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ABSTRACT. We describe a class of graphs I" for which the sta-
bility number can be obtained in polynomial time. A graph
in class T is chair-free, net-free and has the property that the
claw-centers form an independent set.

1 Introduction

We consider only finite, undirected graphs G = (V, E) of order n. For a
subset S of G, G[S] denotes the subgraph induced by S. Three graphs, a
claw (a; b, ¢, d), a chair (a;b, ¢, d, €) and a net (a, b, ¢, ; d, ¢, f) play an impor-
tant role in our paper. They are the unique graphs whose degree sequences

are respectively (3,1,1,1), (3,1,1,2,1) and (3,3,3,1,1,1) (see figure 1).
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The vertex of degree 3 of the first graph is called the center of the claw
(or the claw-center). We denote by Y the set of all claw-centers in G.

Finding the stability number «(G) (also named independence number,
vertex packing number) of a graph G is in general a difficult problem. The
vertex packing problem (VPP) remains NP-complete even for the class of
triangle-free and cubic planar graphs [4]. It is well known however that the
VPP is polynomial for bipartite graphs and perfect graphs. This general
result on perfect graphs is obtained by Grotschel et al. [5] as a consequence
of the fact that Linear Programming is polynomial. For several subclasses
of perfect graphs, combinatorial algorithms exist (see [4]). As an indepen-
dent set in a graph G corresponds to a matching in its edge graph L(G)
and vice versa, efficient algorithms exist for solving VPP in line graphs. It
is remarkable that the VPP is also polynomially solvable for the class of
claw-free graphs [11] and [12], a class containing strictly the class of line
graphs. Iterative procedures which, at each step, construct from a graph G
another smaller graph G’ such that a(G) = a(G7) — k where k is a positive
known integer have been given by several authors. In [10], this procedure
was used to provide another polynomial algorithm for solving the VPP
if G is claw-free, two different reduction operations were introduced with
k € {1,2}. Via the study of pseudo-boolean functions, Ebenegger et al.
[14] proposed a general method with k = 1. This method was named struc-
tion (STability number RedUCTION). Although the order of G’ does not
decrease in general, for some classes of graphs this drawback disappears
and a polynomial algorithm follows whenever the transformation G — G7
is closed for these classes. This technique has been applied for CAN-free
graphs (claw-, antenna-,net-free graphs) [9] and CN-free graphs (claw-free,
net-free graphs) [8], subclasses of claw-free graphs. Other reduction proce-
dures which are in fact special versions of the struction have been used to
prove that the VPP is polynomial for bull- and chair-free in [13] and for
AH —free graphs [7]. Using the particular struction given in [8], we prove in
this paper that the VPP is polynomial for a new subclass of graphs (which
we call I'), defined as follows

Definition 1 A graph G belongs to class T if
(i) G is chair-free
(ii) G is net-free
(iii) Y is an independent set.

Graphs in this class are not necessarily perfect or claw-free. Moreover,
this class contains strictly the classes of CAN-free, CN-free graphs, but is
different from the other classes listed above. We shall say that a vertex is
special if it does not center a claw.
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In the next section, we recall the specialized struction G — G’ developed
in [8] for CN-free graphs. As we shall see this struction is particularly
suitable for the class I'. For our purposes, we define the struction as the
transformation G — G’, centered at a special vertex 0 (if it exists). At each
stage of the transformation, provided that a special vertex exists, we have
a(G)=a(G")+1.

In section 3, we shall show that the class of chair-free, net-free graphs is
closed under the struction, that is, G’ is chair-free, net-free graph.

In section 4, we prove that if G € T', then at each stage, a special vertex
0 exists. As | V(G’) |<| V(G) — 2, a polynomial algorithm for finding the
stability number in this class of graphs can be obtained.

2 Struction of chair-free, net-free graphs

Following [8], we shall use the following notation. We write [a,b] to mean
that a,b are joined by an edge while Wj denotes the absence of an edge
(or the presence of a "nonedge”). The open neighborhood, and the closed
neighborhood of u are respectively denoted N(u) = {z € V | zu € E} and
N[u] = {u} U N(u). Given a special vertex 0, it is convenient to define
No(e) = N[a]n N(0) for all a € V' \ {0}.

Throughout, we consider a struction centered at a vertex 0 which is
assumed to be special (for CN —free graphs, this vertex is any vertex of G).

Let < be a partial preorder defined on N(0) by a < b if Np[a] C Ny[b].
We write a = b if @ < b and a = b. The vertices of N(0) will be numbered
from 1 to | N(0) | and it will be convenient to refer to these vertices with
their associated numbers. So, a total order < on the vertices of N(0) is
created. The struction for the class of chair-free, net-free graphs, inspired
from that given in [8], is described as follows

(a) Preliminaries

1) choose a special vertex 0 (if it exists)
2) number the vertices of N(0) from 1 to | N(0) | in such way that

(i) fa Xband a ¥ bthena <b
(ii) ifa=b, a Az, z Aaand a < b then either z <aorz >b

3) let J = {i € N(0) | there exists j € N(0) with j > i and [%,7]}.
(b) Construction of G’

1) for each i € J introduce a new vertex i*
2) remove the vertices of N[0] and set R := V(G) \ N[0]
3) let N be the set of new vertices in G’
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4) link every pair of N (new vertices), so N is a clique

5) link a new vertex #* to vertex r in R if in G we have either [z, 7]
or [j, ] for every j > i such that [%,7].

A vertex b in G is a follower of another vertex a if [a,b], a,b € N(0) and
b > a. Unless otherwise specified, we shall assume throughout that

(1) G is a chair-free, net-free graph containing a special vertex 0

(2) G’ is the resulting graph form a struction centered at a special vertex
0

(3) ifa,b,c,... are new vertices (elements of N), thena’,¥’,,... are ver-
tices in G corresponding to a,b,c,... respectively and a”,b"”,c”, ...
are followers of o/, %, c, ... respectively.

To ensure the polynomial character of the determination of the stability
number of our class of graphs, the following two results [8] are essential.

Proposition 1 Let G be a chair-free, net-free graph with o(G) > 1, con-
laining a special vertez 0 and let G’ be the graph obtained by siruction
centered at 0. Then a(G’) = a(G) - 1.

Proof. Only minor changes are needed to adapt the proof given in [8].

a) We first show that if S # @ is an independent set in G, there is
an independent set S’ in G’ with | §’ |=| S| —1. As 0 is special, we have
| SAN(0) |< 2. If SNN(0) = @ then take S’ = S\ {z}, where z is any vertex
in SNR. If SN N(0) = {i} then S’ = S\ {¢}. Finally if SN N(0) = {4, 5}
then assume 0 < i < j, [4,7] and take S’ = (S'\ {,5}) U {i*}, where * is
the new vertex corresponding to i. To see that S’ is stable, suppose [i*, 7]
for some r in SN R. By construction, [¢*,7] in G’ since [7,7] in G and [, 7]
in G must hold for any follower of i, in particular 5. This is a contradiction
since [3,7], [4,7] in G. Therefore (a) holds and thus a(G’) > a(G) — 1.

(b) Next we prove that for any stable set S’ of G’ there exists a stable set
S in G such that | S |=| §’ | +1. Clearly | SN N |< 1 since N is a clique.
If SN N = then S’ C R and we can take S = S’ U {0}. Suppose now
S'NN = {a}. Let @’ correspond to a in G. We shall prove that a follower a”
of a’ exists for which S = (5’\ {a})U{a’, a”} is an independent set in G. By
construction, a’,a” are nonadjacent, [@’,7] in G for any vertex r of S\ {a}
otherwise we have [a,7] in G’. So N(a’) N (S’ \ {a}) = 0. Furthermore
for any follower a” of a’ we can assume that | N(a”) N (S’ \ {a}) |= 1.
To justify this, suppose first N(a”) N (S’ \ {a}) = @ for some a”. Then
S = (8"\{a})U{a’,a"} is an independent set in G and we are done. Next,
if there exist r, s € (S’\ {a})NN(a”) then (a”;r, 5,0, a’) is a chair. Another
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contradiction is easily obtained if two followers (a”, a’” say) exist since then

[@”,a"] because (0;a’, a”,a™) is not a claw and hence (0,a”, a"’;a’,r, 3) is
a net (we assume [a”,7], [@”, s]). It remains to consider the case where o’
has only one follower a”. In one hand, a” must be adjacent to one and only
one vertex of R, r say. On the other hand if [a”,r] in G then [a,r] in G’
since a” is the unique follower of a’. This last contradiction proves (b) and
thus a(G) < a(G’) +1. Combining (a) and (b) we get a(G’) = a(G) -1. 0

As for 0 and the last vertex | N(0) | no new vertex is created in G, the
following simple proposition guarantees a rapid convergence of the trans-
formation, provided that a special vertex exists at each stage.

Proposition 2 [8] Let G be a nontrivial chair-free, net-free graph contain-
ing a special vertez 0 and let G’ be the graph obtained by struction centered
at 0. Then | V(G') I<| V(G) | -2

3 Closedness of the class of chair-free, net-free graphs

In this section, we prove that the struction recalled in section 2, centered
at a special vertex 0, transforms a chair-free, net-free graph into a graph
which is also chair-free, net-free.

Lemma 1 Let G be a net-free graph with a special vertez 0 and let G’ be
obtained by a struction (centered at 0) from G. Assume a € N and o’
correspond to a in G. Then

(i) [a,7] in G’ implies either [a’,z] or [a”,z] for every follower a” of o’

(ii) [@Z) in G’ implies [a”,z] and [a”,z] in G for at least one follower
a’ of a'

(i) [@z), [z77), 6] in G’ imply [a',u] and [a”,u] for u = z,y and
some follower a” of a’.

Proof. (i) and (ii) are consequences of the definition of the struction.
Part (iii) is proved in ([8], Lemma 3.2). O

Lemma 2 Let G be a chair-free, net-free graph with a special vertez 0. If
B = (r,a,b,0,z,s) (see figure 2) is an induced subgraph in G, thena <b .

Proof. To prove a X b, assume by contradiction the existence of a
vertex v € No(a) \ No(b) in G (recall that a < b if No(a) C N(b)). Set
H := B+ v. Since (0;z,b,v) cannot be a claw, we have [z,v]. Also [v,7]
otherwise H — {0, s} is a chair and [7;3] otherwise H — {a,z} is a chair.
But now H — {a} is a net. o
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X
Figure 2

Lemma 8 Let G be a chair-free, net-free graph with a special vertex 0
and let G’ be obtained by a struction (centered at 0) from G. Assume G’
contains an induced claw (a;z,y,z) and assume N N {a,z,y,z} # 0. Then
the following hold

(i) aeN

(ii) a’,a”,z’,z" are all distinct if £ € N, where a” is any follower of o’
and z" is a follower of £’ chosen so that [x,y| and |27, 2] .

(iii) under the conditions of (i), [a’,v] and [a”,v] forv=z',2"

(iv) o' and its followers center claws in G.
Proof.

(i) By contradiction of (i), assume without loss of generality NN{z,y, 2} =
{=z}. By Lemma 1(iii), there exists a follower z” of =’ in G such
that [z”,y] and [z”,2]. Thus {z’,z",y,2} is an independent set in
G. Because [a,z]| in G’, we have either [a,z’] or [a,z"]. But then
(a; 9, z,u,0) with u € {z/,z"} is a chair, a contradiction (note that
[0,%] and [0,7] since y,z ¢ N). Because, N N {a,z,y,2} # 0, it
follows obviously a € N.

(ii) Since @,z € N and N is a clique by construction, we have y,z ¢ N.
By Lemma 1(iii), we can choose z” so that |z",u| for u =1y,z. By
construction, |:c” ,ul. Suppose (ii) false, that is, at least two vertices
among {a’,a”,z’,z"} are not distinct. Because a’ # a” and =’ # z”,
we only have to consider the following two cases.

1) o' € {', ="}
Because [a,y] and [a,2] in G’ and [a’,y] and [a’,z] since o’ €
{z', ="}, it follows that [a”, y] and [a”, z]. But then (a";y, 2,0, a’)
is a chair.
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(2) a' e {xl’ xll}
Exchanging a’ and a”, we are back to the previous case.

(iii) By (ii), we can choose a”, z” so that a’,a”,z’,z" are all distinct
and {z’,z",y, z} is an independent set in G. Let F be the subgraph
induced by {0,a’,a”,2’,2”,y,2} in G, where 0 is the center of the
struction. We first prove that [a’, z']. Suppose on the contrary [a,z"].
Then [a”,2'] and [a’, "] otherwise either (0;a’,z’,a") or (0;a’,z’,z")
is a claw. We cannot have [a’, 3] and [a’, 2] otherwise F — {a”,2"} is a
chair. Similarly we cannot have [a”, 3] and [a”, 2] for otherwise either
[@”,z"] and (a";2’,u,2”,a’) with u € {y,z} is a chair (recall that
| N(a)N{y, 2} |< 1) or [@”,2"] and (a”;y, z,0,z") is a chair. Because
[a, 3] and [a, 2] in G’, we may assume, without loss of generality, [a’, 3],
[¢7,2], [a”, z] and [a”,y]. By Lemma 2 applied to configuration B =
(y,d’,2,0,a”, z), we have a” < z’ and hence o’ < a” < z’. Therefore
z’ is a follower of a’ , which implies [z”, 2] since [a, 2] in G’ and m
in G. This is a contradiction to the assumption [Z,2z]. Therefore
[¢/,2']. Asz’ and z” play a symmetrical role for the above arguments,
we may assume [a’,z”] as well. To finish the proof of (iii) we need
only to show [a”,z"] as we can deduce [¢”, z’] by symmetry. Suppose,
by contradiction, la.”, " ] Because (0;a”,z’,z") is not a claw, we
have [a”,z]. Clearly we cannot have [o”,y] and [a”,z] otherwise
F — {d',2'} is a chair. If [a”,2] then [a”,y] and hence [a/,y]. But
then F — {0, 2} is a chair. If [a”, 2] then [a”,] and hence [o/, z]. But
then F — {0,y} is a chair. The proof of (iii) is now complete.

(iv) By (i), @ € N and by construction, N is a clique. So, we only have
to consider the following two cases

(1) NN {a, z, Y, z} = {a'}
Let a’ correspond to a in G and choose any follower, a” say, of
a'. Suppose, by contradiction, at least one of a’, a”( a” say),
does not center a claw. Since [a,u] for u = z,y, z in G, we have
either [a/,u] or [a”,u]. By assumption, | N(a")N {z,y,2} |< 1
otherwise (a”;0,z,y for instance) is a claw. So, assume, with-
out loss of generality, [a’,z], [a’,3], [¢”, 7], [¢”,y]. But then
(a’;z,9,0,a"”) is a chair. Thus (1) must be rejected.

(2) Nn{a,z,y,2} = {a,z}
Let z’ correspond to z in G and choose z” such that |z", y| and
|:¢:",z|. By (ii), a’,a”,z’,z" are all distinct. As in (1), suppose
that a” does not center a claw. By (iii), [¢”,2’] and [a”,z"].
Therefore |a”,y| and [a”, z|, which imply [a’, 3] and [a’, 2] since
[a,v] and [a, z] in G’. But then (a’;y, 2,0,a”) is a chair.
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The proof of Lemma 3 is now complete. a

Proposition 3 Let G be a chair-free, net-free graph with a special vertex
0 and let G’ be oblained by a struction (centered at 0) from G. Then G’ is
chatr-free.

Proof. Assume that G’ contains a chair (a;b,c,d,e). At least one of
a,b,c,d, e is a new vertex for otherwise this chair exists in G. By Lemma
3(i) applied to claw (a;b, c, d), no one of b, ¢, d is the only one new vertex,
in particular we cannot have d,e € N. So, we have only three cases to
consider

1)

(2)

®

N n{a,b,c,d} = {a}

Let a’ correspond to a and choose a” so that [a”,e]. Since either
a’, d] or [a”, d], assume, without loss of generality, [, d]. Foru = b,c,
a’,u| for otherwise (a’;0,u,d, e) is a chair in G. As [a,4] in G’, we

must have [a”,b] and [a”, c]. But then (a”;b,c,0,a’) is a chair in G.

So (1) is impossible.

Nn{a,b,c,d} = {a,b}

Let a’ correspond to a and choose a” such that [a”,€]. Let ¥ corre-
spond to b and choose b” such that [b"—,c] and E’,_d] . Note also that
[t,€]. This is possible by Lemma 1(jii). By Lemma 3(ii), a’, a”,’,"
are all distinct. Assume first [a/,d]. By Lemma 3(iii) applied to the
claw (a;b,c,d), we have [a’,u], [a”,u] for u = I’,b"”. Observe that
[”, €] otherwise (a’;V,b",d,€) is a chair. Next, we see that [a’,c]
otherwise (a’;¥, ¢, d,e) is a chair. Therefore [2”, c] since [a,c] in G'.
But now (a”;b’, c,b”, e) is a chair. By similar arguments, a contradic-
tion arises if [a’,d] and hence [a”,d]. Thus (2) cannot occur.

Nn{a,b,c,d} = {a,d}

Consider o’ and a” as in (2) and let d’ correspond to d and choose
d” such that [d”,b] and |d”,c|]. By Lemma 3(ii), a’,a",d’,d" are
all distinct. Assume first [a’,c]. By Lemma 3(iii), [a, 4], [a",u] for
u = d',d”. We claim that [¢’,b] otherwise (a’;b,c,u,e€) is a chair,
with u € {d’,d"”} chosen so that [u,e] (since [d,e] in G’, we have
either [d', ] or [d”,e]). Therefore [a”,b] since [a,b] in G'. But now
(u;e,a’,a”,b) is a chair. The same arguments lead to a contradiction
if [@’,c] and hence [a”, c].

The proof of Proposition 3 is now complete. (]

Proposition 4 Let G be a chair-free, net-free graph with a special vertex
0 and let G! be obtained by a struction (centered at 0) from G. Then G’ is
net-free.
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Proof. Assume that (a,b,c;d, ¢, f) is an induced net in G’ and at least
one of its vertices is new. Four cases will be considered.

1)

()

©)

Nn{asbsc)d:eaf} = {d}

Let @’ correspond to d. Then [, u] for u = b, ¢, e, f. By Lemma 1(iii),
we can choose d” so that [d”,c] and [d”,e]. Now, [d,a] otherwise
(a,b,c;d',e, f) is a net. Since [d,a] in G’, we have [d”,a]. We next
observe that Id", f] otherwise (d”;a, f,0,d’) is a chair. But then
(a,b,c;d", e, f) is a net. Thus (1) is impossible.

Nn{a,b,c} = {a}

Let a’ correspond to a. Then [a”,u] for u = e, f . By Lemma 1(iii),
we can choose a” so that [a”, ] and [a7, f]. Suppose, without loss of
generality, [a/,c]. Then [a’,b] otherwise (c; f,a’,b,€) is a chair. But
then (a’,b,¢;0,¢, f) is a net. Thus (2) must be rejected. Note that
the arguments for the proof of (2) do not use the vertex d. So, no
further consideration is needed if N N {a,b,c} = {a,d}. Obviously
this case covers the ones where b or c is a new vertex.

Nn{a,b,c} = {a,b}
Let o', b’ correspond to a and b. Then [a”,u] for u =, f and [¥/,7]
for v = d, f. By Lemma 1(iii), there exist a” and b” so that [a”,u]

and |b”,v].

(3.1) a’,a”,b’,b" are all distinct.
We cannot have [u, c] and [u, d] for u € {a’, a"} otherwise («; 0, d,
¢, f) is a chair. Similarly we cannot have [v,c] and [v,e€] for
v € {¥,b"} otherwise (v;0,¢,¢, f) is a chair. Since [a,d], [a,d],
[b,c] and [b, €] in G’, we may assume, without loss of generality,
[@', ¢}, [a”, d], l.a’_!d.I’ [a‘”’ c]:[b" e], [b",d], m» [bT’EJ .
Suppose now Ia’,b"|. Then [¢/,¥], [a”,b"] since 0 does not
center a claw. We note that [a”,V | otherwise (b';e,a”,d’,¢c)
is a chair. By Lemma 2, applied to the subgraph induced by
{d,a”,0,0d’,c,b’} we have @’ X b'. Therefore a’ < b’ < b” and
hence b” is a follower of a’. Because [a,d] in G’ and [d,d],
we must have [b”,d], a contradiction which implies [a’,5"]. For
symmetrical reasons, we have [a”,b']. Now [a’,b’] otherwise
(¥';e,a”,d,¢) is a chair. But now (0,b’,a";d’, e, d) is a net.

(3.2) a” =V".
As 0 cannot center a claw, we have [a’, '] with a’ # b’. Since b” =
a” and [a”, €] we must have [V, ] since [b,e] in G’. Similarly
[a’, d] because [a”,d] = [b”,d]. But now (0,a’,b';a”,d,€) is a
net.
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(8.3) o' =b" (or a” =¥').
As 0 cannot center a claw, we have [a”,}'] . Because [b, €] in G’
and b’ =a” , we have [V, ¢]. Similarly [a”, d] since a’ = b” and
[#7,d]. But now (0,a",¥';a’,d,e€) is a net.

(4) Nn{a,b,c} = {a,b,c}
Let o/, b, ¢ correspond respectively to a, b and ¢. Then [a'_,u] for
u=ce,f, [b’_,v] for v =d, f and |c”,w| for w = e,d. By Lemma
1(iii), there exist a”, b” and ¢” so that [a”,u|, [v”,v] and |¢",w].
Let a € {d’,a"}, B € {V/,b"} and v € {¢/,’}. By assumption and
the definition of G’, we may choose «, 8, so that N(a)N{d,e, f} =
{d}, N(B)n{d,e, f} = {e}, N(v)n{d,e,f} = {f}. We recall that
[0, 2], [0, 5] and [0,4].

(4.1) o, B, are all distinct.
If [a,], [B,7] and [y, ] then (e, B,7; d,¢, f) is a net. If [, ],
[8,7] and [¥;@] then (B; 1, €, a, d) is a chair. If [, §] m and
[¥;@] then (0, &, B; v, d, €) is anet. If [&;7), [B,7] and [¥;@] then
(0; a, B,7) is a claw.

42) a=B#7.
If [@;7] then (o;d,e,0,7) is a chair. If [a,4] then (a;d, e,7, f)
is a chair.

43) a=p=1.
Assume, without loss of generality, that o = a’. Consider now

a”. We know that [a”,a’], [a”, €], [a”, f]. A final contradiction
arises since (o;e, f,0, a”) is a chair.

So, Proposition 4 is now proved. (]

4 Stability number of the class I" of graphs

Theorem 1 The stability number of a graph G in class I" can be obtained
in polynomial time.

Proof. We first prove that I is closed under the struction. By Propo-
sitions 3 and 4, G’ is chair-free, net-free whenever a special vertex exists
in G. If G € T, we certainly have such a vertex. So it remains to prove
that (iii) of Definition 1 holds for G’. By contradiction, suppose (iii) false
and let a,b two adjacent vertices, centering claws, in G'. By Lemma 3(i),
it suffices to consider the following two cases.

(1) a,beN.

For u = a,b, let u’ correspond to u in G and u” be a follower of u’. By
Lemma 3, a’,a”,b’,b"” are all distinct and they all center claws. If we
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choose any three vertices among the four, two of them are adjacent
because 0 does not center a claw. But then two adjacent vertices in
G center claws, a contradiction.

(2) NN{a,b}={b}

By Lemma 3(iv), both ¥',b"” center claws in G. Let z,y, z be chosen
so that (a;z,y, 2) is a claw (it is possible that b is one of these three
vertices). If z,y,z are all in G’ then (a;z,y,2) is a claw in G and
a contradiction arises since either [a’,b] or [a”,b] in G. So, we may
assume that z is new vertex. We can choose, by Lemma 1(iii), =
such that [z7,y], [z7,2]. Moreover [z7,3], [2’,z] by definition of
the struction. Since [a,z] in G’ then either (a;z’,y, 2) or (a;z",y, 2)
is a claw in G. As above, either [a’,b] or [a”,b] in G, we have a
contradiction to the assumption that no two adjacent vertices in G
center claws.

The first part of the proof is now complete. By Propositions 1 and 2,
at each stage of the struction, the order and the stability number of G’
decrease. By repeatedly applying the struction, thereby obtaining a
sequence G, G, ... of graphs, we stop as soon as we get G*)(1 <
k < n — 2) for which the stability number is easily obtained. Then
a(G) = k+p, (p > 1) if 2(G™)) = p. Obviously a special vertex exists
at each stage since (iii) holds. So, a polynomial algorithm giving
a(G) is easily gotten for any graph G e I'. Since the transformation
G — @ is applied at most n times and the whole construction of G’
has complexity O(n?) [8], it is clear that the whole complexity of the
algorithm is O(n%). n]

Remark 1 The class of graphs whose claw-centers form an independent
set is investigated in [1] for its domination and hamiltonian properties.
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