 15 x 31 Freeman-Youden rectangles

This paper focusses on the series of sizes ¢ x (2g + 1) for FYRs, where
(2¢ + 1) is a prime power congruent to 3 (modulo 4) and where ¢ > 9.
Taking ¢ = 9 has indicated that special interest may attach to such sizes
for which q is not prime, as possible initial columns for the FYRs can then
fall into a set containing 2p members, where p is a factor of ¢, as well as
into sets containing 2¢ members. For ¢ = 9 there is just one of the smaller
sets (p = 3), namely set 1 of Table 1. However, for ¢ = 15, which gives us
FYRs of size 15 x 31, there are more such smaller sets, and these arise for
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both p = 3 and p = 5. To avoid serious notational complications, we give
no theory for these. We merely outline constructions in a way that shows
clearly what is involved.

If we use the primitive root z = 3 of GF(31), we can write the successive
quadratic (Q) and non-quadratic (N) residues as follows:

Q 1 919 16 20 25 8 10 28 4 5 14 2 18 7
N 3 27 26 17 29 13 24 30 22 12 15 11 6 23 21

Accordingly, the well known construction for a 15 x 31 FYR of type 1 gives
us, for example, the following initial column that starts with z°, z3:

(1,27 9,26 19,17 16,29 20,13 25,24 8,30 10,22 ...)

However, the second elements of the pairs in positions 1,4,7,... can be
moved to positions 4,7,10, ... respectively to give the initial column of
another FYR of type 1:

(1,23 9,26 19,17 16,27 20,13 25,24 8,29 10,22 ...)

This initial column belongs to a set with p = 3.

Again using the above Q/N table, we see that an initial column arising
from the well known construction for a 15x31 FYR. of type 2 is the following,
which starts with z0, z!:

(1,3 9,27 19,26 16,17 20,29 25,13 8,24 10,30 ...)

This column too can be modified as before, except that movement is now
from positions 4,7, 10, ... to positions 1,4,7,... respectively:

(1,17 9,27 19,26 16,24 20,29 25,13 8,12 10,30 ...)

This initial column for a 15 x 31 FYR of type 2 belongs to a set with p = 3.

Another initial column arising from the well known construction for a
15 x 31 FYR of type 2 is the one that starts with z°, z5:

(1,26 9,17 19,29 16,13 20,24 25,30 8,22 10,12 ...)

We now modify this as before, except that the movement is from positions
1,6, 11 to positions 6,11, 1 respectively:

(1,6 9,17 19,29 16,13 20,24 25,26 8,22 10,12 ...)

This initial column for a 15 x 31 FYR of type 2 belongs to a set with p = 5.
Another such initial column can be created by making, additionally, core-
sponding movements from positions 2, 7, 12 to positions 7, 12, 2 respectively,
or from positions 3, 8,13 to positions 8,13, 3 respectively.
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