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ABSTRACT. In this paper we consider the two-dimensional se-
quence of primitive polynomials, which is defined by two posi-
tive integers and a primitive polynomial. The concept of ¢™
conjugate order is used to describe the two-dimensional se-
quence. Using the two-dimensional sequences, we can find max-
imum period primitive-polynomial sequences for more values of
degrees than using the one-dimensional sequences. Examples of
the applications of the two-dimensional sequence by computer
search are shown.

1 Introduction

Primitive polynomials over GF(g) are useful in many application areas
including design of scramblers, error correcting coders and decoders, and
cryptographic devices.

The searching algorithms for primitive polynomials [1] can be divided into
two classes: the class of algorithms which test a given polynomial for prim-
itivity and the class of algorithms which construct primitive polynomials.
For example, a construction algorithm for finding primitive polynomials
has been proposed in [2]. The algorithm generates a sequence of primitive
polynomials from a known primitive polynomial and an integer. (Such a
sequence will be called one-dimensional.) In [3] the concept of the ”¢™
order” to determine the period of a sequence has been introduced.
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It is an interesting problem to search all of the primitive polynomials for
a given degree: that is, to search a primitive polynomial sequence whose
period is equal to the maximum number ¢(¢g™ — 1)/m of primitive polyno-
mials, where m is the degree.

We describe in this paper the two-dimensional sequences of primitive
polynomials, which is defined by two positive integers and a primitive
polynomial. The ¢™ conjugate order is introduced to describe the two-
dimensional sequence. Some examples obtained from computer search are
shown. It is shown that, using the two-dimensional sequences, we can find
maximum period primitive polynomial sequences for more values of m than
using the one-dimensional sequences.

2 Preliminaries

Let f(z) be a primitive polynomial of degree m over GF(q) with a root a.
For an integer k such that ged(k, ¢™ — 1) = 1, the minimal polynomial of
o is a primitive polynomial and is said to be generated from f with k.
Let h and k be positive integers that are relatively prime to ¢™ — 1. If
g is generated from f with k and y is generated from g with k, then the

polynomial generated from f with kh is y as shown in Figure 1.

9

>y
kh

Figure 1. Generation of primitive polynomials

For an integer k, for which ged(k,q™ — 1) = 1, let fis be generated
from fri-1 with k, ¢ = 1,2,..., where f; is given. Then the sequence
{fx:},i = 0,1,2,..., is called the one-dimensional sequence of primitive
polynomials: for example, the sequence can be obtained from the generation
method of primitive polynomials considered in [2]. The same sequence
of polynomials {fx:} can also be generated from f with k*, as shown in
Figure 2. In [3] the periods of the one-dimensional sequences have been
determined by introducing the concept of the ¢™ order with the latter
generation method.

Definition 1 ([3]) For a positive integer k such that gcd(k,q™ — 1) =1,
the g™ order of k, denoted by o(k), is the least integer e > 1 such that

®=g¢' (mod g™ —1), for some integer i. 1)

98



N
k e e k
» : R
Su Y Se
vk\ ’ ‘{
Figure 2.

Generation of the one-dimensional sequence of primitive polynomials

Theorem 1 ([3]) If there exists an integer j such that k' = ¢7 (mod g™ —
1), then l is divisible by o(k).

Theorem 2 ([3]) For a positive integer k such that gcd(k,q™ — 1) = 1
and a primitive polynomial fi of degree m over GF(q), the period of the
sequence {fyi} of primitive polynomials is o(k).

3 The two-dimensional sequence

In Section 2 we discussed briefly the (one-dimensional) sequence of primi-
tive polynomials generated from a polynomial f of degree m and an integer
k such that ged(¢™ — 1, k) = 1. Let us describe in this section a method of
generating the two-dimensional sequence of primitive polynomials as an ex-
tension of the one-dimensional sequence: A two-dimensional sequence is a
sequence of primitive polynomials which is generated from a primitive poly-
nomial f and two positive integers and has distinct primitive polynomials
in a period.

In Table 1, we list all ¢(28 — 1)/8 = 16 primitive polynomials of degree
8: the table will be used as an example in the sequel.
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primitive polynomials Binary Hexadecimal
B+t +x+1 1 0110 0011 1635
B+ +2+z+1 1 0010 1011 12by
B4z +254+ 25 +24+22 4+ 17| 11111 0101 15,
B+ 4z4 41 1 0111 0001 171y
B+ +3 42241 1 0010 1101 12dy
B4+ x241 1 0100 1101 14dy
B+’ +28+3 422+ +1 11100 1111 lcfy
B+’ +z8+z+1 1 1100 0011 1c3y
B4’z 4254224241 11110 0111 1e7y
B+ +z+1 1 1000 0111 1874
Bz’ +2834+224z+1 1 1000 1101 18dy
B4+ 4283 4+z+1 1 1010 1001 129y
Braf i+ B +22+z+1 1 0101 1111 15fy
B+zi+ 8 +2241 1 0001 1101 11dy
B4+ 542341 1 0110 1001 169
B+l +a5 42241 1 0110 0101 165y

Table 1. Primitive polynomials of degree 8

A. The two-dimensional sequence

Let GF(g™) be an extension of GF(q) and let « € GF(¢™). Then the
elements «, af, a"z, cee ,cv"m—l are called the conjugates of o with respect
to GF(q) and have the same minimal polynomial [1].

Definition 2 For two integers a and b, we say that b is the ¢™ conjugate
of a or a and b are in the q™ conjugate relation, written a =¢m b, if

a=bq' (mod q™ —1), for some integer i. 2

Let 8 be an element of GF(g*), and a and b be two positive integers that
are relatively prime to ¢™ — 1. If @ and b are in the ¢™ conjugate relation,
then 8° and B° are conjugates with respect to GF(g), and the polynomial
generated from f with a and that from f with b are the same. Conversely,
if the polynomial generated from f with a and that from f with b are the
same, then a and b are in the ¢™ conjugate relation.

Theorem 3 ([3]) For a positive integer k such that gcd(k,q™ —1) =1, let
K ={k'|0<i<o(k)}. Then

1) An element in the set K is not in the g™ conjugate relation with any
other element.

2) For any integer j, k7 is the ¢™ conjugate of kito(F)* ¢ K for some
inleger n.
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Lemma 1 For integers a,b, c,d, and %, the following relations hold.
1) If a=¢m b, then ac =g be.
2) Ifa=gm bandb=gn c, thena =g~ c.
3) Ifa=gm b and c=¢m d, then ac =¢m bd.
4) Ifa and b are relatively prime to ¢™ —1 and a =¢m b, then a* =¢m b'.
5) If ged(q™ — 1,k) = 1, then k°") =¢m 1.
6) If gcd(q™ — 1,k) =1, and k® =¢m 1, then o(k)|a.

The proof of Lemma 1 is immediate from the definition of the ¢™ conju-
gate and Theorem 1.

Let A = {a1,a,...,an} be a set of integers whose elements are relatively
prime to ¢™ — 1. Let us denote by f~A the set of primitive polynomials
generated from the primitive polynomial f with the elements of A: that is, f
A ={fays faz:--- s fa, }- For two positive integers k and h that are relatively
prime to g™ — 1, let K = {k* | 0 < i < o(k)} and H = {h* | 0 < i < o(h)}.
Then the o(k) elements of f-K are distinct from each other due to 1) of
Theorem 3. From 2) of Theorem 3, for an arbitrary integer %, the primitive
polynomial generated from f with k! is an element of f-K. However, the
primitive polynomials generated from the elements of f-K with the elements
of H may not be distinct from each other in general, because an element
of K may be in the ¢™ conjugate relation with an element in H. In other
words, the number of distinct primitive polynomials generated from f-K and
elements of H is less than o(k)o(k), if k7 and k* are in the ¢™ conjugate
relation for some 7 and j.

Example 1 Let ¢ = 2 and m = 8. Choose k = 7, h = 13, and f(z) =
78 + 28 4+ 2% + £ + 1 (The hezadecimal representation of a primitive poly-
nomial will be used for convenience. For example, 163y is the hezadecimal
representation of f(z).) Then o(k) = 8 and o(h) = 4. We see that the
primitive polynomial generated from f(z) with h? and that with k* are both
12dy, since h? = 169 and k* = 2401 are in the ¢™ conjugate relation (that
is, 169 = 22 - 2401(mod 28 — 1)). 0

Theprem 4 tells us a necessary condition for the two elements hie H
and k7 € K to be in the g™ conjugate relation.

Theorem 4 Let k and h be two positive integers that are relatively prime
to g™ — 1, and d = ged(o(k), o(h)). If

ki Eqm hj, (3)
then ¢ is a multiple of o(k)/d and j is e muliiple of o(h)/d.
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Proof: Since d = ged(o(k), o(h)), we may write o(k) = ud and o(k) = vd,
where v and u are relatively prime. Exponentiating both sides of (3) by o(k),
we have k°(5) = m ho(K)i_ Since k°*¥¥ =¢m 1 from Lemma 1, h°0F =;m 1.
Thus from 6) of Lemma 1, o(h)|o(k)j and vd|udj; that is, v|uj. Since
ged(v,u) = 1, we finally have v|j, or equivalently, j is a multiple of o(h)/d
as desired.

Exponentiating both sides of (3) by o(kh) and applying a similar proce-
dure, we can prove that ¢ is a multiple of o(k)/d. a

Figure 3 illustrates Theorem 4.

= o(k) k*
ged(o(k), o(h)

k3¢

B oh)

1=K =k = “ged(olk), o(R))

Figure 3. Possible i and j such that kf =;m hJ

102



Let us next find the distribution of A7 which is in the ¢™ conjugate
relation with k.

Theorem 5 For two positive integers k and h that are relatively prime to
gt —1, let

K={k"|0<1i<o(k)} (4)
and
Hy = {h* | 0 < i < o(h), the ¢™ conjugate of h* must be in K}. (5)
Then there erists a divisor a of o(h) such that

Hy = {h* | 0 < ai < o(h),i is a nonnegative integer}. (6)

Proof: Let b be the smallest nonzero exponent of the elements in Hyx. We
define

A= {h" | 0 < bi < o(h), i is a nonnegative integer}. (7

Then it is sufficient to show that b is a divisor of o(h) and A is equal to
Hy.

Let o(h) = bQ + r for two integers Q and r, where 0 < r < b. Then we
have h™ =gm h~%Q, since h°*) = RP@+T = RPQRT and R = m 1. Next,
since A’ is an element of Hg, we have h® =qm k7 for some integer j, from
which we get A~5@ =;m k~J2. Thus A" is an element of Hg, since k=79 is
the ¢™ conjugate of an element in K from Theorem 3. Therefore, it follows
that 7 = 0 from the minimality of b. This means b is a divisor of o(k).

Let us next show that A = Hg by showing A C Hy and A D Hg. Since
h® is an element of Hy, so is h% for an integer i; that is, A is a subset
of Hi. Let ¢ = bR+ 5,0 < s < b. Then we have h* = h°h~bR since
he = hbR+s — pbRps  Next, since kb is an element of Hy, h® =,m k7 for
some integer j, or k=R =;m k8. Since h¢ and h~R =m l‘:‘jﬁ are the
g™ conjugates of some elements in K, so is h°. Thus we must have s = 0,
or s = bR, from the minimality of b. This concludes h® € A. a

Definition 3 For two positive integers h and k that are relatively prime to
g™ — 1, the ™ conjugate order of h with respect to k, denoted by o(h),, is
the least positive integer z such that

h* = ¢k (mod ¢™ — 1), for some integers i, j. (8)

It is easily found from the proof of Theorem 5 that o(k), is the number
a described in Theorem 5. Therefore we know from Theorem 4 that o(k),
is a multiple of o(h)/d and a divisor of o(k), where d = ged(o(k), o(h)).
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Theorem 6 For two positive integers h and k that are relatively prime to
g™ — 1, let G(h,k) = {h*k? | 0 < i < o(h),, 0 < j < o(k)}. Then no two
elements in the set G(h, k) are in the ¢™ conjugate relation.

Proof: Let a = h'k? and b = h*k” be two elements of G(k, k). Suppose
that a and b are distinct and in the ¢™ conjugate relation, or equivalently

hikT =gm RUK. 9)

Case 1: i = u. By rewriting (9), we have ki~Y =¢m 1, and —o(k) < j—v <

o(k). Since o(k)|(j — v) from 6) of Lemma 1, j = v, and a = b, which is a

contradiction.

Case 2: i > u. Wehave 0 < i—u < o(h),, and (9) becomes hi~% =¢m k¥,

This contradicts the definition of o(h),.

Case 3: i < u. A contradiction can be established as in Case 2.
Therefore, no two elements in G(h, k) are in the g™ conjugate relation. O

Figure 4.
The two-dimensional sequence of o(k)o(h); primitive polynomials
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The number of elements in G(h, k) is o(k),o(k). Since no two elements
are in the g™ conjugate relation in G(k, k) by Theorem 6, a primitive poly-
nomial sequence of length o(h),o(k) will be generated from an arbitrary
primitive polynomial and the elements in G(k, k). This sequence of prim-
itive polynomials constitutes the two-dimensional sequence as shown in
Figure 4, where the points on the o(k), circles represent the elements in
G(h, k). Figure 4 also shows a practical way to obtain the two-dimensional
sequence: for h¥,i=0,1,...,0(h), — 1, we get o(k) primitive polynomials
from a primitive polynomial f with k%,k!,...  ko()-1,

15y

171,

<

165 ldg

169 4

Figure 5. An example of the two-dimensional sequence of 8 x 2
primitive polynomials of degree 8 over GF(2) for k = 7 and k=13

Example 2 Letq=2,m =8,k=7,h=13, and f(z) =28+ 28 +25+2+
1 (=163y). Then o(k) = 8 and o(h), = 2. The one-dimensional sequence
generated from 168y with k is {163y, 12by, 1f6y, 171y, 12dy, 14dy,
Icfy, 1¢8y} and the two-dimensional sequence generated from 163y with
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k=7 and h =13 is {163y, 12by, 1f5y, 171y, 12dy, 14dy, lcfu, 1¢3u,
le?y, 187y, 18dy, 1a9y, 15fy, 11dy, 169y, 1654} as shown in Figure
5. Because we have all the primitive polynomials of degree 8, we need not
generate further primitive polynomials from 12dy or 15fy. O

Now let us show that a two-dimensional sequence can be obtained by
exchanging k and k.

Theorem 7 Given a primitive polynomial f and two positive integers h
and k that are relatively prime to ¢™ — 1, let

G'(h,k) = {h*k? | 0 <i<o(h), 0<j <o(k)}, (10)
and

G(h,k) = (k'K | 0 < i< o(h), 0 <j<o(k)}. (11)
Then f-G(h, k) and f-G'(h,k) are the same set.

Proof: All we have to show is that the primitive polynomials generated
from f with an element of G'(h, k) for o(h), < i < o(h) are redundant ones.
For a > o(h),, we may write a = o(h),Q + r with 0 < r < o(h),. Then
we have h® =¢m kI?h", since h® = HOLQ4T and oW =,m k’ by the
" definition of o(h),. Thus h® is the ¢™ conjugate of an element in G(h, k),
and the primitive polynomial generated from f with h® is an element of
FG(h, k).

Note that we have f-G(h, k) = f-G(k, k), since f-G(h, k) = f-G'(h, k) and
F-G'(h, k) = f-G(k, h) from Theorem 7.

Corollary 1 For two positive integers h and k that are relatively prime to
qm - 1;

o(h)o(k) = o(k),o(h). (12)
Eq. (12) is the period of a two-dimensional sequence of primitive poly-
nomials. Figures 4 and 6 show the relation (12). Figure 7 is an example

of the two-dimensional sequence generated from the primitive polynomial
163y as in Figure 5 with k£ and h exchanged.
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The two-dimensional sequence of o(h)o(k) primitive polynomials
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Figure 7. An example of the two-dimensional sequence of 4 x 4
primitive polynomials of degree 8 over GF(2) for h=13 and k= 7.
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B. Computing the period

It is well-known that the number of primitive polynomials of degree m is
¢(g™ —1)/m [1]. From Theorem 6 the number of primitive polynomials in
J-G(h, k) is o(h)0(k). Thus we can determine all the primitive polynomials
of degree m, if we find two positive integers h and k such that

o(h)o(k) = ¢(¢™ — 1)/m. (13)

Let us describe a method for finding k and k satisfying (13). Factorization
of ¢™ — 1 required to compute ¢(¢g™ — 1) can be accomplished as in [4], and
o(k) can be found using the algorithm considered in [3]. Here we obtain an
explicit method for computing o(h),.

Theorem 8 For two positive integers h and k that are relatively prime to
qm - 1: 1f

B =gm K, (14)
then
ged(id/o(h), d) = ged(jd/o(k), d), (15)
where d = ged(o(h), o(E)).

Proof: From d = gcd(o(h), o(k)) we have o(h) = ud and o(k) = vd for
two integers u and v that are relatively prime. From Theorem 4 we may
write ¢ = su and j = tv for some integers s and t. Thus we have to show
gcd(s, d) = ged(t, d).

1) Let w = gcd(s, d). Then we have s = wa and d = wb for two integers
a and b. Exponentiating both sides of (14) by b, we obtain A%#d = m kb,
or hoMe = . k**® 5o that k*® =;m 1 from 5) of Lemma 1. Thus we have
o(k)|tvb, vdltvb, vwb|tvb, or w|t from 6) of Lemma 1. Since w|t and wld,
we have w|gcd(t, d), or gcd(s, d)|gcd(t, d).

2) Letting z = gcd(t,d) and applying a similar procedure as above, we
can easily show gcd(t, d)|ged(s, d).

The results 1) and 2) imply gcd(s, d) = ged(t, d) as desired. O

Example 8 Let ¢ = 2, m = 8, k = 7, and h = 13. Then o(k) = 8,
o(h) =4, and g = ged(o(h),o(k)) = 4. Let i =2 and j = 4. Then we have
ged(2 - 4/8) = gcd(4 - 4/8), noting that 169 = 22 . 2401(mod 28 — 1). Now
we take j = 3. Then gcd(2-4/8) # ged(3-4/8). This shows that for given i
and j we can easily check if h? =gm k7. (More precisely, in order to show i
and j do not satisfy (14), it is easier to show that (15) is not satisfied for
the same i and j.) O
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For two positive integers h and k that are relatively prime, let d =
gcd(o(h), o(k)), then o(h) = ud and o(k) = vd. Then o(k), is a multi-
ple of u from Theorem 4, and is a divisor of o(h) from Theorem 5. Let
o(h),, = nu for an integer n, then n|d, since o(h),|o(k). From Theorem 8,
gcd(ifu,d) = ged(§/v,d), or n = ged(j/v,d). Thus we have the following
Corollary.

Corollary 2 For two positive integers h and k that are relatively prime to
g™ — 1, let d = ged(o(h), o(k)). If h°®k =¢m kI then n = ged(jd/o(k), d),
where o(h), = n-o(h)/d.

Theorem 9 For two positive integers h and k that are relatively prime to
g™ 1, let d = gcd(o(h), o(k)), o(h) = du, o(k) = dv, and o(h), = nu. Then
for a factor a of d and some integer j, there exist an integer !, 0 <l < g,
and a prime factor p of a such that h%/P =gm k', if h%* =¢m kI and
au # o(h),.

Proof: Since h%* =¢m k7%, we have from Theorem 5 o(h),|au, nulau, or
n|a. Since au # o(h),, we get a/n # 1, so that a/n must have a prime
factor p, p # 1.

Let ¢ = a/(np). Then a/p = nc, au/p = ncu, or au/p = o(h),c. There-
fore from Theorem 5 there exists an integer I such that h%%/? =gm kv (0<
l<yg).

Taking the contraposition of Theorem 9, we reach the final result for
computing o(h), as follows.

Corollary 3 For two positive integers h and k that are relatively prime to
q™ — 1, let d = gcd(o(h), o(k)), o(h) = du, o(k) = dv, and o(h), = nu.
Suppose there exist an integer j and a factor a of d such that h®" =gm kv,
If hou/p #qm kY, for any prime factor p of a and any integer I, then
au = o(h),.

So far we have shown that we can obtain the two-dimensional sequences
of primitive polynomials by computing o(k),. For three integers h, k, and
t that are relatively prime to ¢™ — 1, we can similarly generate the 3-
dimensional sequences if we first find the smallest ¢* which is the g™ con-
jugate of an element of G(h, k) defined in Theorem 7. (Of course, higher
dimensional sequences may similarly be generated.)

C. Examples

We have computed the longest period of the one-dimensional sequence for
each pair (g, m) by allowing k to change from 3 to 99: when ¢ = 2 the
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number of pairs (g,m) is 119 since 3 < m < 121, and when ¢ = 3 the
number is 23 since 3 < m < 25. We used Algorithm-P [3] to compute the
periods. In Table 2, we listed the values of k, for which the longest periods
of the one-dimensional sequences are equal to ¢(¢™ —1)/m. In the table, a
missing value set {q, m, period, k} means that there does not exist a value
of k € [3,99)] for which the sequence period is maximum.

g m Period &k
2 4 2 7
2 5 6 3
2 6 6 5
2 7 18 3
2 13 630 17
2 17 7710 3
2 19 26594 3
2 31 69273666 7
2 61 37800705069076950 37
3 7 156 5
3 13 61320 17
3 17 379610 7

Table 2. Some values of k for which the period of the
one-dimensional sequence is maximum.

Some values of h and k for which the period of the two-dimensional
sequence equals to ¢(¢™ — 1)/m are shown in Table 3, which are obtained
for the same ranges of g, m, and k as above and 3 < h < 51. The values
of k are taken from the result of the one-dimensional sequence: that is, we
choose the value k for which the one-dimensional sequence has the longest
period for given (g, m). Theorem 9 is used to calculate the periods.

g m _k _h__ok) _o(h), o(R x o)y
2 10 5 13 30 2 60
2 11 3 5 88 2 176
2 14 7 5 126 6 756
2 23 3 5 178480 2 356960
2 25 11 7 1800 120 129600
2 26 7 b6 8190 210 171900
2 34 5 13 131070 2570 336849900
2 38 5 11 524268 9198 4822382628
3 11 5 7 3850 2 7700
3 17 7 23 379610 10 3796100
3 19 13 5 36388 84 30566592

Table 3. Some values of h and k for which the period of the
two-dimensional sequence is maximum.

110



4 Conclusion

The two-dimensional sequence of primitive polynomials has been described
by introducing the concept of the g™ conjugate order: the two-dimensional
sequence can be extended to higher dimensional case. Using the two-
dimensional sequences, we can find maximum period primitive polynomial
sequences for more values of degrees than using the one-dimensional se-
quences.

The distribution of the number of terms of primitive polynomials in the
sequence and a new method to test the primitivity of a primitive polynomial
based on the result of this paper are under consideration.
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