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ABSTRACT. Let G be a connected claw-free graph of order n.
If G ¢ M and the minimum degree of G is at least n/4, then G
is traceable. Where M is a set of graphs such that each element
in M can be decomposed into three disjoint subgraphs G,, Ga,
G3 and Eg(G:,Gj) = uiuj, here 1 £ ¢, j < 3 and u; € Gy,
1<i1<3.

1 Introduction

We will consider only finite, undirected graphs without loops or multiple
edges. We use the notation and terminology in [2]. Let G be a graph of order
n, G is called hamiltonian (traceable) if G has a cycle (path) containing n
vertices. A graph G is called hamilton-connected if every pair of distinct
vertices in G can be connected by a path containing n vertices. A graph G
is called claw-free if no induced subgraph of G is isomorphic to K, 3. For
v € V(G) and a subgraph H of G, we define Ny(v) = {u € V(H): wv €
E(G)}, du(v) = |[Ny(v)]. Let A, B be two disjoint subsets of V(G), we
define E(A, B) = {ab: a € A,b € B;ab € E(G)}.
The following results are due to M. Matthews and D. Sumner.

Theorem 1. [5] If G is a connected claw-free graph of order n with
§ > (n—2)/3, then G is traceable.

Theorem 2. [5] If G is a 2-connected claw-free graph of order n with
6 > (n—2)/3, then G is hamiltonian.

Let H,, H, and Hj be three disjoint copies of a complete graph of order
at least three, choose two distinct vertices ug;, v; in H;, 1 <1 < 3. We
define graphs A, B as follows: the vertex set of the graph A is the union of
vertex sets of H,, Hy and Hgj, the edge set of the graph A is the union of
edge sets of Hy, Hy, H3 and {uju2, uous, uzu; }. The graph B has the same
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vertex set as the graph A and the edge set of the graph B is the union of
the edge set of A and {v;v,,v2vs,v3v1}. Then the graphs A, B show that
the bounds of § in the Theorems 1, 2 are sharp, respectively.

Let F be the set of graphs defined as follows: If G is in F, then G
can be decomposed into three disjoint subgraphs Gi, G2, Gs such that
EG(G,',GJ') = {u,-'u,j,vivj}, 1 <14 7 <3 Whereu;,v; € G;, 1 <1i<3.
Note that the graph B is an element of F.

H. Li proved the following theorem.

Theorem 3. [4] If G is a 2-connected claw-free graph of order n such that
G ¢ F and § > n/4, then G is hamiltonian. The bound n/4 is sharp.

A corresponding theorem on the traceability of connected claw-free graphs
is obtained in this paper.

Let M be the set of graphs defined as follows: If G is in M, then G
can be decomposed into three disjoint subgraphs G;, G3, G3 such that
E¢(Gi, G;) = uiuj, where 1 <14, j <3 and u; € G;, 1 <4 < 3. Note that
the graph A is an element of M.

Theorem 4. If G is a connected claw-free graph of order n such that
G ¢ M and § > n/4, then G is traceable. The bound n/4 is sharp.

The sharpness of Theorem 4 can be shown by the set J of graphs defined
as follows: Let G; (1 < i < 4) be the complete graphs of order 6§ +1 > 4
such that V(G;) N V(G;) =9, where 1 <14, j < 3; V(G;) NV(G4) = {wi},
1 <i<3; Eg(G;,Gj) = {wiu;}, 1 <4, 5 <3; Eg(Gi—{wi}, Ga—{wi}) =9,
1 € i £ 3. Thus the graphs in J are connected claw-free non-traceable of
order 46 + 1 and not in M.

2 Proof of Theorem 4
We use the following results as our lemmas to prove Theorem 4.

Lemma 1. [3] Let G be a connected graph such that for every longest path
P the sum of the degrees of the two end-vertices of P is at least |V (P)|+1.
Then G is hamilton-connected.

Lemma 2. [5] If G is a connected claw-free graph, then G is either trace-
able or has a path with |V (P)| > 26 + 3.

By the proof of the main Theorem in [1], we have the following lemma.

Lemma 3. (1] Let P = P[v,w] be a longest path with end-vertices v and w
in a connected claw-free graph G and H a component of G—P. If u€ H,
uz,uy € F and y is in the segment of P between v and x. Then there exist
vertices a, b which are in the segment of P between y and z, the segment
of P between = and w, respectively, such that {u,v,a,b} is independent
and their neighbors are pairwise disjoint.
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Proof of Theorem 4: By Lemma 2, we can verify that Theorem 4 is
true if n < 8. So we assume that n > 9. Let G be a graph satisfying the
conditions in Theorem 4 and G is not traceable. Let P = vjvs...v, be a
path of maximum length in G and let H be the component of G — P with
the smallest order. By Lemma 2, s > 26 +3. We define the orientation of P
to be from v; to vs. If u, v are in V(P), then P[u,v] denotes the consecutive
vertices on P from u, v. We will consider P[u,v] both as a path and as a
vertex set. We use ut to denote the successor of u (# v;) on P and u~ the
predecessor of u (# v;) on P. Let A be a subset of V(P) — {v,}, B be a
subset of V(P) — {v,}, we define At ={a*:a€ A}, B~ ={b":be B}.
By the maximality of P and since G is claw-free, we have z~z+ € E for
any z € Np(H).
Claim 1. dyg(u) > (56 —n+1)/4, for any u € H.
Proof of Claim 1: Let Np(u) = {z1,z2,...,x:}. By the maximality of P,
we have Np(u) C V(P) - {v1,v2,%5-1,%} and |P[z},z; ;]| 23,1 <i < ¢.
If |Ple,zf ]l 2 4,1 < i < ¢, then n > |{v1,v2,v5—1,v:}| + |H| +
4(dp(u) — 1) + dp(u) = 5dp(u) + |H| > 5dp(u) + dg(u) + 1 > 4dp(u) +
du)+12>4dp(u)+6+1,

dp(u) < (n-6-1)/4

dy(u) =d(u) —dp(u) 26— (n—-6-1)/4=(56 —n+1)/4.

If [Pz, z ]| = 3, for some i, then N(z}+) N [H U Np(u) U NF(uv) U
Np(@)UNE* () U{u} - {zf,253,}] = 0.

Otherwise we can find paths in G which are longer than P. Thus n >
d(zf)+|H|+4dp(u) +1 -2 > § +dg(u) +4dp(u) = 6+ d(u) +3dp(u) >
26 + 3dp(u),

dp(u) < (n —26)/3,
dy(u) =d(u) —dp(u) 2§ — (n-26)/3 > (56 —n+1)/4.
Claim 2. H is hamilton-connected.

Proof of Claim 2: Suppose that H is not hamilton-connected. By Lemma.
1, there exists a longest path ujusy...un in H such that

dy(u1) + dy(um) < m.

Note that Np(u1) # @ or Np(um) # 0. Otherwise |V(P)| < n - |H| <
n—(dy(u1) +dy(um)) = n— (d(u1) +d(um)) < n—26 < 26, contradicting
Lemma 2.

Without loss of generality, we assume that Np(u;) # @. Then we claim
that either Np(u.,) =0 or Np(u;) = Np(up,) = {v;}, for some 7,3 <i <
s — 3. Suppose to the contrary, then there exist two distinct vertices z, y
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in P such that u;z, umy € E. Let Np(u) = {1, 22,...,Z:} and the order
of z;'s appearing on P agrees with the orientation of P.

If t =1, then z, = x # y. Without loss of generality, we assume that
y € Pz}, v,]. By the maximality of P, we have

IP[’Ul,.’L’;_" Zm,lP[y++,v,]| >m, and IP[$T+13I__]| 2 m.

Son > |H|+|V(P)| 23m+6 > 3m+4dp(u;) — 1.
If ¢t > 2, By the maximality of P, we have

lP[”li z ") 2 m, |P[2;*'+,05]| 2m.

Son > |H| + |V(P)| = |H+ |Pl1, 21 7]l + |Plzy, ]| + |Plzf+, 0] 2
3m +4dp(uy) - 1.

Hence n > 3m + 4dp(uy) — 1.

Similarly, » > 3m + 4dp(u,) — 1.

Therefore n > 3m + 2(dp(u1) + dp(um)) — 1 2 3(dy(w1) + du(um)) +
2(dp(u1) + dp(um)) — 1 = (du(u1) + du(um)) + 2(d(u1) + d(um)) — 1 2
(56 —n+1)/24+46 —1 > 456+ 1, a contradiction.

If Np(um) = 0, let Np(u1) = {z1,22,...,zx} and the order of z;’s
appearing on P agrees with the orientation of P. By the maxiamlity of P,
we have

|P[v1, z77]| = m, |Plzf™t, vs)| = m, and
n > |H| 4+ 2m + 4dp(u;) — 1 2 3dy(uw1) + 4dp(u1) + 3dy(um) — 1 =
3d(u1) + 3d{um) +dp(uy) — 1 2 66+ dp(u1) — 1 > 46 + 1, a contradiction.

If Np(upm,) # 0, then there exists a vertex v; in P such that Np(u,) =
Np(um) = {v;}. By the maximality of P, we have

|Plv1, vy 7] = m, |PpT,vs)| > m, and

n 2 |H| +2m+ 3 2 3(dy(v1) + du(um) + 1) 2 3(d(v1) + d(um) — 1) 2
66 —3 > 46+ 1, a contradiction.

Thus H is hamilton-connected.

Let H = {uj,us,...,us}. Since G is connected, there exist vertices
u; € H, z € V(P) such that u;z € E. Without loss of generality, we assume
that i = 1. We claim that N(u;) N [V(P) — {z}] = 0. Otherwise there
exists a vertex y in V(P) such that u,y € E. Without loss of generality, we
assume that y € P[v;, z~]. By Lemma 3, there exist vertices a € Plyt,z7],
b € P[z*,v,] such that {u;, v, a,b} is independent and their neighbors are
pairwise disjoint, thus

n > d(u;) + d(v1) + d(a) + d(b) +4 > 46 + 1, a contradiction.
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Since dp(u1) = 1, h = |H| 2 dy(u1)+1 = d(u1) > 6. By the maximality
of P, we have
|P['Ul:z——]| 2 h: |P[x++,-u,]| > h.

So H is a unique component of G — P. Otherwise by the choice of H, we
have

n > |V(P)|+2|H| > 2h+ 3+ 2h > 46 + 1. a contradiction.

We also note that N(u;) N [V(P) — {z}] = 0, 2 < i < h. Otherwise
there exists some %, 2 < i < h, such that u;y € E, where y € V(P) — {z}.
Without loss of generality, we assume that y € P[z*, v;]. By the hamilton-
connectedness of H and the maximality of P, we have

n=|V(P)|+|H| = [P,z 7]+ |Ple*,y7 ]| + [Ply™™, v]|
+{z",z, =} + {y ", v, y"} +h >4k + 6 > 46 + 1, a contradiction.

Claim 3. (1) N(z~) N P[z**,v,) =0, (2) N(z*) N P, 2= "] = 0.

Proof of Claim 3: (1). Suppose to the contrary, then there exists a vertex
y € P[z*t,v,] such that z~y ¢ E. By the maximality of P, we have

N(y_) N P['Us—hy”.s] = 0’ N(y_) n P[’Ul,’Uh] = 0-

Thus n > |H|+|P[v1,va)|+|Pvs—n, vs]|+d(y~)+1 > 3h+6+1 > 46+1,
a contradiction.

By a similar argument, we can show that (2) is true.

So we complete the proof of Claim 3.

Moreover, we have N(z) N [V(P) — {z~,z*}] = 0. Otherwise suppose
there exists a vertex y € N(z) N [V(P) — {z~,z*}], then G[z,u;,z%,y] =
Ki3 when y € Plvy,z~ "] and G[z, u1,z7,y] = K13 when y € Plzt+,v,],
a contradiction.

Set

G, =G[HU {z}].
Gy = G’[P[vl,:v']].
G3 = G[P[z™, v,)].

To complete the proof, we will show that G € M. It suffices to show
there exist no edges between the vertex sets P[v;,z~~] and Pz*t,v,].

Suppose to the contrary, then there exist vertices y € Plvy,z77), 2 €
P[zt*,v,) such that yz € E. 'We first assume that z = v,.
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If N(z=) N Plvy,y7] # 0, Jet i = min{j: v; € N(z~) N Pvy,y7]}, the
maximality of P and the choice of 7 imply that

|Plw1, ;]| 2 hy |Plz™,vs]| 2 h, and
n = |V(P)|+|H| = |Plv1, v; || +|Plvi,z~ )|+ {z~, 2,z } +|P[z**, vs] +

h>h+d(z")—2+3+h+h=3h+d(z”)+1 >46+ 1, contradiction.
If N(z~) N Plv,y~] = 0, the maximality of P also implies that
IP[UI’y—” 2 h‘v lP[x++: ’U_.,“ 2 h, and
n = |V(P)|+|H| = |Ploy, y~]|+|Ply, 2~ ]|+ {z 7, 2,z H+|P[z™, v]| +
h>h+d(z")—2+3+h+h=3h+d(z")+1>46+ 1, a contradiction.

A symmetric argument shows that we can derive a contradiction when
Yy = ;.

Thus we can assume that y # v;, 2 # v5. Note that the above arguments
also imply that we can assume that N(vs) C P[zT,v;), N(v1) C Plvy,z7].
Case 1. N(z")N Plv1,y7 | #0, N(v,) N Plzt,27] #0.

Let

i1 =max{k: vx € N(z7)N Plvy,y"|}.
j =max{k: vy € N(v,) N Pz*,z7]}.
Then by the maximality of P and the choice of i and j, we have
\Plvf",y~ ]l + |Pv], 27]| 2 b,
N(z7)NN(v,) C {z*},
Pl},y7Ju P[v_;.*,z"] CV(G)-(HUN( )UN(v,)U{z™,v,}, and

n > |H|+ |Pl}, g7 + P}, 27 ]| + {z 7, v} + IN(z") UN(vs)| 2 b +
h4+2+d(z7)+d(v,) — |[N(z")NN(vs)| >26+2+26— [{zF}| =46 +1,
a contradiction.
Case 2. N(z~)N Plv1,y"] =90, N(vs) NPz, 27| #0.

Let 7 = min{k: vx € N(v,) N P[zt, z7]}.

If v; = z*, then the maximality of P and the choice of j imply that

IP['Uh y—]l 2 h', and

n=|V(P)|+|H| = |P[v1,y"]| + |Pl,z~7]| + {z", 2} + |P[z™, v]| + h >
h+d(z™)—-24+2+d(vs) +1+h > 46 + 1, a contradiction.
If v; # =, the maximality of P and the choice of j also imply that

|P[oy, y™1l + [Plz**,v7]| > b, and
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n = [V(P)|+|H| = |Plv1, y~||+|P[z"F, 27 ]+ |Ply, =™ ||+ [{z ™, z,z* }| +
|Plvj,vs)| + B > h+d(z~) —2+ 3+ d(vs) + 1+ h > 46 + 1, contradiction.
We therefore have N(v,) N P[z*,27] = 0. Thus we can assume that
N(vs) C Plz,vs). Symmetrically, we can also assume that N(v,) C P[vy,y].
So 46 > n = [V(P)| + |H| = |Pl1,z7]| + |Plz, 2]l + |P[z", ]| + A >
|Plv1,z7]| +2+ 6+ h > |Plv1,z7]| +26 + 2, and |Pfvy,z7]| <26 - 2.
Let Q = P[vy,z~]. Then INQ('U]) U Ng(z_)l + INq('vl) N Ns(z_)l =
INg(v1)| + IN§(z7)| = do(v1) +do(z™) 26+6-2=26-22 Q|
So there exists a vertex w € No(v1) N Nf(z~) C Plu,y]- By the
maximality of P, we have

|Ply*,z ")l +|P[z**,27]| > h, and

n = |V(P)|+|H| = |Pl1,y]|+|Ply*, =" ]| +|Plz**, 7]+ {z~, z, =+ }| +
|P2,v5]| + b 2 d(v1) + 1+ h+3+d(vs) + 1+ h > 46 + 1, a contradiction.

Thus there are no edges between Plvy,z~] and Plz*,v;]. Hence G € M.
This completes the proof of Theorem 4.
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