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ABSTRACT. We show that results analogous to the theorem of
the arithmetic and geometric means hold for the three mul-
tiplicative fundamental bases of the vector space of symmet-
ric functions - the elementary symmetric functions, the homo-
geneous symmetric functions, and the power sum symmetric
functions. We give examples to show that no such results hold
for the two non-multiplicative fundamental bases - the Schur
functions and the monomial symmetric functions.

1 Introduction

Let xy, x3,...,Z, be commuting indeterminates. A symmetric function (or
a symmetric polynomial) in z1, 3, . .., Zn is a polynomial in Z[z,, zs, . . ., Zn]
which is invariant under any permutation of the variables. The vector
space of all such polynomials is denoted by A,. It has five “fundamental”
bases whose elements are indexed by partitions A: the elementary sym-
metric functions e,, the homogeneous symmetric functions k,, the power
sum symmetric functions py, the Schur functions s, and the monomial
symmetric functions my. We adhere to the terminology and notation of
[2], which is the standard reference for the theory of symmetric functions.
(Usually, the symmetric functions are considered as formal power series in
infinitely many variables, but here we consider them as actual functions in
finitely many real variables.)

The well-known theorem of the arithmetic and geometric means (see for
example [1, Theorem 9)) is the following:
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Theorem 1.1 Let a1,as,...,an be nonnegative real numbers and
b= mﬁ‘;—*—"n be their mean. Then

a1a2 -+ an < b, (1)

Note that the left-hand side of (1) is en(a1, a2, - . -, ay), While the right-
hand side is en(b,b,...,b). In §2 we will show that the theorem of the
arithmetic and geometric means can be generalized to arbitrary elemen-
tary symmetric functions, i.e., Theorem 1.1 remains valid if we replace the
left and right-hand sides of (1) by ex(a1,a2,...,a) and ex(b,b,...,b) re-
spectively, where ) is any partition. In §3 and §4 we show that the opposite
inequality holds for the homogeneous and power sum symmetric functions.
It turns out that the two non-multiplicative bases, the monomial symmetric
functions and the Schur functions, do not behave well when the arguments
are replaced by their mean; Examples are given in §5.

2 The elementary symmetric functions

We denote by R the set of real numbers, and by R, the set of nonnegative
real numbers. For a € R we denote by |a| the absolute value of a. Let || || be
the norm on R™ given by: ||(a1,az,...,6.)|| = max{je;| : ¢ =1,2,...,n}.

Lemma 2.1 Let a = (a1,02,...,a,) € R} and a = (b,b,...,b) € R},
where b= 2iteatton  Then there exists a sequence a® =a a® a® ..
of elements in RZ, such that the following 8 conditions are satisfied:

® La® L a® i
PR n+ +n" = b for any i > 0, where a_g') is the jth element of

a®;

2. For any i > 0 there ezist j # k, 1 < j,k < n, such that a,(i) = af‘"'n

. (G C
. i+1) _ (i+1) _ o; +o
foranyl;éy,kandag-‘ )_af: =ik

]

3. ||a®) — &|| approaches 0 as i gets larger and larger.

Proof: If [|a{® — &|| = 0, then we are done. Otherwise, let j be such that
|a§.°) —b| = ||a®® — &|| and let k be such that a§0) — b and a{” — b have

different signs. (Clearly, such k exists.) Then let a{!) be the sequence with
a® = o for any I # j O _ (1) _ o+ :

=6y y | # j,k and a;’ = @) = -+, It is clear that
lat® — & < ||a(® — a||. Continuing in this way we construct a sequence
a® a(® a® . .. which satisfies (i) and (ii). To show that it satisfies (iii),

note that [al) — a|| < 3|la®) — &|| whenever j —i > n. 0
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Theorem 2.2 Let a and a be as in Lemma 2.1. Then for any partition A
we have the inequality:
ex(a) < ex(a).

Proof: If A = (A1, A2,..., \), theney = ey, ex, ... ey, and ey, (c1,c2,...,cn)
2 0 for any nonnegative real numbers c;, ca, ..., cs, so it will be enough to
prove Theorem 2.2 for partitipns X with only one part. If a(®, a1 a® .

is a sequence of elements in R, such that la®) —&|| approaches 0 as i gets

larger and larger, then clearly e,(a(*)) approaches e,.(a) for any r. Since
the e, are symmetric functions, this shows that Theorem 2.2 follows from
Lemma 2.1 and Proposition 2.3 below. O

Proposition 2.3 Let ay,as,...,a, be nonnegative real numbers and ¢ =
21492 Then for any r > 0 we have that e.(ay,ay,...,a,) < e.(c,c,a3,a4,

vy Gn)e

Proof: Let ¢ be an indeterminate. Then
n
Ze,(al,ag, cer @y )tT = H(l + a;t)
r>0 j=1

and

n
Ze"(cs c a3,a4,..., a‘n)tr = (1 + d)2 H(l + ajt)'

So the proof will be complete if we show that the polynomial
n n
Pt)=(1+c)? [J(1+a5t) - [ (1 +a5¢)
Jj=3 j=1
has nonnegative coefficients. But P(¢) can be written in the form
n 1 n
— (2 2 Y= L V2,2 )
P(t) = (c? — ajaz)t ,I=Is(1 +a5t) = 7(a1 — az)’t jl;Ia(l + ajt),

so we are done. ()

3 The homogeneous symmetric functions

Theorem 3.1 Let a and a be as in Lemma 2.1. Then for any partition \
the following inequality holds:

ha(a) > ha(a).
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As for the elementary symmetric functions, Theorem 3.1 follows from the
following:

Proposition 3.2 Let a;,a3,...,an be nonnegative real numbers and c =
21382, Then for any r > 0 we have that hy(ay, az,...,an) 2 hr(c, ¢, a3, a4,
ceeyGn).

Proof: The proof is analogous to that of Proposition 2.3. Let t be an
indeterminate. We have the identities:

Zhr(a'lr Q2. .. )a'n)tr = H(l - ajt)—l
i=1

r>0

and

Zhr(ci C, 03,04, -.., aﬁ)tr = (1 - d)—2 H(l - ajt)_l'
j=3

r2>0

So, to finish the proof it suffices to show that the formal power series

QW) =T[1-e) (1 -ty > JJ(A1 —a;t)™*

j=1 3=3

has nonnegative coefficients. This is clear from the following expression for

Q(e):

Q) = (& - s1a2)?(1 )2 [[(1 - o)
j=1

= %(a;l —a)**(1—ct) 2 [[(1 - as0)7".
i=1

4 The power sum symmetric functions

Theorem 4.1 Let a and a be as in Lemma 2.1. Then for any partition A
the inequality

pa(a) 2 pa(a)
holds.

As for the elementary and homogeneous symmetric functions, Theo-
rem 4.1 follows from the following:



Proposition 4.2 Let ay,ay,...,a, be nonnegative real numbers and ¢ =
21192 Then for any r > 0 we have that p.(ay,a,...,a,) 2 pr(c, c,a3,a4,
ceeyGp)-

Proof: Without loss of generality we can assume that a; = ¢+ d and
az = ¢ —d for some d with 0 < d < ¢. Then

pr(a1,02,...,a,) —prc,c,a3,a4,...,8,) = a] + af — 2¢"
=(c+d)" +(c—d) —2c
= Z z(r)cr—2id2i
- 21 ’
1<i<§

a

5 The Schur functions and the monomial symmetric functions

As we mentioned in the Introduction, Theorems 2.2, 3.1, and 4.1 do not
have analogs for the two non-multiplicative bases s and my. For example,
if all parts of a partition A have length 1, then s, = €,, and if A has only
one part, then s) = h,, but the elementary and homogeneous symmetric
functions behave differently when their arguments are replaced by their
mean. In fact, it turns out that we cannot even say whether the values of
sx or my increase or decrease for a fixed partition A when passing to the
mean of the arguments, as the following examples show.

Example 5.1 Let a; > ay be nonnegative real numbers and let b = ﬂ%’-
and c=N5% . Then a; = b+ ¢, az = b — ¢ and we have that

3(5,1)(6, b) —3(5,1)(0‘1, az) = 8(5’1)(b, b) —8(5,1)(6—0, b+c) = Cs-i-gbzc4 —5b462
which is positive when ¢ > 4/ 35021—_9(, and negative when ¢ < @b.

Example 5.2 Let ay,a3,b, and c be as in Ezample 5.1. Then
m(4'1)(b, b) —m(4,1)(a,1, a2) = M(4,1) (b, b) - 'm(4'1)(b+c, b —c) = 6bc4 —4b802

which is positive when ¢ > \/gb and negative when c < \/gb.
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