Two-Dimensional Sequences of Primitive Polynomials

Bongjoo Park¹, Taejoo Chang^{1,2}, Iickho Song² and Byung-Hwa Chang¹

¹Dept. 5-4-2, Agency for Defense Development (ADD)

P.O. Box 35, Yuseong, Daejeon 305-600

Korea

²Department of Electrial Engineering
Korea Advanced Institute of Science and Technology (KAIST)
373-1 Guseong Dong, Yuseong Gu, Daejeon 305-701
Korea
email: isong@Sejong.kaist.ac.kr

ABSTRACT. In this paper we consider the two-dimensional sequence of primitive polynomials, which is defined by two positive integers and a primitive polynomial. The concept of q^m conjugate order is used to describe the two-dimensional sequence. Using the two-dimensional sequences, we can find maximum period primitive polynomial sequences for more values of degrees than using the one-dimensional sequences. Examples of the applications of the two-dimensional sequence by computer search are shown.

1 Introduction

Primitive polynomials over GF(q) are useful in many application areas including design of scramblers, error correcting coders and decoders, and cryptographic devices.

The searching algorithms for primitive polynomials [1] can be divided into two classes: the class of algorithms which test a given polynomial for primitivity and the class of algorithms which construct primitive polynomials. For example, a construction algorithm for finding primitive polynomials has been proposed in [2]. The algorithm generates a sequence of primitive polynomials from a known primitive polynomial and an integer. (Such a sequence will be called one-dimensional.) In [3] the concept of the " q^m order" to determine the period of a sequence has been introduced.

It is an interesting problem to search all of the primitive polynomials for a given degree: that is, to search a primitive polynomial sequence whose period is equal to the maximum number $\phi(q^m-1)/m$ of primitive polynomials, where m is the degree.

We describe in this paper the two-dimensional sequences of primitive polynomials, which is defined by two positive integers and a primitive polynomial. The q^m conjugate order is introduced to describe the two-dimensional sequence. Some examples obtained from computer search are shown. It is shown that, using the two-dimensional sequences, we can find maximum period primitive polynomial sequences for more values of m than using the one-dimensional sequences.

2 Preliminaries

Let f(x) be a primitive polynomial of degree m over GF(q) with a root α . For an integer k such that $gcd(k, q^m - 1) = 1$, the minimal polynomial of α^k is a primitive polynomial and is said to be generated from f with k.

Let h and k be positive integers that are relatively prime to $q^m - 1$. If g is generated from f with k and y is generated from g with h, then the polynomial generated from f with h is y as shown in Figure 1.

Figure 1. Generation of primitive polynomials

For an integer k, for which $gcd(k, q^m - 1) = 1$, let f_{k^i} be generated from $f_{k^{i-1}}$ with k, $i = 1, 2, \ldots$, where f_1 is given. Then the sequence $\{f_{k^i}\}, i = 0, 1, 2, \ldots$, is called the one-dimensional sequence of primitive polynomials: for example, the sequence can be obtained from the generation method of primitive polynomials considered in [2]. The same sequence of polynomials $\{f_{k^i}\}$ can also be generated from f with k^i , as shown in Figure 2. In [3] the periods of the one-dimensional sequences have been determined by introducing the concept of the q^m order with the latter generation method.

Definition 1 ([3]) For a positive integer k such that $gcd(k, q^m - 1) = 1$, the q^m order of k, denoted by o(k), is the least integer $e \ge 1$ such that

$$k^e \equiv q^i \pmod{q^m - 1}$$
, for some integer i. (1)

Figure 2.

Generation of the one-dimensional sequence of primitive polynomials

Theorem 1 ([3]) If there exists an integer j such that $k^l \equiv q^j \pmod{q^m-1}$, then l is divisible by o(k).

Theorem 2 ([3]) For a positive integer k such that $gcd(k, q^m - 1) = 1$ and a primitive polynomial f_1 of degree m over GF(q), the period of the sequence $\{f_{ki}\}$ of primitive polynomials is o(k).

3 The two-dimensional sequence

In Section 2 we discussed briefly the (one-dimensional) sequence of primitive polynomials generated from a polynomial f of degree m and an integer k such that $gcd(q^m-1,k)=1$. Let us describe in this section a method of generating the two-dimensional sequence of primitive polynomials as an extension of the one-dimensional sequence: A two-dimensional sequence is a sequence of primitive polynomials which is generated from a primitive polynomial f and two positive integers and has distinct primitive polynomials in a period.

In Table 1, we list all $\phi(2^8 - 1)/8 = 16$ primitive polynomials of degree 8: the table will be used as an example in the sequel.

primitive polynomials	Binary	Hexadecimal
$x^8 + x^6 + x^5 + x + 1$	1 0110 0011	163_{H}
$x^8 + x^5 + x^3 + x + 1$	1 0010 1011	$12\mathrm{b}_H$
$ x^8 + x^7 + x^6 + x^5 + x^4 + x^2 + x + 1 $	1 1111 0101	1 f 5_H
$x^8 + x^6 + x^5 + x^4 + 1$	1 0111 0001	171 _H
$x^8 + x^5 + x^3 + x^2 + 1$	1 0010 1101	$12\mathrm{d}_H$
$x^8 + x^6 + x^3 + x^2 + 1$	1 0100 1101	$14d_H$
$x^8 + x^7 + x^6 + x^3 + x^2 + x + 1$	1 1100 1111	$1\mathrm{cf}_H$
$x^8 + x^7 + x^6 + x + 1$	1 1100 0011	1c3 _H
$x^8 + x^7 + x^6 + x^5 + x^2 + x + 1$	1 1110 0111	1e7 _H
$x^8 + x^7 + x^2 + x + 1$	1 1000 0111	187 _H
$x^8 + x^7 + x^3 + x^2 + x + 1$	1 1000 1101	$18d_H$
$x^8 + x^7 + x^5 + x^3 + x + 1$	1 1010 1001	$1a9_H$
$x^8 + x^6 + x^4 + x^3 + x^2 + x + 1$	1 0101 1111	15f _H
$x^8 + x^4 + x^3 + x^2 + 1$	1 0001 1101	$11d_H$
$x^8 + x^6 + x^5 + x^3 + 1$	1 0110 1001	169_{H}
$x^8 + x^6 + x^5 + x^2 + 1$	1 0110 0101	165 _H

Table 1. Primitive polynomials of degree 8

A. The two-dimensional sequence

Let $GF(q^m)$ be an extension of GF(q) and let $\alpha \in GF(q^m)$. Then the elements $\alpha, \alpha^q, \alpha^{q^2}, \ldots, \alpha^{q^{m-1}}$ are called the *conjugates of* α *with respect to* GF(q) and have the same minimal polynomial [1].

Definition 2 For two integers a and b, we say that b is the q^m conjugate of a or a and b are in the q^m conjugate relation, written $a \equiv_{q^m} b$, if

$$a \equiv bq^i \pmod{q^m - 1}$$
, for some integer i. (2)

Let β be an element of $GF(q^m)$, and a and b be two positive integers that are relatively prime to $q^m - 1$. If a and b are in the q^m conjugate relation, then β^a and β^b are conjugates with respect to GF(q), and the polynomial generated from f with a and that from f with b are the same. Conversely, if the polynomial generated from f with a and that from f with a are the same, then a and b are in the q^m conjugate relation.

Theorem 3 ([3]) For a positive integer k such that $gcd(k, q^m - 1) = 1$, let $K = \{k^i \mid 0 \le i < o(k)\}$. Then

- 1) An element in the set K is not in the q^m conjugate relation with any other element.
- 2) For any integer j, k^j is the q^m conjugate of $k^{j+o(k)n} \in K$ for some integer n.

Lemma 1 For integers a, b, c, d, and i, the following relations hold.

- 1) If $a \equiv_{a^m} b$, then $ac \equiv_{a^m} bc$.
- 2) If $a \equiv_{a^m} b$ and $b \equiv_{a^m} c$, then $a \equiv_{a^m} c$.
- 3) If $a \equiv_{q^m} b$ and $c \equiv_{q^m} d$, then $ac \equiv_{q^m} bd$.
- 4) If a and b are relatively prime to $q^m 1$ and $a \equiv_{q^m} b$, then $a^i \equiv_{q^m} b^i$.
- 5) If $gcd(q^m 1, k) = 1$, then $k^{o(k)} \equiv_{q^m} 1$.
- 6) If $gcd(q^m 1, k) = 1$, and $k^a \equiv_{q^m} 1$, then o(k)|a.

The proof of Lemma 1 is immediate from the definition of the q^m conjugate and Theorem 1.

Example 1 Let q = 2 and m = 8. Choose k = 7, h = 13, and $f(x) = x^8 + x^6 + x^5 + x + 1$ (The hexadecimal representation of a primitive polynomial will be used for convenience. For example, 163_H is the hexadecimal representation of f(x).) Then o(k) = 8 and o(h) = 4. We see that the primitive polynomial generated from f(x) with h^2 and that with k^4 are both $12d_H$, since $h^2 = 169$ and $k^4 = 2401$ are in the q^m conjugate relation (that is, $169 \equiv 2^2 \cdot 2401 \pmod{2^8 - 1}$).

Theorem 4 tells us a necessary condition for the two elements $h^i \in H$ and $k^j \in K$ to be in the q^m conjugate relation.

Theorem 4 Let k and h be two positive integers that are relatively prime to $q^m - 1$, and $d = \gcd(o(k), o(h))$. If

$$k^i \equiv_{\sigma^m} h^j, \tag{3}$$

then i is a multiple of o(k)/d and j is a multiple of o(h)/d.

Proof: Since d = gcd(o(k), o(h)), we may write o(k) = ud and o(h) = vd, where v and u are relatively prime. Exponentiating both sides of (3) by o(k), we have $k^{o(k)i} \equiv_{q^m} h^{o(k)j}$. Since $k^{o(k)i} \equiv_{q^m} 1$ from Lemma 1, $h^{o(k)j} \equiv_{q^m} 1$. Thus from 6) of Lemma 1, o(h)|o(k)j and vd|udj; that is, v|uj. Since gcd(v, u) = 1, we finally have v|j, or equivalently, j is a multiple of o(h)/d as desired.

Exponentiating both sides of (3) by o(h) and applying a similar procedure, we can prove that i is a multiple of o(k)/d.

Figure 3 illustrates Theorem 4.

Figure 3. Possible i and j such that $k^i \equiv_{q^m} h^j$

Let us next find the distribution of h^j which is in the q^m conjugate relation with k^i .

Theorem 5 For two positive integers k and h that are relatively prime to $q^m - 1$, let

$$K = \{k^i \mid 0 \le i < o(k)\} \tag{4}$$

and

$$H_K = \{h^i \mid 0 \le i < o(h), the \ q^m \ conjugate \ of \ h^i \ must \ be \ in \ K\}. \tag{5}$$

Then there exists a divisor a of o(h) such that

$$H_K = \{h^{ai} \mid 0 \le ai < o(h), i \text{ is a nonnegative integer}\}. \tag{6}$$

Proof: Let b be the smallest nonzero exponent of the elements in H_K . We define

$$A = \{h^{bi} \mid 0 \le bi < o(h), i \text{ is a nonnegative integer}\}.$$
 (7)

Then it is sufficient to show that b is a divisor of o(h) and A is equal to H_K .

Let o(h) = bQ + r for two integers Q and r, where $0 \le r < b$. Then we have $h^r \equiv_{q^m} h^{-bQ}$, since $h^{o(h)} = h^{bQ+r} = h^{bQ}h^r$ and $h^{o(h)} \equiv_{q^m} 1$. Next, since h^b is an element of H_K , we have $h^b \equiv_{q^m} k^j$ for some integer j, from which we get $h^{-bQ} \equiv_{q^m} k^{-jQ}$. Thus h^r is an element of H_K , since k^{-jQ} is the q^m conjugate of an element in K from Theorem 3. Therefore, it follows that r = 0 from the minimality of b. This means b is a divisor of o(h).

Let us next show that $A = H_K$ by showing $A \subseteq H_K$ and $A \supseteq H_K$. Since h^b is an element of H_K , so is h^{bi} for an integer i; that is, A is a subset of H_K . Let $c = bR + s, 0 \le s < b$. Then we have $h^s = h^c h^{-bR}$, since $h^c = h^{bR+s} = h^{bR}h^s$. Next, since h^b is an element of H_K , $h^b \equiv_{q^m} k^j$ for some integer j, or $h^{-bR} \equiv_{q^m} k^{-jR}$. Since h^c and $h^{-bR} \equiv_{q^m} k^{-jR}$ are the q^m conjugates of some elements in K, so is h^s . Thus we must have s = 0, or s = bR, from the minimality of b. This concludes $h^c \in A$.

Definition 3 For two positive integers h and k that are relatively prime to $q^m - 1$, the q^m conjugate order of h with respect to k, denoted by $o(h)_k$, is the least positive integer z such that

$$h^z \equiv q^i k^j \pmod{q^m - 1}, \quad \text{for some integers } i, j.$$
 (8)

It is easily found from the proof of Theorem 5 that $o(h)_k$ is the number a described in Theorem 5. Therefore we know from Theorem 4 that $o(h)_k$ is a multiple of o(h)/d and a divisor of o(h), where $d = \gcd(o(k), o(h))$.

Theorem 6 For two positive integers h and k that are relatively prime to $q^m - 1$, let $G(h, k) = \{h^i k^j \mid 0 \le i < o(h)_k, 0 \le j < o(k)\}$. Then no two elements in the set G(h, k) are in the q^m conjugate relation.

Proof: Let $a = h^i k^j$ and $b = h^u k^v$ be two elements of G(h, k). Suppose that a and b are distinct and in the q^m conjugate relation, or equivalently

$$h^i k^j \equiv_{q^m} h^u k^v. \tag{9}$$

Case 1: i = u. By rewriting (9), we have $k^{j-v} \equiv_{q^m} 1$, and -o(k) < j-v < o(k). Since o(k)|(j-v) from 6) of Lemma 1, j = v, and a = b, which is a contradiction.

Case 2: i > u. We have $0 < i-u < o(h)_k$, and (9) becomes $h^{i-u} \equiv_{q^m} k^{v-j}$. This contradicts the definition of $o(h)_k$.

Case 3: i < u. A contradiction can be established as in Case 2.

Therefore, no two elements in G(h, k) are in the q^m conjugate relation. \square

Figure 4. The two-dimensional sequence of $o(k)o(h)_k$ primitive polynomials

The number of elements in G(h,k) is $o(h)_k o(k)$. Since no two elements are in the q^m conjugate relation in G(h,k) by Theorem 6, a primitive polynomial sequence of length $o(h)_k o(k)$ will be generated from an arbitrary primitive polynomial and the elements in G(h,k). This sequence of primitive polynomials constitutes the two-dimensional sequence as shown in Figure 4, where the points on the $o(h)_k$ circles represent the elements in G(h,k). Figure 4 also shows a practical way to obtain the two-dimensional sequence: for $h^i, i = 0, 1, \ldots, o(h)_k - 1$, we get o(k) primitive polynomials from a primitive polynomial f with $k^0, k^1, \ldots, k^{o(h)-1}$.

Figure 5. An example of the two-dimensional sequence of 8×2 primitive polynomials of degree 8 over GF(2) for k = 7 and h = 13

Example 2 Let q=2, m=8, k=7, h=13, and $f(x)=x^8+x^6+x^5+x+1$ (=163_H). Then o(k)=8 and $o(h)_k=2$. The one-dimensional sequence generated from 163_H with k is {163_H, 12b_H, 1f5_H, 171_H, 12d_H, 14d_H, 1cf_H, 1c3_H} and the two-dimensional sequence generated from 163_H with

k = 7 and h = 13 is $\{163_H, 12b_H, 1f5_H, 171_H, 12d_H, 14d_H, 1cf_H, 1c3_H, 1e7_H, 187_H, 18d_H, 1a9_H, 15f_H, 11d_H, 169_H, 165_H\}$ as shown in Figure 5. Because we have all the primitive polynomials of degree 8, we need not generate further primitive polynomials from $12d_H$ or $15f_H$.

Now let us show that a two-dimensional sequence can be obtained by exchanging h and k.

Theorem 7 Given a primitive polynomial f and two positive integers h and k that are relatively prime to $q^m - 1$, let

$$G'(h,k) = \{h^i k^j \mid 0 \le i < o(h), \ 0 \le j < o(k)\},\tag{10}$$

and

$$G(h,k) = \{h^i k^j \mid 0 \le i < o(h)_k, \ 0 \le j < o(k)\}. \tag{11}$$

Then f-G(h, k) and f-G'(h, k) are the same set.

Proof: All we have to show is that the primitive polynomials generated from f with an element of G'(h,k) for $o(h)_k \leq i < o(h)$ are redundant ones. For $a \geq o(h)_k$, we may write $a = o(h)_k Q + r$ with $0 \leq r < o(h)_k$. Then we have $h^a \equiv_{q^m} k^{jQ} h^r$, since $h^a = h^{o(h)_k Q + r}$ and $h^{o(h)_k} \equiv_{q^m} k^j$ by the definition of $o(h)_k$. Thus h^a is the q^m conjugate of an element in G(h,k), and the primitive polynomial generated from f with h^a is an element of $f \cdot G(h,k)$.

Note that we have f-G(h, k) = f-G(k, h), since f-G(h, k) = f-G'(h, k) and f-G'(h, k) = f-G(k, h) from Theorem 7.

Corollary 1 For two positive integers h and k that are relatively prime to $q^m - 1$,

$$o(h)_k o(k) = o(k)_h o(h). \tag{12}$$

Eq. (12) is the period of a two-dimensional sequence of primitive polynomials. Figures 4 and 6 show the relation (12). Figure 7 is an example of the two-dimensional sequence generated from the primitive polynomial 163_H as in Figure 5 with k and h exchanged.

Figure 6. The two-dimensional sequence of $o(h)o(k)_h$ primitive polynomials

Figure 7. An example of the two-dimensional sequence of 4×4 primitive polynomials of degree 8 over GF(2) for h = 13 and k = 7.

B. Computing the period

It is well-known that the number of primitive polynomials of degree m is $\phi(q^m-1)/m$ [1]. From Theorem 6 the number of primitive polynomials in f-G(h,k) is $o(h)_k o(k)$. Thus we can determine all the primitive polynomials of degree m, if we find two positive integers h and k such that

$$o(h)_k o(k) = \phi(q^m - 1)/m.$$
 (13)

Let us describe a method for finding h and k satisfying (13). Factorization of $q^m - 1$ required to compute $\phi(q^m - 1)$ can be accomplished as in [4], and o(k) can be found using the algorithm considered in [3]. Here we obtain an explicit method for computing $o(h)_k$.

Theorem 8 For two positive integers h and k that are relatively prime to $q^m - 1$, if

$$h^i \equiv_{q^m} k^j, \tag{14}$$

then

$$gcd(id/o(h), d) = gcd(jd/o(k), d),$$
(15)

where d = gcd(o(h), o(k)).

Proof: From d = gcd(o(h), o(k)) we have o(h) = ud and o(k) = vd for two integers u and v that are relatively prime. From Theorem 4 we may write i = su and j = tv for some integers s and t. Thus we have to show gcd(s, d) = gcd(t, d).

- 1) Let w = gcd(s, d). Then we have s = wa and d = wb for two integers a and b. Exponentiating both sides of (14) by b, we obtain $h^{aud} \equiv_{q^m} k^{tvb}$, or $h^{o(h)a} \equiv_{q^m} k^{tvb}$ so that $k^{tvb} \equiv_{q^m} 1$ from 5) of Lemma 1. Thus we have o(k)|tvb, vd|tvb, vwb|tvb, or w|t from 6) of Lemma 1. Since w|t and w|d, we have w|gcd(t, d), or gcd(s, d)|gcd(t, d).
- 2) Letting z = gcd(t, d) and applying a similar procedure as above, we can easily show gcd(t, d)|gcd(s, d).

The results 1) and 2) imply
$$gcd(s, d) = gcd(t, d)$$
 as desired.

Example 3 Let q=2, m=8, k=7, and h=13. Then o(k)=8, o(h)=4, and $g=\gcd(o(h),o(k))=4$. Let i=2 and j=4. Then we have $\gcd(2\cdot 4/8)=\gcd(4\cdot 4/8)$, noting that $169\equiv 2^2\cdot 2401 \pmod{2^8-1}$. Now we take j=3. Then $\gcd(2\cdot 4/8)\neq \gcd(3\cdot 4/8)$. This shows that for given i and j we can easily check if $h^i\equiv_{q^m}k^j$. (More precisely, in order to show i and j do not satisfy (14), it is easier to show that (15) is not satisfied for the same i and j.)

For two positive integers h and k that are relatively prime, let $d = \gcd(o(h), o(k))$, then o(h) = ud and o(k) = vd. Then $o(h)_k$ is a multiple of u from Theorem 4, and is a divisor of o(h) from Theorem 5. Let $o(h)_k = nu$ for an integer n, then n|d, since $o(h)_k|o(h)$. From Theorem 8, $\gcd(i/u, d) = \gcd(j/v, d)$, or $n = \gcd(j/v, d)$. Thus we have the following Corollary.

Corollary 2 For two positive integers h and k that are relatively prime to $q^m - 1$, let $d = \gcd(o(h), o(k))$. If $h^{o(h)_k} \equiv_{q^m} k^j$ then $n = \gcd(jd/o(k), d)$, where $o(h)_k = n \cdot o(h)/d$.

Theorem 9 For two positive integers h and k that are relatively prime to q^m-1 , let $d=\gcd(o(h),o(k))$, o(h)=du, o(k)=dv, and $o(h)_k=nu$. Then for a factor a of d and some integer j, there exist an integer l, $0 \le l < g$, and a prime factor p of a such that $h^{au/p} \equiv_{q^m} k^{lv}$, if $h^{au} \equiv_{q^m} k^{jv}$ and $au \ne o(h)_k$.

Proof: Since $h^{au} \equiv_{q^m} k^{jv}$, we have from Theorem 5 $o(h)_k | au$, nu | au, or n|a. Since $au \neq o(h)_k$, we get $a/n \neq 1$, so that a/n must have a prime factor $p, p \neq 1$.

Let c = a/(np). Then a/p = nc, au/p = ncu, or $au/p = o(h)_k c$. Therefore from Theorem 5 there exists an integer l such that $h^{au/p} \equiv_{q^m} k^{lv} (0 \le l < g)$.

Taking the contraposition of Theorem 9, we reach the final result for computing $o(h)_k$ as follows.

Corollary 3 For two positive integers h and k that are relatively prime to $q^m - 1$, let $d = \gcd(o(h), o(k))$, o(h) = du, o(k) = dv, and $o(h)_k = nu$. Suppose there exist an integer j and a factor a of d such that $h^{au} \equiv_{q^m} k^{jv}$. If $h^{au/p} \not\equiv_{q^m} k^{lv}$, for any prime factor p of a and any integer l, then $au = o(h)_k$.

So far we have shown that we can obtain the two-dimensional sequences of primitive polynomials by computing $o(h)_k$. For three integers h, k, and t that are relatively prime to $q^m - 1$, we can similarly generate the 3-dimensional sequences if we first find the smallest t^i which is the q^m conjugate of an element of G(h, k) defined in Theorem 7. (Of course, higher dimensional sequences may similarly be generated.)

C. Examples

We have computed the longest period of the one-dimensional sequence for each pair (q, m) by allowing k to change from 3 to 99: when q = 2 the

number of pairs (q, m) is 119 since $3 \le m \le 121$, and when q = 3 the number is 23 since $3 \le m \le 25$. We used Algorithm-P [3] to compute the periods. In Table 2, we listed the values of k, for which the longest periods of the one-dimensional sequences are equal to $\phi(q^m - 1)/m$. In the table, a missing value set $\{q, m, \text{ period}, k\}$ means that there does not exist a value of $k \in [3, 99]$ for which the sequence period is maximum.

\overline{q}	m	Period	k
2	4	2	7
2	5	6	3
2	6	6	5
2	7	18	3
2	13	630	17
2	17	7710	3
2	19	26594	3
2	31	69273666	7
2	61	37800705069076950	37
3	7	156	5
3	13	61320	17
3	17	379610	7

Table 2. Some values of k for which the period of the one-dimensional sequence is maximum.

Some values of h and k for which the period of the two-dimensional sequence equals to $\phi(q^m-1)/m$ are shown in Table 3, which are obtained for the same ranges of q, m, and k as above and $3 \le h \le 51$. The values of k are taken from the result of the one-dimensional sequence: that is, we choose the value k for which the one-dimensional sequence has the longest period for given (q, m). Theorem 9 is used to calculate the periods.

\overline{q}	m	k	h	o(k)	$o(h)_k$	$o(k) \times o(h)_k$
2	10	5	13	30	2	60
2	11	3	5	88	2	176
2	14	7	5	126	6	756
2	23	3	5	178480	2	356960
2	25	11	7	1800	120	129600
2	26	7	5	8190	210	171900
2	34	5	13	131070	2570	336849900
2	38	5	11	524268	9198	4822382628
3	11	5	7	3850	2	7700
3	17	7	23	379610	10	3796100
3	19	13	5	36388	84	30566592

Table 3. Some values of h and k for which the period of the two-dimensional sequence is maximum.

4 Conclusion

The two-dimensional sequence of primitive polynomials has been described by introducing the concept of the q^m conjugate order: the two-dimensional sequence can be extended to higher dimensional case. Using the two-dimensional sequences, we can find maximum period primitive polynomial sequences for more values of degrees than using the one-dimensional sequences.

The distribution of the number of terms of primitive polynomials in the sequence and a new method to test the primitivity of a primitive polynomial based on the result of this paper are under consideration.

Acknowledgements

This research was supported in part by the Ministry of Information and Communications under a Grant from the University Basic Research Fund, for which the authors would like to express their thanks.

References

- [1] R. Lidi and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge: Cambridge University Press, 1986.
- [2] A. Di Porto, F. Guida, and E. Montolivo, Fast algorithm for finding primitive polynomials over GF(q), Electron. Lett., Vol. 28, Jan. 1992, pp. 118-120.
- [3] B. Park, H. Choi, T. Chang, and K. Kang, Period of sequences of primitive polynomials, *Electron. Lett.*, Vol. 29, Feb. 1993, pp. 390-391.
- [4] J. Brillhart, D.H. Selfdidge, J.L. Tuckerman, and S.S.J. Wagstaff, Contemporary Mathematics, Factorizations of $b^n \pm 1$, b = 2, 3, 5, 7, 11, 13 up to High Powers, Providence: American Mathematical Society Press, 1983.