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ABSTRACT. Let V be a finite set of order v. A (v,x\) packing
design of index A and block size x is a collection of x-element
subsets, called blocks, such that every 2-subset of V occurs in
at most A blocks. The packing problem is to determine the
maximum number of blocks, o(vx)), in a packing design. It
is well known that o(v,x)) < [£ [:—'_‘},\]] = ¥(v, K, \), where
[z] is the largest integer satisfying z > [z]. It is shown here
that a(v,5,)\) = ¥(v,5,)) — e for all positive integers v > 5
and 7< A< 21 wheree=1if A(v —1) =0 (mod sk — 1) and
A= =1 (mod «) and e = 0 otherwise with the following
possible exceptions of (v, \) =(28,7) (32,7) (44,7) (32,9) (28,11)
(39,11) (28,13) (28,15) (28,19) (39,21).

1 Imntroduction

A (v, 5, )) packing design (or respectively covering design) of order v, block
size x and index A is a collection 8 of x-element subsets, called blocks, of a
v-set V such that every 2-subset of V occurs in at most (at least) X blocks.

Let o(v, x, A) denote the maximum number of blocks in a (v, &, \) packing
design; and o(v, &, \) denote the minimum number of blocks in a (v, x, )
covering design. A (v,x, ) packing design with 8| = o(v, &, \) will be
called a maximum packing design. Similarly, a (v, x,)) covering design
with |8] = a(y, &, A) is called a minimum covering design. It is well known
[35] that

(v k) < [E [::1,\“ = U(v,x, \)

and
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a(y, k,A) 2 [-Z- [ —i/\” = ®&(v, 5, )

where [z] is the largest integer satisfying [z] < z and [z] is the smallest
integer satisfying z < [z]. Hanani (28] has sharpened this bound in certain
cases by proving the following result.

Theorem 1.1. If A(v —1) =0 (modk—1) and (v —-1)/(k—-1) =1
(mod x) then o(v,k,X) < $(v,k,A) — 1.

When o(v, x,A) = ¥(v, &, A) the (v, k, A) packing design is called optimal
packing design. Similarly when a(y, 5, A) = ¢(v, &, A) the (v, x, X) covering
design is called minimal covering design.

We adopt convention that o(v,x,A) =0 for 0 < v < «. If in a (v, %, )
packing design a pair, say, (a,b) appears in X’ blocks where A’ < A then
we say that (a,b) is missing (A — )\’) times. Similarly if a pair (a,b) in
a (v,x,)) covering design appears in A" blocks where A” > X then we
say that (a,b) is repeated (A\” — X) times. Many researchers have been
involved in determining the packing number o (v, %, A) known up to date
(see bibliography). In the case x = 5 and A > 6 we have the following:

Theorem 1.2. Let v > 5 be a positive integer. Then

(1) o(v,5,1) = ¥(v,5,1) for all v =3 (mod 20) and v =0 (mod 4) v #
12, 16 with the possible exception of v = 32 48 52 72132 152 172 232
243 252 272 332 352 432 [24], [32), [38].

And 0(12,5,1) = ¥(12,5,1) — 1, 0(16,5,1) = 9(16,5,1) — 3, [24].

(2) o(v,5,2) = ¥(v,5,2) for all positive even integers v and for v = 1
or 5 (mod 10), v # 15, [4], [28], and o(v,5,2) = ¥(v,5,2) — e where
e=1if v=7 or 9 (mod 10) or v = 13 with the possible exception
of v =19, 27,147 and e = 0 if v =3 (mod 10), v # 13, [3], [5], [6],
see also [40].

3) (a) o(»,5,3) = ¥(v,5,3) for all positive integers v, v # 0 (mod 4)
with the possible exception of v = 17,29, 33, 38,49, [7], [8], [11].

(b) o(v,5,3) = ¥(v,5,3) for all positive integer v = 0 (mod 4), v <
96 with the possible exception of v = 20,28, 32, 36, 56, 296, [9].

(4) o(v,5,4) = ¥(v,5,4) for all positive integer v, v # 7 and o(7,5,4) =
71’(7: 5) 4) - 1: [10]

(5) o(v,5,5) = ¥(v,5,5) for all positive integers v, with the possible
exception of v = 28,32,34, [8].

(6) o(v,5,6) = %(v,5,6) for all positive integers v with the possible ex-
ception of v =43. [11].



(7) a(v,5,X) = ¥(v,5,\) — e for all positive integers v and )\ = 8,12, 16,
[12], [40] with few possible exceptions where e = 1 if A(v —1) =0
(mod x—1) and Av(v—1)/(x—1) =1 (mod k) and e = 0 otherwise.

Furthermore, these few possible exceptions were removed later, in an
unpublished paper, by Shalaby, [36].

Our interest here is in the case k = 5 and A > 7. Our goal is to prove
the following.

Theorem 1.3. Let 7 < A £ 21 and v be a positive integers. Then
o(1,5,A) = Y(v,5,\)—e wheree = 1 if M(y—1) =0 (mod x—1) and Av(v—
1)/(x —1) =1 (mod £), and e = 0 otherwise with the possible exceptions
of (1)) = (28,7)(32,7)(44, 7)(32, 9)(28, 11)(39, 11)(28, 13)(28, 15)(28, 19)
(39,21).

2 Recursive Constructions

In order to describe our recursive constructions we require several other
types of combinatorial designs. A balanced incomplete block design, B[v, &, A],
is a (v, &, A) packing design where every 2-subset of points is contained in
precisely A blocks. If a B[y, k, )] exists then it is clear that o(v, 5, ) =
Av(v — 1)/k(x — 1) = 9(v, 5, A) and Hanani [28] has proved the following
existence theorem for B(y, 5, A].

Theorem 2.2. Necessary and sufficient conditions for the existence of a
Blv, 5, )] are that A(v —1) = 0 (mod 4) and Av(v —1) = 0 (mod 20) and
(v, A) # (15, 2).

A (v,k,)) packing design (or respectively covering design) with a hole
of size h is a triple (V, H,8) where V is a v-set, H is a subset of V of
cardinality A, and S is a collection of x-element subsets, called blocks, of V'
such that

1) no 2-subset of H appears in any block;
2) every other 2-subset of V' appears in at most (at least) A blocks;

3) Iﬂl = 1/’('/’ K, A) - 'i,b(h, v, A)) (Iﬁ' = ¢(V1 K, ’\) - ¢(h’ n,’\))'

Lemma 2.1. If there exists a (v,x, A) packing design with a hole of size
h > k and o(h, k, A) = P(h, &, A) then o(v, &, X) = (v, &, A).

Proof: Form the blocks of an (&, x, A) optimal packing design on the points
of the hole. Adding the blocks of the packing design with the hole gives a
(v, &, A) optimal packing design.

Let &, A and v be positive integers and M be a set of positive integers. A
group divisible design GD|[x, A, M, ] is a triple (V, B8,) where V is a set of



points with |V| = v, and 4 = {G4,...,Gyr} is a partition of V into n sets
called groups. The collection B consists of x-subsets of V, called blocks,
with the following properties

1) [BNGi| <1 forall B€ fand G; € ;
2) |G.| € M for all G; € «;

3) every 2-subset {z,y} of V such that = and y belong to distinct groups
is contained in exactly A blocks.

If M = {m} then the group divisible design is denoted by GD|[k, A, m, v].
A GD[x, A, m,xm] is called a transversal design and denoted by T|k, A, m].
It is well known that a T[x, 1, m] is equivalent to x —2 mutually orthogonal
Latin squares of side m.

In the sequel we shall use the following existence theorem for transversal
designs. The proof of this result may be found in [1], {2], [20], [23], [25],
[26), (28], [34], [37].

Theorem 2.2. There exists a T[6, 1, m] for all positive integers m with the
exception of m € {2, 3,4, 6} and the possible exception of m € {10, 14, 18, 22}.

Theorem 2.3. (28] There exists a T([7, A\, m] for all positive integers m and
all integers A > 2.

The following theorem is 4 generalization of theorem 2.6 of [7].

Theorem 2.4. If there exists a GD[6, A, 5,5n] and a (20 + h, 5, \) packing
design with a hole of size h then there exists a (20(n — 1) + 4u + k, 5, )
packing design with a hole of size 4u + h.

It is clear that to apply the above theorem we require the existence of

a GD[6, A, 5, 5n]. Our authority for that is the following lemma of Hanani
[28].
Lemma 2.2. There exists a GD[6,),5,35], for A = 2m + 3n where m
and n are non negative integers and there exists a GD[6, A, 5,v] where v =
50,60, 65 and X is a positive even number and there exists a GD[6, ), 5,40]
for A = 3n, n is a positive integer.

A truncated transversal design TT(k, A, m,u) isa GD[{«,x—1}, A, {m, »*},
(x — 1)m + u] where * means there is exactly one group of size u.

Clearly a TT(k, A, m,0) is equivalent to a T[x — 1, A\, m]. Furthermore,
if 0 < u < m then one may construct a TT(x, A, m,«) from a transversal
design T|[k, A, m] by removing points from the last group, and from all
blocks containing them. Thus we have the following existence resuit.

Theorem 2.5. There exists a TT(6, A\, m, u) for all positive integers m and
uwhere0<u<mand A>1.



Theorem 2.6. Let m, u and A > 1 be positive integers such that u, m =0
(mod 4), 0 < u < m, then there exists a GD[5, \, {m, u*}, 5m + u] where
* means there is exactly one group of size u.

Proof: Take a TT(6, A, 3, %) and inflate this design by a factor of 4. On
the blocks of size 5 and 6 construct a GD[5,1,4,20] and GD[5, 1,4, 24]
respectively. These two designs are assured by theorem 2.1 since they are
equivalent to a B[21, 5, 1] and B[25, 5, 1] respectively.

Let us add 4 points to the groups of a GD[5, A, {m, u*}, 5m +u]. On the
groups of size m construct a (m+ h, 5, ) packing design with a hole of size
h; and on the last group construct a (u + h, 5, \) optimal packing design.
Then the resultant design is a (5m + u + k,5, A) optimal packing design.
We may write this observation as the following.

Theorem 2.7. If
(1) There exists a GD[5, A, {m,u*},5m + u] where u,m = 0 (mod 4).

(2) There exists a (u + h,5, ) optimal packing design with
2
Awth) —Muth)te(uth)td procks where ¢ and d are integers deter-

mined by A, u and h

(3) There exists a (m + h, 5, ) packing design with a hole of size h with

—‘l'—ﬁ‘f_*\m’ Pmhtem—dm plocks where c is as before (we assume this number
is an integer).

Then o(5m +u + h,5,\) = ¥(5m + u+ h, 5, A).

Proof: We need to show that the total number of blocks obtained by this
construction is precisely ¥(5m+u+h, 5, X). But a GD[5, A, {m,u*}, 5m+u]
has the following number of blocks

Mmm-m+§mq M

A (u+ h,5,)) optimal packing design has the following number of blocks

Mu+h)2 = Mu+h)+cfu+h)+d a
20

where ¢ and d are integers completely determined by the values of u and
h. A (m + h,5,)) packing design with a hole of size h has the following
number of blocks

am2 4+ 22 mh +cm - Am
20

where c is an integer completely determined by m and k. Furthermore, the
value of ¢ is determined by the congruence classes of m and u modulo 4,

(I1I)



but the value of d depends on the congruence classes modulo 20 of m, u
and h. On the other hand
U(5m+u+ h,5,])

_Msm+u+h)?—A5m+u+h)+c(Sm+u+h)+d
- 20

(IV)

where ¢ and d are the same integers as in (II) since 5m +u+h and v+ h
are the same congruency mod 4.

Now it is easily checked that the total number of blocks in (I), (II) and
5 times the number of blocks in (III) is equal to the total number of blocks
in (IV).

Let x, A, v and m be positive integers. A modified group divisible design,
MGD|k, A\, m, v}, is a quadruple (V, 8,~,8) where V is a set of points with
V| =v, ¥y = {G1,...,Gn} is a partition of V into m sets, called groups,
6 = {Ry,...,R,} is a partition of V into s sets, called rows, and 3 is a
family of x-subsets of V, called blocks, with the following properties

1) |[BNG;| <1 forall Be g andG; € 1.
2) |[BNR;| <1 forall B€ g and R; €6.
3) |Rj| =m for all R; € 6.

4) Every 2-subset {z,y} of V such that z and y are neither in the same
group nor in the same row is contained in exactly A blocks

5) |GiNR;| =1 for all G; € y and R; € 6.

A resolvable modified group divisible design, RMGDI|k, A, m, v/, is a2 mod-
ified group divisible design the blocks of which can be partitioned into par-
allel classes. It is clear that a RMGDJ[5,1, 5, 5m)] is the same as RT[5, 1, m]
with one parallel class of blocks singled out, and since a RT[5,1,m] is
equivalent to a T[6, 1, m] we have the following.

Theorem 2.8. There exists a RMGDJ[5, 1,5, 5m] for all positive integers
m with the exception of m € {2,3,4,6} and the possible exception of
m € {10,14,18,22}.

The next theorem is in the form most useful to us.

Theorem 2.9. [3] If there existsa RMGDI[5, 1,5,5m] and a GD[5, ), {4, s*},
4m + s8], where * means there is exactly one group of size s, and there ex-
ists a (20 + h, 5, \) packing design with a hole of size h then there exists a
(20m +4u+ h + 8,5, A) packing design with a hole of size 4u+ h+ s where
0<u<m-1.



It is clear that the application of the above theorem requires the existence
ofa GD[5, 1, {4, s*},4m+ s]. We observe that we may choose s =0ifm=1
(mod 5); 8 =4 if m =0 or 4 (mod 5), ands:f-(’-';—"—ll ifm=1 (mod 3)
(see [3]). We may also apply the following [27].
Theorem 2.10. There exists a GD[5, 1, {4,8*},4m + 8] where m = 0 or 2
(mod 5), m > 7 with the possible exception of m = 10.

Theorem 2.11. If there exists
1) a RMGD[5,1,5,5m];
2) a GD[5, \,4,4m)|;
3) a (20+ h,5,)) packing design with a hole of size h, and
4) 0(20+ h,5,)) = (20 + h, 5, \);

Then o(20m + h, 5, A) = $(20m + h, 5, \).

Proof: Take a RMGDI[5, 1, 5, 5m] and inflate it by a factor of 4. Replace the
blocks of this design by the blocks of a GD[5, A, 4,20]. Add h points to the
groups and on the first m—1 groups construct a (20+h, 5, A) packing design
with a hole of size h and on the last group construct a (20+k, 5, A) optimal
packing design. Finally, on the blocks of size m construct a GD[5, A, 4, 4m)].

The proof of the next theorem is very similar to the proof of theorem 2.4
of [3].

Theorem 2.12. If there exists (1) a RMGD[5, 1,5, 5m] and (2) a GD[5, ),
{4,8%},4m +4] (3) a (20+ h, 5, X) packing design with a hole of size h and
(4) a (20+ h+4,5, ) packing design with a hole of size h+4. Then there
exists a (20m +4u+h+4, 5, \) packing design with a hole of size 4u+h+4
where 0 <u<m-—1.

Theorem 2.18. (3] If there exists a (1) RMGD[5,1,5,5m] (2) a GD[5, },
{4,5*},4(m — 1) + s] and (3) a (20 + k,5, \) packing design with a hole of
size h. Then there exists a (24(m — 1) + s + h, 5, \) packing design with a
hole of size 4(m — 1) + s + h.

Theorem 2.14. If there exists a RGD[5,1,5,5m] and a (20 + k, 5, \)

packing design with a hole of size h then there exists a (20m +4u+h, 5, \)

packing design with a hole of size 4u+ h where 0 < u < g";—"ll.

Proof: Generalize the proof of theorem 1.5 of [3, p. 165).
In a similar way to that of theorem 2.14 we can prove the following.

Theorem 2.15. Let A be a positive even integer. If there exists a RGD[5,1,
5,5m] and a (10 + h, 5, \) packing design with a hole of size h. Then there



exists a (10m+2u+ h, 5, \) packing design with a hole of size 2u+ h where
0<ugim),

The following theorem is a generalization of theorem 2.6 of [6, p. 50].

Theorem 2.16. Let \ be a positive even integer. If there exists a RMGDI[5,
1,5,5m), a (10 + h, 5, \) packing design with a hole of size h; and either a
GD[5, A, 2, 2m] or a GD[5, A, 2,2(m + 1)) exists then there exists a (10m +
2u+h+e¢,5,\) packing design with a hole of size 2u+h+e where 0 < u <
m—1 and e = 0 if a GD[5, )\, 2,2m] exists and e = 2 if a GD[5, A, 2,2(m+1))]
exists.

We also shall use the following.

Theorem 2.17. If there exists a RMGD[5,1,5,5m| and a B[2m + 1, 5,2]
then there exists a (10m + 2u + 1, 5,2) packing design with a hole of size
2u+1where0<u<m-~-1.

Proof: Take a RMGDI5, 1,5,5m] and inflate it by a factor of two. To the
parallel class of size m, after inflating by two, add a new point and on each
block construct a B[2m + 1, 5,2]. To u parallel classes, 0 < u < m -1, add
2 points and replace their blocks by the blocks of a GD[5,2,2,12]. On the
remaining parallel classes construct a GD[5,2,2,10]. See [28] for the exis-
tence of these two designs. Finally replace the groups of RMGDI[5, 1, 5, 5m]
by the blocks of a GD[5,2,2,10] in such a way that if {abcde} is a group
of RMGD[5, 1, 5, 5m] then the groups of GD[5, 2,2, 10] are {ao, a1} {bo, b1}
{COs C1} {dO: dl} {60, el}'

The following recursive construction is a special case of theorem 2.4.

Theorem 2.18. If there exists (1) a GD[6,,5,5n] (2) a (20 + A, 5, )
packing design with a hole of size h and (3) a (20+ h, 5, X) optimal packing
design. Then there exists a (20n + h, 5, \) optimal packing design.

Proof: Take a GD[6, ), 5, 5n]. Inflate this design by a factor of 4. Replace
all the blocks of this design by the blocks of GD[5, 1,4, 24]. Finally add h
points to the groups and on the first (n—1) groups construct a (20+A, 5, A)
packing design with a hole of size h and on the last group construct a
(20 + h, 5, A\) optimal packing design.

8 The Structure of Packing and Covering Designs

Let (V, B) be a (v, %, ) packing design, for each 2-subset e = {z,y} of V'
define m(e) to be the number of blocks in 8 which contain e. Note that by
the definition of a packing design we have m(e) < A for all e.

The complement of (V, 8), denoted by C(V, B) is defined to be the graph
with vertex set V and edges e occurring with multiplicity A — m(e) for all
e. The number of edges (counting multiplicities) in C(V, B) is given by

10



A(3) —18I(5). The degree of the vertex z in C(V, ) is A(v — 1) — rz(x — 1)
where r; is the number of blocks containing z.

In a similar way we define the excess graph of a (V, 8) covering design
denoted by E(V, B), to be the graph with a vertex set V and edges e occur-
ring with multiplicity m(e) — X for all e. The number of edges in E(V, B) is
given by |8|(5) — A(%); and the degree of each vertex is rz(k — 1) — A\(v — 1)
where 7z is as before.

Lemma 3.1. Let (V,B) be a (v,5,4) packing design with ¢(v,5,4) — e
blocks where e = 1 if v = 3 (mod 5) and 0 otherwise. Then the degree
of each vertex of C(V, p) is divisible by 4, and the number of edges in the
graph is 0, 4 or 12 when v mod 5 € {0,1}, {2,4} or {3} respectively.

The only graph with 4 edges and every vertex of a degree divisible by
4 is the graph with four parallel edges connecting two vertices and v — 2
isolated vertices. Therefore, when v = 2 or 4 (mod 5) a (v, 5,4) optimal
packing design contains a pair of points which do not appear in any block,
and all other pairs appear in precisely 4 blocks.

The situation is more complicated when v = 3 (mod 5) since there are
many graphs with 12 edges satisfying the degree constraint. A particularly
useful graph of this type is the one with v —3 isolated vertices and 3 vertices
each connected to the other 2 by four parallel edges.

Lemma 38.2. Let (V, ) be a (v,5,4) minimal covering design. Then the
degree of each vertex of E(V,p) is divisible by 4 and the number of edges
in the graph is 0, 6, or 8 when v mod 5 € {0,1}, {2,4} or {3} respectively.

The only graph with 6 edges and every vertex of a degree divisible by 4
is the graph with » — 3 isolated vertices and 3 vertices each connected to
the other 2 by two parallel edges.

The situation is more complicated when v = 3 (mod 5) since there are
many graphs with 8 edges that satisfy the degree constraint. A particularly
useful graph of this type is the one with v — 4 isolated vertices and the
following graph on the remaining 4 vertices.

Lemma 3.3.
(1) Let (V, B) be a (v, 5,3) optimal packing design where v = 8 (mod 20).

Then the degree of each vertex of C(V, B) is 1 and the number of edges
in the graph is ¥. Hence C(V, B) is a 1-factor.

11



(2) Let (V,B) be a(v,5,3) minimal covering design where v = 14 (mod 20).
Then the degree of each vertex of E(v,f) is 1 and the number of edges
in E(V, B) is ¥. Hence E(V,p) is a 1-factor.

Lemma 3.4. Let (V, B) be a (v,5,2) optimal packing design where v = 3

(mod 10). Then the degree of each vertex of C(V, B) is divisible by 4, and
the number of edges in the graph is 6. Hence, C(V,8) consists of v — 3
isolated vertices and three other vertices the pair of which are connected
by two edges.

To define the complement graph of a packing design with a hole H of size
h let e = {z,y} where at least one of z or y does not lie in H and let m(e)
be the number of blocks in B which contain e. Then the complement graph
of the packing design with a hole H of size k, denoted by C(V\H, B), is the
graph with vertex set V and edges e occuring with multiplicity A — m(e).
In a similar way the excess graph, E(V\H, B), of a (v, k, A) covering design
with a hole of size h is defined.

The following two theorems are very simple but most useful to us.

Theorem 3.1. If there exists
1) a (1,5, ) covering design with ¢(v,5,\) blocks,
2) a (v,5,X') packing design with ¢(v,5,)\’) blocks,
3) o(v,5,2) + ¥(v,5,\) = ¥(v,5,A + X'), and

4) the excess graph E(V,B) of the covering design is isomorphic to a
subgraph G of the complement graph, C(V, ), of the packing design.

Then there exists a (v, 5, \+X') packing design with ¢ (v, 5, A+)’) blocks.
Theorem 3.2. If there exists

1) a (v,5,)) covering design with a hole of size h,

2) a (v,5,N') packing design with a hole of size h,

3) the total number of blocks in these two designs is ¥%(v,5,\ + ) —
(k5,2 + X),

4) the excess graph, E(V\H, ), of the covering design with a hole of size
h is isomorphic to a subgraph G of the complement graph, C(V\H, B),
of the packing design with a hole of size h.

Then there exists a (v, 5, + ') packing design with a hole of size h.

12



4 Notations and A Few More Designs

In this short section we discuss the notations used through this paper and
construct a few more optimal packing designs for 2 < A < 6.

Ablock (k k+m &+n k+j f(x)) (mod v) where f(x) = a if & is even,
and f(x) = b if x is odd is denoted by (Omnj) U{a,b} (mod v). Similarly, a
block (x x+m x+n k+j f(x)) (mod v) where f(k) =a if x =0 (mod 4);
f(k) = bif xk =1 (mod 4); f(x) = cif x = 2 (mod 4), and f(x) = d if
x = 3 (mod 4) is denoted by (Omnj) U{a,b,c,d} (mod v). Notice that
a, b, ¢, d are not necessarily distinct.

In a similar way, a block {((0,%)(0,x + m)(1,x + n)(1, & + 7) f(x)) mod
(—,v) where f(x) = a if x is even, and f(x) = b if x is odd is denoted by
((0,0)(0,m)(1,7)(1,5)) U{a, b} mod (-, v).

We now improve the result of theorem 1.2

Lemma 4.1. 0(147,5,2) = 9(147,5,2) - 1; o(v,5,3) = ¥(v,5,3) for
v = 36,49, 296, (43, 5, 6) = $(43, 5, 6).

Proof: To prove that 0(147,5,2) = %(147,5,2) — 1 we show that there
exists a (147, 5, 2) packing design with a hole of size 17. But 0(17,5,2) =
¥(17,5,2) — 1 hence (147, 5,2) = (147, 5,2) — 1. For this purpose apply
theorem 2.15 withm =13, u=8, h=1and A =2.

To show that o(36, 5, 3) = ¥(36, 5, 3) take a T[5,3,7]. Add a point to the
groups and on each group construct an (8,5,3) optimal packing design.

For v = 296 and A = 3 apply theorem 2.9 (or theorem 2.15) with m = 13,
v =25 h =0 8=16, and A = 3 gives us a (296,5,3) packing design
with a hole of size 36. But o(36,5,3) = ¥(36,5,3). Hence, ¢(296,5,3) =
¥(296, 5, 3).

For v = 49 and A = 3, again we instead construct a (49,5,3) packing
design with a hole of size 9. But 0(9,5, 3) = (9, 5, 3) hence (49, 5,3) =
%(49, 5, 3). For this purpose let X = Za x ZgoU {h;}{_;, then the required
blocks are: On Z; x Zao U {h;};_, construct a B[45,5,1] with a hole of size
5, say, {h1, ..., hs}. Furthermore, take the following blocks.

((09 0)(0! 4)(01 8)(0’ 12)(0' 16)) + (—7 i)ri € 24
((0: 0)(0! 10)(1: 0)(1) 15)(1v 18)) (mOd s 20)

((0’ 0)(0: 3)(1’ 7)(1: 16)) u {he, h7} (mOd ) 20)
((0,0)(0,1)(1,11)(1,12)) U {hs, ho} (mod —,20)

((0! 0)(0’ 1)(01 7)(01 16» U {hlr h?} (mOd ) 20)
((1) 0)(1, 1)(1v 7)(1v 12» U {hlx h2} (mOd ) 20)

((oi 0)(01 3)(07 5)(1: 19» U {h3: h4} (mOd it 20)
«0! 0)(1v 0)(114)(1a 7» U {h3’ h4} (mOd — 20)

«07 0)(01 7)(1: 9)(13 13)h5) (mOd ] 20)

((0’ 0)(0’ 2)(1: 1)(1: 3)h6> (mOd ) 20)
((0,0)(0, 6)(1, 8)(1,18)h7) (mod —,20)
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{(0,0)(0,8)(1,3)(1,17)kg) (mod —,20)
«0: 0)(0a 9)(1: 6)(11 14)"9) (mOd ] 20)
For v = 43 and )\ = 6 the construction is as follows:

1) Take a (43,5,2) minimal covering design [31]. The excess graph of
this design consists of 41 isolated vertices and two.other vertices, say
(42,43) joined by four edges.

2) Take two copies of a (43,5,2) optimal packing design. The complement
graph of this design consists of 40 isolated vertices and three other
vertices say {41 42 43} the pairs of which are joined by two edges.
Hence, by theorem 3.1 there exists a (43,5,6) optimal packing design.

The following is very simple but most useful to us.

Lemma 4.2. If there exists a B[y, 5, \] and o(v, 5, ') = ¥(v, 5, A) —e where
e as described in theorem 1.3 then o(v,5, A+ X') = ¢¥(v,5,A+ X') —e.

5 Packing with Index 7
In this section we distinguish the following cases.

5.1 v =3 (mod 20)

Lemma 5.1. o(»,5,7) = ¥(v,5,7) for all positive integers v, v = 3
(mod 20). Furthermore, there exists a (23,5,7) packing design with a hole
of size 3.

Proof: If v = 3 (mod 20) then o(v,5,7) = o(v,5,2) + (v, 5,5) [5,8].
For a (23,5,7) packing design with a hole of size 3, take a (23,5,4) and
(23,5,3) packing design with a hole of size 3, [8], [10].

5.2 v =7 (mod 20)

Lemma 5.2. o(v,5,7) = ¥(v,5,7) for v =17,27,47,67,87.

Proof: For v =7 let X = Z7 then the required blocks are (01 3 4 5) (mod
7) (01 2 3 6) (mod 7). For v = 27,47, 67, 87 the construction is as follows:

1) Take a (v,5,4) minimal covering design [13], [31]. This design has a
triple, say, {a, b, ¢} the pairs of which appear in exactly 6 blocks while
each other pair appears in exactly 4 blocks.

2) Take a (v,5,3) packing design with a hole of size 3, say, {a,b,c}.
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It is clear that the above two steps yield a (v, 5, 7) optimal packing design
for v = 27,47,67,87.

To complete the proof of this lemma we need to construct a (v,5,3)
packing design with a hole of size 3. For v = 27 see [8), for v = 47,67, 87, the
constructions are given in the following table. In general, the construction
in this table, and all other tables to come, is as follows. Let X = Z,_,UH,
or X =25 x ZL;_-L U H,, where Hy,, = {h1,...,hy} is the hole. The blocks
are constructed by taking the orbits of the tabulated base blocks.

v | Point Set | Base Blocks

47 Z4aUH3 | (0112233 hg) +i,i€ Zy
(012415)(051016 28)(0 7 15 24 32)
(013719)(0492430)(071730)U {h1, ha}
(0 3 13 22) U {h1, ho, h3, ha}

67| Ze4sUHs | (0163248 h3) +4,i€ 2y

{013724)(05 14 30 42)(0 8 18 38 53)
{013927)(0517 36 49)(0 10 21 35 51)
{01310 52)(04 828 39)(0 5 23 42) U {hy, h}
(0 7 21 38) U {hy, ha, hs, hs}

87 | ZgsUH3 | (021 42 63 h3) + 1,1 € Zo

(013 716) twice (0 5 22 45 59)(0 8 27 51 63)
(0 10 28 48 59)(0 5 24 46 58)(0 8 28 45 63)

(0 10 33 44 58)(0 1 3 7 52){0 8 30 50 60)
(01327 53 68)(0 5 17 28) U {h1,ho}

(09 27 46) U {h4, h2, ha, hg}

Lemma 5.3. o(v,5,7) = %(v, 5, 7) for all positive integers v =7 (mod 20).

Proof: For v = 7,27,47,67,87 the result follows from lemma 5.2. For
v 2 107, v # 127,147 simple calculations show that v can be written in the
form v = 20m + 4u + h + s where m, u, k and s are chosen so that

1) there exists a RMGD[5,1,5,5m)];

2) 4u+h+s=7 (mod 20) and 7 < du+ h + s < 87;
3)0<u<m-1,5=0 (mod4) and h=3,

4) there exists a GD[5,7, {4,5*},4m + 5.

Now apply theorem 2.9 with A = 7 and the result follows.

For v = 127 applying theorem 24 with A=7,u =1, h=3andn =7
gives a (127,5,7) packing design with a hole of size 7. But o(7,5,7) =
$(7,5,7) hence 0(127,5,7) = $(127,5, 7).
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For v = 147 applying theorem 2.13 withm=7,5=0,h=3and A =3
gives a (147,5,7) packing design with a hole of size 27. But ¢(27,5,7) =
(27,5, 7) hence 0(147,5,7) = $(147,5,7).

5.3 v=4 (mod 20)

In this section we prove that o(v,5,7) = ¥(v,5,7) for all positive integers
v > 24, v =4 (mod 20) with the possible exception of v = 44. But we first
treat v = 24,64, 84.

Lemma 5.4.

(1) o(v,5,7) = %(v,5,7) for v = 24,64, 84.

(2) There exists a (24,5,7) packing design with a hole of size 4.
Proof: The required constructions are given in the next table. The last
construction in the table is the (24,5,7) packing design with a hole of size 4.

Lemma 5.5. o(v,5,7) = ¥(v,5,7) for all positive integers v =4 (mod 20)
with the possible exception of v = 44.

Proof: For v = 24,64, 84 the result follows from lemma 5.4. For v > 124
v # 144,184,224, 284, 304 simple calculations show that v can be written
in the form v = 20m + 4u + h + s where m, u, h and s are chosen so that

1) there exists a RMGD[5,1,5,5m];

2) dut+h+3=4 (mod20),24 <4u+h+s<8 and4u+h+ s #44;
3) 0<u<m-1,58=0 (mod 4) and h=4;

4) there exists a GD[5,7, {4, 8*},4m + 3].

Now apply theorem 2.9 with A = 7 and the result follows.

For v = 104,224, 304 apply theorem 2.11 with h =4, A =7 and m =
5,11, 15 respectively.

For v = 144 apply theorem 2.7 withm =u=24, A\=7 and h =0.

For v = 184 apply theorem 2.12 with m =8, h=0,A=7and u =5
(see next lemma for the existence of a (20,5, 7) optimal packing design).

For v = 284 apply theorem 2.14 withm =13, u=5and A =4.
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Point Set

Base Blocks

§=|

Zoy

{01235)(016916)(027 11 18)

(0391317){012312){026 11 18)

(0371319)(0381317)

Ze4

(0137 25)(05 15 26 45){0 8 17 31 44)

(013 719)(05 13 33 44)(0 9 23 35 45)

{0137 15)(0 5 16 20 46)(0 9 21 38 48)

(013 830)(0 4 14 25 51)(0 6 21 30 48)

(0137 23)(0 5 13 31 41)(0 9 20 34 49)

(013 743)(0 5 19 37 49)(0 8 20 33 49)

(09193047){01 7 24 33){0 2 5 18 37)

(0 4 12 43 54)

Zgs U Hoo

(04163054)(0127) U{h;}i {0211 21) U {h:}is |

(0317 42) U {h;};%5(0 3 21 34) U {h:}:5 s
{0119 30) U {A;}2

17
{02820 A;)(04 22 28 hy){0 2 10 30 hg)

{016 22 44 h4)(0 4 18 30 h5)(0 8 10 24 hg)

(04 11 44 hy) (0 8 19 31 hg) (0 15 35 42 hg)

{021 25 38 h10){0 9 26 41 hy1;)(0 3 6 11 hy2)

(04929 hy3)(07 22 45 hyg){0 7 23 40 hys)

{09 21736 h16){0 13 27 40 hy17)(0 8 29 38 hyig)

(0527 39 h19)(0 9 23 33 hino){0 1 25U {h, ha}

{0511 48) U {hs, k4 }{0 7 17 46) U {hs, e}

(0 8 27 39) U {h7, hg }(0 9 20 41) U {ho, h10}

(0 13 28 45) U {h11,h12}{0 1 3 48) U {h;3, hig}

(0 515 28) U {h1s, h16}(0 1 7 36) U {hy7, h1s}

{03 16 49) U {h19, hzo}

Zyo U Hy

On Z2o U H3 construct a (23,5,2) packing design
with a hole of size 3, say, H3 and take
the following blocks

{0510 15 hy) + 3,1 € Zs twice

{0481216) +1,i € Z, twice

(01315Ah1)(01710hs){01912h3){037 14 hy)
07914 U{m},(01246) h

64 v=0,8,12 or 16 (mod 20)

Lemma 5.6. o(v,5,7) = ¥(v,5,7) for all positive integers v where v =
0,12, or 16 (mod 20) with the possible exception of v = 32.

Proof: The blocks of a (v,5,7) optimal packing design for v = 0,12 or

17



16 (mod 20) v < 96 are those of a (v,5,3) and (v, 5,4) optimal packing
designs. Since a (v, 5,3) optimal packing design is still unknown for v =
20, 32, 56 the above method does not work for these values. For v = 56, see
the next table.

v | Point Set | Base Blocks
5| ZssU Hg | (014 10 32) twice (04 12 20 28){0 1 5 15 27)
(01634 36)(0 1315 23)(0 2 6 10 19)(0 4 10 24 35)

(01930 hy){0 3 18 29 h2){0 2 13 23 h3)(0 7 17 26 hq)

(05 11 18 hs){0 6 17 31 hg)(0 7 16 23 k7)(0 3 19 24 hg)

(01 38) U {hy, h2)(0 3 12 33) U {hs, ha}{0 5 12 23)
Uhs, he}0 5 12 23) U {hr, hs}(0 2 15 29) U {h}L_,
(0215 29) U {h:}e s

For v = 20 take the blocks of a (20,5,5) minimal covering design [18]
together with the blocks of a (20,5,2) optimal packing design. Close ob-
servation of these two designs shows that the excess graph of the (20,5,5)
minimal covering design is a 1-factor and that the complement graph of
the (20,5,2) optimal packing design has a subgraph that is 1-factor. Hence,
these two designs give a (20,5,7) optimal packing design.

For v > 100, v # 132,136,140,172,180, 212,272, simple calculations
show that v can be written in the form v = 20m + 4u + k + s where m, u,
h and s are chosen so that

1) there exists a RMGDI[5, 1, 5, 5m];

2) 4u+h+s=0,120r 16 (mod 20), 12 < 4u+h+s < 96, du+h+s # 32;

3)0<u<m-—1,8=0 (mod 4) and h=40or h=0;

4) there exists a GD[5,7, {4, s*},4m + s].

Now apply theorem 2.9 with A = 7 and the result follows.

For v = 132,136 apply 24 withn =7, h=4, A=T7andu=2o0r 3
respectively.

For v = 140 apply theorem 2.18 withn=A =7 and k= 0.

For v = 172,180 apply theorem 2.12 withm =8, A=7, h=0andu =2
or 4 respectively.

For v = 212 apply theorem 2.7 with m =40, u =12, h=0and A =T7.
For v = 272 apply theorem 2.14 withm =13, h=0,u =3 and A =7.

Lemma 5.7. Let v = 8 (mod 20) be a positive integer. Then o(v,5,7) =
¥(v,5,7) with the possible exception of v = 28.

Proof: For v = 8,48, 68, 88 the construction is as follows:
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1) Take a (v,5,4) minimal covering design with a hole of size 8 [13].
The excess graph of the (8,5,4) covering design consists of 4 iso-
lated vertices and the following graph on the remaining 4 vertices
say {1,2,3,4}. Hence, the (v,5,4) minimal covering design for v =
8,48,68,88 consists of v — 4 isolated vertices and the same graph
on the remaining 4 vertices. Furthermore assume we have the block
(1 2 3 4 5) where 5 is an arbitrary number. Delete this block.

1 2

Y 3

2) Take a (v,5,3) optimal packing design [9]. By lemma 3.3 the com-
plement graph of this design is a 1-factor so we may assume that the
pairs (1,3) and (2,4) appear at most twice.

It is readily checked that the above two steps yield the blocks of a (v, 5, 7)
optimal packing design for v = 8,48, 68, 88.

For v > 108, v # 128,168, 208,268 write v = 20m + 4u + h + s where
m, u, h and s are chosen the same as in lemma 5.6 with the difference that
4u+h + s = 8,48,68,88. Now apply theorem 2.9 with A = 7 to get the
result.

For v = 128 apply theorem 24 withn=A=7, h=4and u=1.

For v = 168 apply theorem 2.12 with m =8, A=7, h=0and u = 1.

For v = 208 apply theorem 2.7 with m = 40, u = 0 and h = 8 and notice
that a (48,5,7) packing design with a hole of size 8 can be constructed by
taking the blocks of a (48,5,4) and a (48,5,3) packing design with a hole of
size 8 [9,13)].

For v = 268 apply theorem 2.14 withm =13, A\=7, h=4 and u = 1.

5.5 v=2 (mod 4)

Lemma 5.8. o(v,5,7) = ¥(v,5,7) for all positive integers v where v = 2
(mod 4).

Proof: For v = 2,6,10 or 14 (mod 20) a (v, 5,7) optimal packing design
can be constructed by taking the blocks of a (v, 5,4) [10] and (, 5, 3) optimal
packing designs [7]. For v = 18 (mod 20), the proof of this case is the same
as lemma 5.7. So we need to show that for » = 18 (mod 20) there exists
a (v,5,4) minimal covering design such that its excess graph consists of
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v -4 isolated vertices, and the same graph of lemma 5.7 on the remaining
4 vertices, say, {1,2,3,4}. Instead we show that for all » = 18 (mod 20),
v # 18,178, there exists a (v,5,4) covering design with a hole of size 8
or 13 and since a (v,5,4), v = 8,13, minimal covering design satisfies the
above it follows that each (v, 5,4), v = 18 (mod 20), v # 18,178 minimal
covering design satisfies this condition.

We distinguish the following cases.
Case 1. v = 18 (mod 100), v # 18. In this case take a TT(6,1,m,u)
where m = 1 (mod 20) and u = 13. Replace the blocks of this design by
the blocks of B[6,5,4] and B([5,5,4]. On the first five groups construct a
B[m, 5,4] and take the last group to be the hole.
Case 2. v = 38 (mod 100). For v = 38 see [13]. For all other values of v
take a TT(6, 1,m, u) where m = 5 (mod 20) and u = 13. Then this case is
exactly like case 1.

Case 3. v = 58 (mod 100). For v = 58 see [13]. For all other values of
v take a TT(6,1, m,u) where m = 9 (mod 20) and u = 12. Replace the
blocks of this design by the blocks of B[6, 5,4] and B[5,5,4]. Add a point
to the groups and on the first five groups construct a Bjm+1, 5,4] and take
this point with the last group to be the hole.

Case 4. v = 78 (mod 100), v # 178. For v = 78 see [14]. For all other
values of v, take a TT(6, 1, m, u) where m = 14 (mod 20) and u = 7. Then
this case is the same as case 3.

Case 5. v = 98 (mod 100). For v = 98 see [14]. For all other values
of v take a TT(6,1, m,u) where m = 17 (mod 20) and u = 11. Replace
the blocks of this design by the blocks of B[6, 5,4] and B[5,5,4]. Add two
points to the groups and on the first five groups construct a (m + 2,5,4)
covering design with a hole of size 2, and take these two points with the
last group to be the hole.

To complete the proof of lemma 5.8 we need to construct a (v,5,7) min-
imal covering design for v = 18,178.

For v = 18 see the table below.

For v = 178 apply theorem 2.12 with m =8, h=2, u =3 and A= 17.
Applying this theorem requires the existence of a (22,5,7), (26,5,7) pack-
ing design with a hole of size 2 and 6 respectively. Such designs can be
constructed by taking a (22,5,3), (26,5,3) [7] and (22,5,4), (26,5,4) packing
design with a hole of size 2 and 6 respectively [10]. Notice that a (26,5,4)
packing design with a hole of size 6 can be constructed by taking a T[5,4,5].
Add a point to the groups. On the first 4 groups construct a B[6,5,4] and
take the last group with this point to be the hole.
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v | Point Set | Base Blocks |
HTs Z1sUH; | (028 10) U {a, b} half orbit

I (014912){013510){0124 6)

I (0127a)(014115)(03710)U{a,bY |

5.6 v=9,13 or 17 (mod 20)

Lemma 5.9. Let v = 9,13 or 17 (mod 20) be a positive integer. Then
o(v,5,7) = $(1,5,7) if v =13 (mod 20) and o(v,5,7) = P(v,5,7) -1 if
v =9 or 17 (mod 20).

Proof: For v = 9,13 or 17 (mod 20), v # 13, the result follows from
lemma 4.2. Since a (13,5,2) optimal packing design does not exist we need
to construct a (13,5,7) optimal packing design. For this purpose let X =
Z3 x ZsU Hj3. Then the required blocks are

(2, 0)(e, 1)(, 2)(e, 3)(e, 4)), @ = 0,1 twice;

and the following base blocks mod (—, 5)

((0,0)(1, 3)h1h2h3)((0,0)(0, 1)(0, 3)(1, 0)h1)

((0,0)(1,0)(1,1)(1, 2)k1)((0, 0)(0, 2)(1,0)(1, 3)hy)

((0,0)(0,1)(1,2)(1, 4)h2){(0, 0)(0, 1)(1,0)(1, 1)hg)

Corollary 5.1. Let v = 9,13 or 17 (mod 20) and A > 7 be positive
integers. Then o(v,5,\) = (v, 5, \) — e, where e is as described in theorem
1.3

Proof: We have shown that for all v = 9,13 or 17 (mod 20), (v,)) #
(13,2), 2 < X < 8, o(1,5,)) = ¥(v,5, A) — e holds where e is as above
and 0(13,5,2) = (13,5,2) — 1 with the possible exceptions of (v,)) =
(17,3)(29,3)(33,3). We also show that ¢(13,5, 7) = 94(13,5,7). On the
other hand for all A= 0 (mod 5) and » = 9,13 or 17 (mod 20) there exists
a B[y, 5, \]. Now apply lemma 4.2 to get the result.

Theorem 5.1. o(y,5,7) = 9(v,5,7) for all positive integers v > 5 with
the possible exception of v = 28,32, 44.

Proof: For v =15 or 19 (mod 20), o(v,5,7) = a(v,5,4) + o(v, 5, 3) holds.
For v = 11 (mod 20) apply lemma 4.2. For all other values of v the
result follows from theorem 2.2 and lemmas 5.1, 5.3, 5.5, 5.6, 5.7, 5.8, 5.9.

6 Packing with Index 9
With lemma 4.2 at our hand we can prove the following.
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Lemma 6.1. o(v,5,\) = ¥(v,5, ) for all positive integers v, v =0 or 1
(mod 5) and for all positive integers X > 9.

Proof: By theorem 2.1 there exists a B[r, 5, A] for all positive integers A
and v such that A =0 (mod 4) and v =0or 1 (mod 5). On the other hand
o(1,5,X) = ¥(,5,)) forall v =0or 1 (mod 5) and 4 < A < 7. Hence,
o(1,5,) =9¥(,5,)) forall A > 9 and v =0o0r 1 (mod 5).

Again in this section we distinguish the following cases.

6.1 v =4,8or 12 (mod 20)

Lemma 6.2. Let v = 4,8 or 12 (mod 20) be a positive integer. Then
o(v,5,9) = ¥(v,5,9) with the possible exception of v = 32.

Proof: For v =4 or 12 (mod 20), v # 32, o(»,5,9) = (v, 5,5) + o(v,5,4)
holds.

For v = 8,48, 68 and 88, ,0(y,5,9) = 3-0(v, 5, 3). Since (28,5,3) optimal
packing design is still unknown we need to construct a (28,5,9) optimal
packing design.

For this purpose let X = Zg then the required blocks can be constructed
by developing, under the action of the group Zss, the following base blocks.
(0124 10) twice (0 3 8 15 19) twice (0 4 10 15 22) twice
(012310)(0251419)(0371420) (012412)(0381521)(0491523).
For v > 108, v # 128, write v = 20m + 4u + h + s where m, u, h and s are
chosen as in lemma 5.7 with h = 0 and 4u + h + s = 8, 28,48, 68, 88.

Now apply theorem 2.9 with A = 9 and the result follows. For v = 128
apply theorem 24 withA=9,u=2, n=7and h=0.

6.2 v =3 (mod 20)

In this case o(v,5,9) = o(v, 5, 8) + (v, 5,1), v # 243.
For v = 243 apply theorem 2.9 with m =11, A=9, h=3, s =0 and
u = 5. See next lemma for a (23,5,9) packing design with a hole of size 3.

6.3 v =7 (mod 20))
Lemma 6.3. (1) o(v,5,9) = ¥(v,5,9) for v = 7,27,47,67,87. (2) There
exists a (23,5,9) packing design with a hole of size 3.

Proof: For a (23,5,9) packing design with a hole of size 3, take 3 copies of
a (23,5,2) and one copy of a (23,5,3) packing designs with a hole of size 3
(5], [8].

For a (27,5,9) optimal packing design proceed as follows:
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1) Take a (27,5,4) minimal covering design [31). This design has a triple,
say, {25, 26,27} the pairs of which appear in six blocks.

2) Take a (27,5,5) optimal packing design which is constructed by taking
the blocks of a B[26,5,4] together with the blocks of a (31,5,1) packing
design with a hole of size 7 [32]. Assume the hole is {25 26 27 28 29 30 31},
which we delete, and change 28, 29, 30 and 31 to 27.

The above two steps give a design such that (25,26) appears 10 times,
(25,27) and (26,27) appear 6 times and each other pair appears at most
9 times. Now we need to reduce the number of blocks containing (25,26)
from 10 to 9. To do that assume we have the block (1 2 3 25 26) in design
(1) and (1 2 3 22 27) in design (2), where {1, 2,3} are arbitrary numbers.

In the first block change 26 to 27 and in the second block change 27 to
26. The above step reduces the appearance of (25,26) from 10 to 9 but
increases the appearance of (22,26) from 9 to 10. To fix this assume in
design (1) we have the block (4 5 6 22 26) and in design (2) we have the
block (4 5 6 27 9) where {4,5,6} are arbitrary numbers. In the first block
change 26 to 9 and in the second block change 9 to 26. This step reduces the
number of blocks containing (22,26) from 10 to 9 but increase the number
of blocks containing (9,22) by 1. Hence, assume that (9,22) appears at most
4 times in the blocks of design (2). Now it is easy to check that the above
construction gives a (27,5,9) optimal packing design.

For the other constructions see the next table.
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Point Set

Base Blocks

Zg U Hy

01234){0124 k(0123 hy)

Zy U Hy

On Z4 U H7 construct a (47,5,2) packing design with a
hole of size 7 [5]. Take 3 copies of this design and
take the following blocks.

{0816 24 32) + 4,1  Zs, three times

(0 10 20 30 h7) + 4,3 € Z1o

(0124 7)(0 312 18 30)(0 5 14 25) U {hy, ha}

(04 15 21) U {ha, ha}{0 4 13 27) U {hs, he }{0 2 7 21)

U{hi}i1(0 1 11 18) U {hs, ke, b7, hr}

Zeo U Hy

On Zgo U H; construct a (67,5,2) packing design with a
hole of size 7 [5]. Take 3 copies of this design and
take the following blocks

{012 24 36 48) + 1,1 € Z12, three times

(015 30 45 hy) +4,i € Z15

(013835)(04 13 23 44){0 6 17 28 46){0 1 3 7 47)

(0616 34 43)(0 5 19 30) U {hy, h2}(0 1 4 26) U {hs, hs}

(0821 29) U {hs, he}(0 5 27 42) U {h:}.,

(0 29 19) U {h5, he, h7, h7}

87

Zgo U Hp

On Zgo U Hy construct a (87,5,2) packing design with a
hole of size 7 [5]. Take 3 copies of this design and
take the following blocks

{016 3248 64) + 1,5 € Zys, three times

(0 20 40 60 A7) +14,i € Zxo

(01513 51)(03 21 28 47){0 6 17 41 63)(0 1 3 11 15)

(017959)(04 19 37 57)(0 10 24 36 49)(0 3 5 34 45)

(0 518 33) U {h1, hz}(o 724 43) U {h3,h4}(0 929 54)

U{hs, he {0 9 23 50) U {h; }2_,{0 21 27 58)

U{hshehrhz}

Lemma 6.4. Let v =7 (mod 20) be a positive integer. Then o(v,5,9) =
P(v,5,9).

Proof: For v = 7,27,47,67,87 the result follows from lemma 6.3. For
v > 107, v # 127,147 simple calculations show that v can be written in the
form v = 20m +4u+ h+ s where m, u, k and s are chosen as in lemma 5.3.
Now apply theorem 2.9 with A = 9 and the result follows.
For v = 127,147 apply theorem 24 withu=1, h=3,A\=9andn=7,8
respectively.




6.4 v =19 (mod 20)

The values under 100 are treated individually.
Lemma 6.5. o(y,5,9) = ¥(v,5,9) for v =19, 39,59, 79, 99.

Proof: The required constructions are given in the next table.

v | Point Set

Base Blocks

19 | Zy

{01236)(015813){026913){026 11 14)

(0131012){0123 7){014 9 14){0 2 6 10 13)

39 | Z3p

{0135 15) twice (0 3 12 22 28) twice (0 6 13 21 32) twice

{015917){012521){(05 11 21 29){(0 5 13 21 30)

{0124 15){031016 22){04 11 18 23){0 1 2 4 13)

{03 14 18 24){0 6 13 22 30){0 5 10 19 27)

59 | Zso

{0137 26) twice (0 5 15 35 46) twice (0 8 17 29 45) twice

{01 3 8 20) twice (0 4 13 20 48) twice (0 6 18 28 45) twice

{0415 27 42){0 1 4 9 41){0 2 14 25 38)(0 6 22 32 39)

(013919y(0 137 21){0 5 17 27 40){0 8 23 34 43)

{01315 21)(0 5 18 37 44)(0 9 21 34 45)(0 1 3 7 29)

(05 13 23 40){0 4 11 20 25)

9| Z7o

{01 37 23) twice (0 5 13 41 53) twice {0 9 30 41 55) twice

{010 27 45 60) twice (0 1 3 7 20) twice {0 5 21 44 55) twice

(0 8 18 40 49) twice (0 12 26 39 54){0 1 3 7 25) twice

(015 21 28)(0 2 28 40 44){0 8 18 37 52)(0 9 20 42 56)

(05 13 33 49){0 9 19 45 56){0 12 27 48 62){0 1 3 7 22)

(05 28 38 52){0 8 17 42 53){0 12 30 43 59)(0 1 3 9 27)

(0414 29 62)(0 5 16 28 35)(0 5 16 33 43)(0 8 23 37 57)

(09 21 40 53)(0 5 17 2454) i

99 | ZgoU Hyg

On Zgo U H17 construct a B[97,5,5] with a hole of size 17
say His. Such design can be constructed from a T[6,5,16]
with an extra point added to the groups. On the first 5
groups construct a B[17,5,5] and take the last group with
the points to be the hole. Take the following blocks.

{0 16 32 48 64) + i,i € Z16, 4 times

{0 10 40 50f(x)) half orbit, where f(x) = hi1s

ifx=0or 1 (mod 4) and f(x) = h;9 otherwise

(0 8 20 44 58)(0 4 22 34 37)(0 2 22 28h15){0 4 18 42 h1g)

(0169 hy){0717 38 h2){0 11 30 57 ha){0 12 31 57 hq)

{0 13 33 58 £5){0 14 29 53 he){0 1 2 5 h7){0 2 7 13 ha)

{0717 36 hg){0 8 21 47 h10)(0 9 37 46 h11){0 10 35 49 hi2)

{011 28 55 A13){(0 1 3 8 h14){0 4 13 31 h15){0 6 23 57 he)

| I—

{011 29 54 h17){0 12 33 52 hys){0 15 35 56 hyg)

Lemma 6.6. Let v =19 (mod 20) be a positive integer. Then o(v,5,9) =

v(,5,9).
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Proof: For v = 19, 39,59,79,99 the result follows from lemma 6.5. For
v > 119, v # 139,179 simple calculations show that v can be written in the
form v = 20m 4 4u 4 h + s where m, u, h and s are chosen as in lemma 5.3
with the difference that 4u + h + s = 19, 39, 59, 79, 99.

Now apply theorem 2.9 with A = 9 and the result follows.

For v = 139, apply theorem 24 withu=4,A=3,A=9and n=71.

For v = 179 apply theorem 2.13 withm =8, s =8, A=9and h = 3.

6.5 v =2 (mod 20)
In this case o(v, 5,9) = o(v, 5,5) + o(v,5,4).

6.6 v =14 (mod 20)

Lemma 6.7. There exists a (74,5,3) covering design with a hole of size 14.

Proof: Let X = Z5 x Z3pU Hy4. Then the blocks of the required design
can be constructed as follows:

1) On Z; x Zgo U Hi3 construct a (73,5,1) covering design with a hole of
size 13, say, His, [27).

2) take the following base blocks, the first two as indicated and the
remaining are mod (—, 30)

((0,0)(0, 15)(1,0)(1, 15)h1a) + (=, i), i € Zus

((0! 0)(0$ 6)(0’ 12)(01 18)((): 24» + (_’ i)s i€ Zg

((0,0)(0,2)(0,10)(0, 13)(0, 14))((1, 0)(1, 2)(1, 6)(1, 14)(1, 17))
((0,0)(0,5)(1,1)(1,4)(1, 24)){(0,0)(0, 7)(0, 17)(1, 29)) U { k1, ho}

«0: 0)(1' 1)(11 8)(11 18)) U {hly h2}((os 0)(01 3)(01 9)(1: 23)) U {h3, h4}
{(0,0)(1,2)(1,7)(1,16)) U {hs, ha }{(0,0)(0,1)(1, 3)(1, 5) hs)

((Ov 0)(0; 2)(1’ 9)(1: 28)"'6) ((0, 0)(0’ 4)(1’ 10)(1: 15)h7)

((0! 0)(01 8)(1’ 3)(1v 21)h10) ((0’ 0)(0’ 9)(1: 17)(11 20)h11)

((01 0) (0, 11)(1$ 27)(1’ 28)h12) ((0’ 0)(0, 14)(1s 5) (1’ 14)"‘13)

Lemma 6.8. (a) o(v,5,9) = ¥(,5,9) for v = 14,34,54,74,94. (b) there
exists a (26,5,9) packing design with a hole of size 6.

Proof: (a) For v = 14 proceed as follows:
1) Take a (14,5,3) minimal covering design [9]. The repeated pairs of this

design form one factor. We may rearrange the points of the design
so that the repeated pairs are (1,8) (5,11) (2,6) (3,7) (10,12) (9,14)
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(4,13) and so that we have the block (3 5 8 4 13). In this block change
13to0 9.

2) Take a (14,5,6) optimal packing design [11]. There are 16 missing
pairs in this design and they are (1,5) (1,6) (2,6) (2,10) (3,4) (3,7)
(4,9) (5,11) (7,12) (9,14) (10,12) (11,14) and (1,8) (1,13) each missing
twice. Furthermore, in this design we have the block (1 3 5 8 9). In
this block change 9 to 13. Now it is easy to check that these two steps
yield a (14,5,9) optimal packing design.

For v = 74, 94 the construction is as follows:

1) Take a (v, 5, 3) packing design with a hole of size 14, [7]. The missing
pairs form three 1-factor on the v — 14 points.

2) Take two copies of a (v,5,3) covering design with a hole of size 14,
for v = 94 see [9]. In each copy the repeated pairs form a 1-factor on
the v — 14 points.

Now apply theorem 3.2 to get the result.

For v = 34, 54 see next table.

(b) For a (26,5,9) packing design with a hole of size 6 take a (26,5,4)
(lemma 5.8) and a (26,5,5) packing design with a hole of size 6, [8].

v ] Point Set | Base Blocks

34| Z2s UHe | (05 14 19) U {hs, he} half orbit

I (01359)(027 1321)(0 2 10 14 20)(0 4 10 16 20)
[ (011113 hy)(0 123 h2){03 611 h3)(0 3718 hy)

{04 11 19 hs){(0 5 12 21 he){0 215 21 hy){01 2 5 g)

(01411 h3)(011217 hy){0 3 9 18 h5)(0 5 13 20 hg)

(03914)U{h}i,

54 | ZigUHg | (01324 37) U {hs,hs}

{0138 21) twice (0 4 16 26 36) twice (0 6 14 25 39)

twice(0 1 3 5 22)(0 4 14 20 32)(0 6 13 31 39)

{013717)(04 1528 33)(0 6 18 27 35)(0 1 3 8 17)

{07 19 30 h;){0 6 22 30 ho){0 1 2 5 73){0 3 8 31 hq)

{06 13 39 hs)(0 7 19 34 he)(0 9 19 30 hy){0 1 2 5 ho)

(02539 hg)(04 1729 hy)(0 717 28 h5){0 9 22 33 k)

I 06213 U (R,

Lemma 6.9. Let v = 14 (mod 20) be a positive integer. Then o(v,5,9) =
¥(,5,9).
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Proof: For v = 14, 34, 54, 74, 94 the result follows from lemma 6.8.

For v > 114, v # 134, simple calculations show that v can be written in
the form v = 20m + 4u + h + s where m, u, h and s are chosen so that:

1) there exists a RMGDJ[5, 1, 5, 5m);

2) 4u+h+s=14 (mod 20), 14 < 4du+h + s < 94;
3) 0su<m-1,35=0 (mod 4), h = 6;

4) there exists a GD[5,9, {4, s*},4m + s].

Now apply theorem 2.9 with A = 9 and the result follows.
For v = 134 apply theorem 24 withu=2,h=6, A\=9andn=17.

6.7 v =18 (mod 20)

Lemma 86.10. o(»,5,9) = ¥(v,5,9) for v = 18, 38,58, 78, 98.
Furthermore, these designs have a hole of size 2.

Proof: For v = 18, 38,58, 78 the constructions are given in the next table.

In the construction of a (78,5,9) optimal packing design we use a B[76,5,4]

with a hole of size 16. Such design can be constructed from a T[5,4,15] by

adding one point to the groups. On the first 4 groups construct a B[16,5,4]
and take the last group with the point to be the hole.

For v = 98 apply theorem 2.7 withm=u=16, \=9 and h = 2.

Lemma 6.11. Let v = 18 (mod 20) be a positive integer. Theno(v,5,9) =
¥(v,5,9).

Proof: For v = 18, 38,58, 78,98 the result follows from lemma 6.10. For
v 2 118, v # 138, simple calculations show that v can be written in the

form v = 20m + 4u+ h+ s where m, u, h and s are chosen as in lemma 6.9
with one difference that 4u + k + s = 18, 38, 58, 78, 98.

Now apply theorem 2.9 with A =9 and the result follows.
For v = 138 apply theorem 24 with A=9,u=3, h=6andn=717.

Theorem 6.1. o(v,5,9) = ¥(v,5,9) for all positive integers v > 5 with
the possible exception of v = 32.
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v | Point Set

Base Blocks

18 | Z1g U Ho

{018 9) U{hs, hz] half orbit

{0137 95) twice (01 24 6){01 23 6){0 3 6 11 hy)

{03712 h2)(01611 hi}{03 712 hy)

38| Zax Z1sUH,

On Z2 X Z1s construct a B[36,5,4] and take the following
blocks

{(a, 0)(c, 1)(ev, 3)(ex, 7)(, 12)}, @ = 0, 1.

{(0,0)(0, 2)(0, 4)(0, 8)(1, 0)){(0,0)(0, 1)(0, 3)(0, 8)(1, 0)) |

{(0,0)(0,1)(1,2)(1,3)(1, 6)}{(0,0)(0,3)(1, (1, 7)(A,12)} ||

{(0,0)(0,4)(1,7)(1,15)(1,17)){(0,0)(1,0) (1, 1), 4)(1, 10)) ||

{(0,0)(0, 3)(0,8)(1, 11)(1,16)){(0, 0)(0, 9)(1, 3)(1,5)(1, 17))

((0,0)(0,6)(0, 7)(1, 11)(1, 13)}{(0, 0) (0, 6)(1, 2)(1, 12) (1, 15)) “

((0: 0)(0: 1)(1v 16)(11 17)h1)((0s 0)(01 2)(17 14)(1: 17)"‘1)

((0’ 0)(03 3){, 9)(11 14)h1)«07 0)(o, 4)(17 8)(1: 9)h1) H
{(0,0)(0,5)(1, 7)(1, 9)h2){(0, 0)(0, 6)(1, ) (1, 11)2)

((03 0)(0» 0, 2)(1x 13)’12)((0, 0)(o, 8)(1s 0)(1, 8)"2) "

((ol 0)(0» 9)(1! 1)(1! 12)) U {hl, ha}

58 | Zse U Hy

On Zse construct a B[56,5,4] and take the following blocks

{01 31328){04 18 29 34)(0 6 23 30 38){0 4 5 21 40)

{013614)(04 13 34 46)(0 7 16 27 41){0 1 3 8 42)

{0 9 28 37) U {h1, hz}, half orbit H

{04 13 23 43)(0 6 16 27 38){0 1 19 21 25)(0 6 18 30 &;)

{02549 h1){0 7 17 36h2){0 8 23 31 hy)

78 | Zeo U Hig

On Zgo U Hig construct a B[76,5,4] with a hole of size 16
and take the following blocks.

{0 11 30 41) U {h1+, h1s} half orbit.

{05 22 40 h1){0 9 23 41 h3){0 10 26 39 h3){0 11 26 38 hq)

(01310 hs)(0 4 22 39 he){0 6 26 37 hr){0 8 24 36 hia)

{0 4 24 36 h9){0 8 17 33 h10){0 8 23 39 h,,){0 8 28 55 hia)

(012 26 45 h13)(0 5 14 38 h14){0 8 25 40 hys)

{010 23 44 h16){0 1 3 7 hy7) twice {0 1 3 7 hya) if

{011 29 41 hyg){0 3 17 38) U {A;}2_,(0 1 10 15) I

U{R:Jo5(0 11 13 18) U {A:}24{0 6 19 29)
°

Ufhi}icas

7 Packing with index 10
7.1 v=4,8or 12 (mod 20)

Lemma 7.1. Let v = 4 (mod 20), v > 24, be a positive integer. Then
a(v,5,10) = (v, 5,10).

Proof: There are several methods to prove this lemma. The following one

is the shortest.
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1) Take a (v,5,4) optimal packing design [10]. In this design there is
one pair say (v — 1,v) that appears in zero blocks while each other
pair appears in 4 blocks. Assume in this design we have the block
(4 5 6 v — 3 v) where {4,5,6} are arbitrary numbers. In this block
change vto v — 1.

2) Take a (v —2,5,2) optimal packing design [4].
Now we take 4 copies of a B[v + 1,5,1]. In two of these copies we

change v+ 1 to v and in the other two we change v+ 1 to v —1. This
is done as follows.

3) Take a B[v +1,5,1] and delete the block (v =3 v —-2v—1v v +1)
and in all other blocks change v +1 to v.

4) Take a Bfv +1,5,1] and assume we have the block (1 2 3 v v+ 1)
where {1,2, 3} are arbitrary numbers. In this block change v + 1 to
v — 1 and in all other blocks change v + 1 to v.

5) Take a B[+ 1,5,1] and assume we have the block (123 v—1v+1).
In this block change v + 1 to v and in all other blocks change v + 1
tov—-1.

6) Take a B[v+1,5,1] and assume we have the block (456 v —1 v +1).
In this block change v + 1 to v and in all other blocks change v + 1
tov-1.

Now it is easy to check that the above six steps yield a (v, 5, 10) optimal
packing design for all » > 24, v =4 (mod 20).

Lemma 7.2. Let v = 8 (mod 20) be a positive integer. If there exists a
(v, 5,4) packing design with a hole of size 8 then o(v,5,10) = %(v, 5, 10).
Proof: The complement graph of a (v, 5,4) packing design with ¥(v, 5,4) —
1 blocks, v = 8 (mod 20), consists of 12 edges, [10]. In the case v = 8 the
complement graph consists of 2 isolated vertices and the following graph
on 6 vertices, say, {0,1,3,4,5,6}.

(0] 1

o

So if we have a (v, 5, 4) packing design with a hole of size 8 then the comple-
ment graph of the (v, 5,4) packing design consists of v — 6 isolated vertices
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and the same graph on the other 6 vertices. In this case a (v, 5, 10) optimal
packing design, » =8 (mod 20) can be constructed as follows:

1) Take a (v,5,4) packing design which satisfies the above.

2) Take two copies of a (v, 5, 3) optimal packing design, [9], and assume
that the pairs (1,5) and (3,6) each appears at most 5 times in the two
copies of a (v, 5,3) optimal packing design.

3) Add the block (1 3 4 5 6)

Corollary 7.1. o(v,5,10) = %(v, 5,10) for v = 8,48, 68, 88.

Proof: In view of lemma 7.2 all we need to do is to show that there exists
a (v,5,4) packing design with a hole of size 8. For v = 48, 68 see [13]. For
v = 88 take a TT(6,4,16,8). On the groups of size 16, and on the blocks
construct a B[y, 5,4] where v = 16, 6, 5. Take the last group to be the hole.
Since a (v, 5, 3) optimal packing design exists for v = 8, 48, 68, 88, it follows
that o(v, 5,10) = ¢(v, 5,10) for v = 8,48, 68, 88.

Lemma 7.38. Let v = 8 (mod 20) be a positive integer. Then o(v,5,10) =
¥(»,5,10).

Proof: For v = 28 the construction is as follows:

1) take a (27,5,4) minimal covering design [31]. The excess graph of
this design consists of 24 isolated vertices and 3 other vertices, say,
{1,2,3}, the pairs of which are joined by two edges.

2) take a (29,5,4) optimal packing design [10]. In this design there is one
pair, say, (28,29) that appears in zero blocks, so change 29 to 28.

3) take a (28,5,2) packing design with a hole of size 4, say, {1,2, 3, 4} [4).

For v = 8, 48, 68, 88 the result follows from the corollary.

For v > 108, v # 128, write v = 20m+4u+h+ s where m, u, h and s are
chosen as in lemma 5.3 with the difference that 4u+h+s = 8,18,48, 68, 88
and A =0.

Now apply theorem 2.9 with A = 10 and the result follows.
For v =128 apply theorem 2.4 withu=2,A=10,A=0and n=7.

Lemma 7.4. (a) Let v = 2 (mod 10) be a positive integer. Then o (v, 5,10) =
¥(v,5,10). (b) There exists a (22,5,10) packing design with a hole of size
2.

Proof: For (a) notice that o(v,5,10) = o(v, 5, 8) + o(v, 5, 2).
For a (22,5,10) packing design with a hole of size 2 take a (22,5,2) and
two copies of a (22,5,4) packing design with a hole of size 2.
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7.2 v =14 or 18 (mod 20)

Lemma 7.5. (v, 5,10) = 9¥(v, 5,10) for v = 14, 34, 54, 74, 94.

Proof: For v = 14 the construction is as follows:

1) Take a (14,5,4) minimal covering design [13]. This design has a triple,
say, {12,13,14} the pairs of which appear in precisely 6 blocks while
each other pair appears in precisely 4 blocks.

2) Take a (14,5,2) optimal packing design [4]. Careful inspection of this
design shows that the pairs {(0,0),(1,1)} and {(1,1),(1,3)} appear
in zero blocks. We may change the points of this design so that the
pairs (12,13) and (12,14) appear in zero blocks of the (14,5,2) optimal
packing design.

3) Take a (14,5,4) optimal packing design. Each pair of this design ap-
pears precisely in 4 blocks except one pair, say, {13, 14} that appears
in zero blocks. It is clear that this construction gives a (14,5,10)
optimal packing design.

For v = 34, 54,74, 94 the construction is as follows:

1) Take a (v, 5,4) minimal covering design [13]. This design has a triple,
say, {v — 2,v — 1, v} the pairs of which appear in precisely 6 blocks
while each other pair appears in precisely 4 blocks.

2) Take a (v,5,4) optimal packing design.

3) Take a (v,5,2) packing design with a hole of size 4 and assume the
hole is {v — 3,v — 2,v — 1,v}. See [4] for the existence of a (v, 5, 2),
v = 34, 54,94, packing design with a hole of size 4.

For a (74,5,2) packing design with a hole of size 4 take a T[5,2,14], add
4 points to the groups and on each group construct an (18,5,2) packing
design with a hole of size 4, [4].

It is clear that these three steps yield a (v, 5,10) optimal packing design
for v = 34,54,74,94.

Lemma 7.6. Let v = 14 (mod 20) be a positive integer. Then (v, 5,10) =
¥(v,5,10).

Proof: For v = 14,34,54,74,94 the result follows from lemma 7.6. For
v 2 114, v # 134 we noticed that a (v, 5,2) optimal packing design has a
hole of size 14; or a hole of size 34, 54, 74, 94 and hence a hole of size 4,
[4]. Now invoke the above two constructions given in lemma 7.5 to give us
the result.

32



For v = 134 apply theorem 24 withm =7, h=2, A\=10and u = 3.

The case v = 18 (mod 20) is very similar to the previous case. For this
purpose the following lemma is very useful.

Lemma 7.7. There exists a (v,5,2) packing design with a hole of size 4
for v =18, 38,58,78,98,138,178.
Proof: For v = 18, 38,138, 178 see [4].

For v = 58,78,98 the constructions are given in the next table. For
v = 98 we actually construct a (98,5,2) packing design with a hole of size
18. But an (18,5,2) packing design with a hole of size 4 exists, [4], hence a
(98,5,4) packing design with a hole of size 4 exists.

v [ Point Set | Base Blocks
58 | Zsa UH; | (013931)(04 18 25 37){0 1 3 7 41){0 5 13 31 43)
(0515 32) U {h1ho}{0 919 34) U {hs3, hs}

78 | ZraUH, | (0311 2541)(0 2 1247 54){0 6 21 30 49){0 1 3 7 17)
(081934 62)(01 5 18 41)(0 5 29 42) U {hy, b2}
(0 927 48) U {hl,hz}
[ 98 | ZgoU His | (0 16 32 48 64) +1,i € Z16, twice
{0412 26 50)(0 1 3 13 39)(0 5 24 55) U {h1, hia}
{0 6 33 51) U {h3,h4)(0 9 20 37) U {hs, hs}{0 1 3 8)
U{R7,ha}{0 4 11 25) U {hg, h1o}(0 6 15 35)
U{h11, k12 }{0 10 27 49) U {hy3, hya}

{013 34 57)U {h15,h16}(0 15 33 52) U {h17, hls}

Lemma 7.8. o(y, 5,10) = 9(v,5,10) for v = 18, 38, 58, 78, 98, 138, 158.
Proof: The construction of these optimal packing designs is as follows:
1) Take a (v —1,5,4) minimal covering design. This design has a triple,

say, {v—3,v—2,v—1} the pairs of which appear in precisely 6 blocks
while each other pair appears in precisely 4 blocks [12], [13].

2) Take a (v +1,5,4) optimal packing design. This design has a pair,
say, (v, v +1), that appears in zero blocks. Change v + 1 to v.

3) Take a (v,5,2) optimal packing design with a hole of size 4, say,
{v-3v-2,v-1,1}.

Lemma 7.9. Let v = 18 (mod 20) be a positive integer. Then o(v,5,10) =
¥(v,5,10).

Proof: For v = 18, 38,58, 78, 98, 138, 178 the result is given in lemma 7.9.
For v > 118, v # 138,178 write v = 20m+ 4u+h + s then the proof of this
lemma is the same as lemma 6.11 with the difference that h = 2.
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7.3 v=3,7 or 19 (mod 20)

Lemma 7.10. Let v = 3,7 or 19 (mod 20) be a positive integer. Then
o(v,5,10) = ¥(v,5,10). Furthermore, o(v,5,) = ¥(v,5,}) for all positive
integers A and v = 3 (mod 20) with the possible exceptions of (v,)) =
(243,1).

Proof: It is clear that if v = 3,7 or 19 (mod 20) then there exists a
B|v,5, 10} and hence o(v,5,10) = %(,5,10). Since for all » = 3 (mod 20)
o(v,5,)\) = ¥(v,5,)\) — e holds (where e as in theorem 1.3) for all 1 <
)N < 10 with the possible exceptions of (v, \’) = (243,1), it follows that
o(v,5,)) = $(v,5,X) — e, where e as before, for all positive integers A >1
and v = 3 (mod 20) with the possible exception of (v, A) = (243,10m + 1)
where m is a nonnegative integer. We now construct a (243,5,11) optimal
packing design. For a (243,5,11) optimal packing design apply theorem 2.9
withm = 11, A =10, s = 0, « = 3 and h = 3. The application of this
theorem requires a (23,5,11) packing design with a hole of size 3. Such
design can be constructed by taking 4 copies of a (23,5,2) and one copy of
a (23,5,3) packing design with a hole of size 3 [5,8]. Now invoke lemma 4.2
to give us the result.

Combining all the results in this section, we have proved the following.

Theorem 7.1. Let v > 5 be a positive integer. Then o(v,5,10) =
¥(v,5,10).

8 Packing with index 11
8.1 v =4 (mod 20)

Lemma 8.1. (a) Let v = 4 (mod 20) be a positive integer. Thena(v,5,11) =
¥(v,5,11). (b) There exists a (24, 5, 11) packing design with a hole of size
4.

Proof: (a) If v =4 (mod 20) then o(v,5,11) = o(v,5,4) + o(, 5, 7).

Since a (44,5,7) optimal packing design is still unknown, we need to
construct a (44,5,11) optimal packing design. This is done in the next
table. For v = 44 the construction contains a hole of size 8 so see the next
section for an (8,5,11) optimal packing design.

(b) For a (24, 5, 11) packing design with a hole of size 4 proceed as follows:

1) Take a (24, 5, 7) packing design with a hole of size 4 (lemma 5.5).

2) Take a (23, 5, 2) optimal packing design. In this design there is a
triple, say, {21,22,23} the pairs of which appear in zero blocks.

34



3) Take two copies of B[25,5,1]. Assume in both copies we have (21 22 23 24 25).
Delete this block and in all other blocks change 25 to 24.

v | Point Set Base Blocks
44 | Z2x Z18UHg | On Z2 X Z1s U Hs construct a B[41,5,5] such that H5 is a
block, which we delete and take the following blocks.
{(0,0)(0,9)(1,0)(1, 9)hs) half orbit
(@, 0)(ex, 2)(ex, 4)(2, 6)(,10)}a = 0,1
{(2, 0)(ex, 1) (e, 4) (e, T)h6){(, 0) (@, 1)(cx, 6) (o, 11) g} = 0,1
«01 0)(0! 1)(0v 8)(1: 5)h1){(0,0)(1,2)(1, 3)(1, 10)'11_)
((0’ 0)(0: 1)(1' 16)(1' 17)"’1)«01 0)(0’ 2)(1» 14)(11 17)h2)
{(0,0)(0, 3)(1,10)(1, 17)h2){(0, 0)(0, 3)(1, 10)(1, 17) h2)
((0: 0) (Or 4)(1» 6) (lt 8)"'2) ((01 0)(0» 5)(1: 8)(1) 12)h3)
{(0,0)(0,6)(1, 6)(1,11)k3){(0, 0)(0, 5)(1, 5)(1, 9)hs)
((0: 0)(0, 8)(1’ 3)(11 9)"’4)((0) 0)(09 9)(1, 0)(1t 10)h4)
{(0,0)(0,1)(1,16)(1,17)h4){(0, 0)(0, 2)(1, 11)(1, 14) h5)
{(0,0)(0, 3)(1, 8)(1, 13)h5}{(0, 0)(0, 3)(1, 6)(1, 11)hs)
((0: 0)(0, 5)(1) 1)(11 7)"'7) ((0’ 0)(0’ 7)(11 2)(1v 7)"'7)
((0, 0)(01 9) (10 1)(1! 12)h7)<(0: 0)(01 1)(11 16)(1 » 17)’")
{(0,0)(0, 2)(1,14)(1, 17)h7){(0, 0)(0, 3)(1, 8)(1, 10)hs)
{(0,0)(0,4)(1,5)(1,8)hs){(0, 0)(0, 5)(1,6)(1, 14) hs)
((0) O)(ol 6)(1) 6)(1» 13)h3)((0: 0)(0» 7)(1$ 11)(1» 13)"’5)
{(0,0)(0, 8)(1,2)(1, 11)A6}{(0, 0)(0, 7)(1,2)(1, 11)) U { h7, hs}

8.2 v =8 (mod 20)

Lemma 8.2. Let v = 8 (mod 20) be a positive integer. Then o(v,5,11) =
¥(v,5,11) with the possible exception of v = 28.

Proof: A (v,5,11) optimal packing design for » = 8,48,68,88, can be
constructed as follows:

1) Take a (v — 1,5,4) optimal packing design, [10].

2) Take a (v + 1,5,4) optimal packing design. In this design each pair
appears in 4 blocks except one pair, say, (v, + 1) which appears in
zero blocks. Change v +1 to v.

3) Take a (v, 5, 3) optimal packing design, [9).

For v > 108, v # 128, 168, 208, 268 simple calculations show that » can
be written in the form v = 20m+4u+ h+ s where m, u, h and s are chosen
as in lemma 5.7.
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Now apply theorem 2.9 with A = 11 and the result follows.
For v = 128 apply theorem 2.4 withn=7,h=0,A=11andu=2.

For v = 168 apply theorem 2.12 withm =8, h=0, A=1l and u=1.

For v = 208 apply theorem 2.7 with m =40, h=0, A =11 and u = 8.
The application of this theorem requires a (48,5,11) packing design with a
hole of size 8. Such design can be constructed as follow:

a) Take a (47,5,4) packing design with a hole of size 7 [10].

b) Take a (49,5,4) packing design with a hole of size 9 [10] and change

49 to 48.

c) Take a (48,5,3) packing design with a hole of size 8 [9].

For v = 268 apply theorem 2.14 withm =13, h=0,A=11and u=2.

8.3 v =12 (mod 20)

Lemma 8.3. o(1,5,11) = %(,5,11) for v = 12, 32,52, 72, 92.

Proof: The required constructions are given in the next table.

v | Point Set

Base Blocks

12 | Z2%x ZsUH2

On Z2 x Z5 U {h,} construct a B{11,5,4] and take
the following blocks

((0: 0)(0’ 1)(0’ 2)hlh2)((1» 0)(11 2)(1» 3)h1h2)

{(0,0)(0,1)(0,2)(1,2)(1, 3)){(0, 0)(0, 2)(1, 1)1, 2)(1,4))

{(0,0)(0, 1)(0, 3)(1, 1)k1){(0,0)(1,0)(1, 3)(1, 4)ha)

((0» 0)(0’ 1)(1» 1)(1$4)h2) ((0, 0)(0’ 2)(1) 3)(1: 4)h2)

{(0,0)(0,1)(1, 0)(1, 3)A2){(0,0)(0, 2)(1, 0)(1, 4)h2)

32 | Zas {012411) 3 times (0381521) 3 times (04101924) 3 times
I (0127 17){0 2 9 18 22)(0 3 11 17 22){0 3 11 19 23)
I (013719)(01 24 26)(0 3 8 17 21){0 5 10 16 25)
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v | Point Set

Base Blocks

52 | Zao U Hi2

On Z4o U Hy; construct a B[51,5,4] with a hole of
size 11, say, Hi;.

Such design can be constructed from a T[5,4,10] by
adding a point to the groups. On the first four groups
construct a B[11,5,4] and take the last group with the
point to be the hole. Take the following blocks

(0816 24 32) 41,1 € Zg twice

{026 18 h1)(0 4 14 18 ha){0 12 14 20 h3){0 8 18 20 ha)

{0516 22 hs){0 6 14 25 he){(0 1 316 h7){01 4 7 hg)

{05 12 27 ho){0 5 16 25 h10){0 7 17 26 h11){0 8 17 27 haz)

{0125 h12){02313)U{h;};_,(05 14 23) U {h:;} i,

{0713 18) U {h:};Zo{0 1 2 5) U {hy, ha}

{0 3 9 24) U {hs, ha}(0 4 15 27) U {hs, he}

{07 15 26) U {h, hs}{0 7 17 30) U {ho, h1o}

{0719 28) U{R11, h1a}

72 | Zeo U Hj2

On Zgo U Hio construct a B[70,5,8] with a hole of size
10. Such design is constructed by applying

theorem 2.7 withm =12, u=8 and h=2.

Notice that a (14,5,8) packing design with

a hole of size 2 is constructed by taking 2

copies of (14,5,4) packing design with a hole of size two.

{037 1826){0 1 18 32 h11){0 4 10 26 hiy3){0 12 20 36 hy3)

{0214 34 h12){0 2 11 41) U {h; }2_;{0 5 15 38) U {he)osg

{0613 31) U {A:}:25(0 1 2 5) U {h1, h2}{0 3 8 43) U {ha, ha}

{06 17 27) U {hs, he} (0 7 19 46) U {h7, hs}{0 9 24 37

U{ho, h10}{0 9 25 38) U {1, h12}

92 | ZgoU Hi2

On Zgo U H1i construct a B[91,5,8] with a hole of
size 11. Such a design is constructed by taking a
T[6,1,16], remove five points from last group then

on the blocks which are of size 5, 6 and on the first

5 groups construct a BIBD with index 8 and take the
last group to be the hole. Take a (80,5,1) minimal
covering design [30] and take the following blocks

{03 13 37 41){0 8 20 38 h12)(0 10 14 36 hy2){0 2 17 31)

Ufh:}i=1(0 5 6 39) U {h:}_5(0 7 18 37) U {h: 1%,

{013 16) U {h1,h2}{0 5 17 26) U {ha, ha}

{07 29 52) U {hs, ha}{0 9 32 53) U {h7, hs}

{0 11 31 56) U {hg, h10}{0 6 25 33) U {h11, h12}

Lemma 8.4. Let v = 12 (mod 20) be a positive integer. Theno(v,5,11) =

¥(»,5,11).

Proof: For v = 12,32,52,72,92 the result follows from lemma 8.3 For
v > 112, v # 132, write v = 20m + 4u + h + s where m, u, h and s are
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chosen as in lemma 5.3 with the difference that 4u+h+s = 12, 32, 52, 72,92
and h=0.

Now apply theorem 2.9 with A = 11 to give the result.

For v = 132 apply theorem 2.4 withu=3,h=0,A=1landn=7.

8.4 v =2 or 18 (mod 20)

Lemma 8.5. Let v = 2 or 18 (mod 20) be a positive integer. Then
o(v,5,11) = ¥(v, 5,11). Furthermore, there exists a (22,5,11) packing de-
sign with a hole of size 2. .

Proof: For v =2 (mod 20), o(v,5,11) = o(v,5,8) + (v, 5, 3).

For a (22,5,11) packing design with a hole of size 2 take a (22,5,3) and
two copies of a (22,5,4) packing design with a hole of size 2, [7], [10].

For v = 18 (mod 20) the construction is as follows:

1) Take a (v — 1,5,4) optimal packing design, [10].

2) Take a (v + 1,5,4) optimal packing design. This design has a pair,
say, (v,v + 1) that appears in zero blocks. Change v +1 to v.

3) Take a (v,5,3) optimal packing design, [7].

Since a (38,5,3) optimal packing design is still unknown, the above con-
struction does not work for v = 38. For v = 38 let X = Z3» U Hg then the
required blocks are the following, developed under the action of the group
Z32
(0 7 16 23) U {hs, he} half orbit
{0124 11) twice (0 3 8 15 21) twice (0 4 10 19 24) twice
(0261216)(0 1412 hy)(0 17 16 ho){0 3 14 19 h3)(0 1 3 12 hy)
(051018 hs)0 3820 he)04 1121 h1)(051319 h2)(0135 h3)

(04 11 20 hg)(0 6 13 23 hs)(0 6 14 24 he)(0 1 2 YU {M}i,
(02 9 21) U {hy, ho}{0 3 14 17) U {h2,h3}{0 5 13 22) U {ha, hs}

8.5 v =14 (mod 20)

Lemma 8.6. o(v, 5,11) = ¥(v, 5,11) for v = 14, 34, 54,74, 94.

Proof: We construct a (v,5,11) optimal packing design such that the
complement graph is a three 1-factor. (To be used in lemma 12.4). This is
done in two steps. In the first step we take three copies of a (v, 5, 3) minimal
covering design [9]. By lemma 3.3, the excess graph of each one of these
designs is a 1-factor. In the second step we construct a (v, 5,2) packing
design (not optimal) such that the complement graph is a six 1-factor, then
apply theorem 3.1 to get the result.
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For these constructions see the following table.

v | Point Set | Base Blocks

14| Z14 (012410)

34| Zyy (012512)(0252026)(04 11 20 26)

54 | Zss (0141132){(05172541)(01 35 15)
(0 6 13 22 36)(0 6 15 35 43)

74| Zna (015 1129)(0 217 33 53)(0 8 27 40 52)
(0136 14)(0 4 20 48 55)(0 7 22 40 49)
{0 10 24 36 53)

94 | Zgy (08196280){(01 37 24){0 5 35 53 61)

{0 9 29 45 60)(0 10 37 50 62)(0 1 3 7 16)
(0527 57 71)(0 10 31 59 70)(0 12 29 48 68)

Lemma 8.7. Let v = 14 (mod 20) be a positive integer. Theno(v,5,11) =
1”(”7 5: 11)'

Proof: For v = 14, 34,54, 74,94 the result follows from lemma 8.6. For
v 2 114, v # 134, write v = 20m + 4u + h + s where m, u, h and s are
chosen as in lemma 5.3 with the differences that 4u+h+3s = 14, 34, 54, 74, 94
and h =2,

Apply theorem 2.9 with A = 11 and the result follows.

For v = 134 apply theorem 24 withu=3, k=2, n=7and A=11.

8.6 v =7 (mod 20)

Lemma 8.8. Let v =7 (mod 20) be a positive integer. Then o(v,5,11) =
¥(v,5,11). Furthermore, there exists a (23,5,11) packing design with a hole
of size 3.

Proof: If v =7 (mod 20), then o(v, 5,11) = o(v, 5,7) + (v, 5,4). Since a
(7,5,4) optimal packing design does not exist we need to construct a (7,5,11)
optimal packing design. Let X = Zs U {a,b}. Then the required blocks are
(0123 4) twice, (012 ab) (mod 5)(013ab) (mod 5)
(0123a) (mod5){(01345) (mod 5).

For a (23,5,11) packing design with a hole of size 3 take a (23,5,4) and a
(23,5,7) packing design with a hole of size 3, [10] and lemma 5.1.

Corollary 8.1. Let v = 7 (mod 20) be a positive integer then for all
positive integers A > 1 we have o(v,5,A) = ¥(v,5,)) — e where e = 1
if A =2 (mod 10) and e = 0 otherwise with the possible exceptions of
(r,A) = (27,2).
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Proof: We have shown that o(v, 5,)) = ¥(v,5, ) — e where e is as above
for all positive integers v = 7 (mod 20) and 2 < A < 12 with the possible
exception of (v, \) = (27,2). (See theorem 1.2 for 2 < A < 6 and lemmas
5.3, 6.4, 7.11, 8.8 for 7 < A <11 and [12] for A = 12).

But for v = 7 (mod 20) there exists a B[y, 5,10]. Now apply lemma 4.2
to give the result.

8.7 v =19 (mod 20)

In this section we use different designs to obtain our result. For this purpose
the following is most useful to us.

Lemma 8.9. There exists a (v, 5,2) packing designs with a hole of size 7
for all positive integers v, v =17 (mod 20), v > 57.

Proof: For v = 57,77,97 the result was established in [7]. For v =

117,157,197,217,257 apply theorem 2.16 with h = 1, u = 3, A = 2

and m = 11,15,19,21,25 respectively. The application of this theorem

requires the existence of a GDI[5,2,2,2m| where m = 11,15,20,21, 25.

For m = 11,21,25 see [6] and for m = 20 see [5]. For m = 15 let

X = Zos U {a,b}. Groups are {i,i + 14} U {a,b} where i = 0,...,13.

Then the blocks are the following:

(0124 10) (mod 28) (03815 19) (mod 28) (05 11 18) U{a,b} mod 28.
For v = 137 apply theorem 2.15 withm =13, u =3, h=1and A= 2.
For v = 177,277 apply theorem 2.17 with A = 2, u = 3, and m = 17,27

respectively.

For v = 237, 337 take a TT(6,1,23,1) and a TT(6,1,33,1) respectively and
inflate them by 2 and replace their blocks, which are of size 5 and 6, by the
blocks of GD[5,2,2,10] and GD[5,2,2,12] respectively. Add five points to the
groups and on the first five groups construct a B[51,5,2] and B[71,5,2] with
a hole of size 5 respectively. (These two designs are constructed in the next
table). Take these five points with the last group to be the hole of size 7.

For v = 517, take a TT(6,1,45,31) and inflate it by a factor of 2. Replace
the blocks of TT(6,1,45,31), which are of size 5 and 6, by the blocks of
a GD[5,2,2,10] and GDJ5,2,2,12] respectively. Add 5 points to the groups
and on the first 5 groups construct a B[95,5,2] with a hole of size 5, and on
the last group construct a (67,5,2) packing design with a hole of size 7 [5].
Notice that a B[95,5,2] with a hole of size 5 can be constructed by applying
theorem 2.16 withm =9, h=1,A=2andu=1.

For all other values of v write v = 20m +4u+ h + s where m, u, h, s are
chosen so that

1) there exists a RMGDJ[5, 1, 5, 5m];
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2) du+h+s="57,77,97;
3) 0<u<m-—1,5=0 (mod 4), h=1or 5;

4) there exists a GD[5,2, {4, s*},4m + s].

Now apply theorem 2.9 with A = 2 to give a (v, 5, 2) packing design with
a hole of size 57, 77, 97 and hence a (v, 5,2) packing design with a hole of

size 7.
v | Point Set Base Blocks

51 | ZaxZ23UHs | ((0,0)(0,1)(0,4)(0,11)(1,2)){(0,0)(0, 2)(0, 8)(0,17)(1, 7))
{(0,0)(0,5)(0,12)(1,11)(1, 20)){(0, 0)(0, 2)(1, 0)(1, 12)(1, 18))
{(0,0)(0,10)(1,3)(1,4)(1,19)){(1,0)(1,1)(1, 3)(1,5)(1,9)
{(0,0)(0,1)(1,2)(1,15)h1){(0, 0)(0, 3)(1, 9)(1, 20) 2}
{(0,0)(0,4)(1,8)(1,11)h3){(0, 0)(0, 5)(1, 5)(1, 18hs)
{(0,0)(0,9)(1,12)(1,19)hs)

71 | Z2xZ33UHs «11 0)(1,3)(1,7)(1,12){1, 25))((()» 0)(01 1)(0: 3)(0’ 14)(11 0»

{(0,0)(0,4)(0,9)(0, 19)(1, 2)){(0, 0)(0, 6)(0,13)(0, 21)(1, 9))

{(0,0)(1,0)(1,1)(, 3)(1, 26)){(0, 0)(0,4)(0, 16)(1, 22) (1, 28))

{(0,0)(0,9)(0,16)(1, 13)(1, 14)){(0, 0)(0, 3)(1, 10)(1, 23)(1, 32))

{(0,0)(0, 10)(1, 11)(1, 25)(1, 27)){(0, 0)(0, 1)(1, 5)(1, 11)(1, 23))

{(0,0)(0, 2)(1,17)(1, 27)h1){(0, 0)(0, 5)(1, 7) (1, 24) h2)

{(0,0)(0, 6)(1,14)(1, 18)h3){(0, 0)(0, 8)(1, 16)(1, 21) ha)

((0, 0) (ol ll)(l ’ 6) (l, 20)h5)

Lemma 8.10. Let v = 19 (mod 20) be a positive integer. Theno(v,5,11) =
¥(v,5,11) with the possible exception of v = 39.

Proof: For v = 19 the construction is as follows.

1) Take a (19,5,3) optimal packing design [8]. Close observation of this
design shows that the pair (1,10) appears only once and the pairs
(1,2) (1,3) (2,16) appear only twice. Furthermore, in this design we
have the block (4 5 14 1 2). In this block change 2 to 3.

2) Take a (19,5,4) optimal packing design [10]. This design has a pair
say (2,10) that appears in zero blocks. Assume in this design we have
the block (4 5 14 16 3). In this block change 3 to 2.

3) Take a (19,5,4) minimal covering design [31). In this design each pair
appears exactly four times except a triple, say, {1,2,10} the pairs of
which appear in six blocks.
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Now it is readily checked that the above three steps yield the blocks of a
(19,5,11) optimal packing design.

For v = 239 apply theorem 2.9 with A=m =11, h=3 and u=4.

For all other values the construction is as follows:

1)

2)

3)

4)

Take a (v,5,4) optimal packing design [10]. In this design there is a
pair, say, {1,2} that appears in zero blocks.

Take a (v,5,4) minimal covering design which exists for all » = 19
(mod 20) [13], [31]. In this design there is a triple, say, {1,2, a} the
pairs of which appear in precisely six blocks.

Take a (v — 2,5,2) covering design with a hole of size 7. Careful
inspection of the (7,5,2) covering design [33], shows that its excess
graph consists of 3 isolated vertices and the following graph on the
remaining 4 vertices, say, {1,2, 3,4}.

1

4 3

Since there exists a (v — 2,5, 2) covering design with a hole of size 7,
v—2 257, v=19 (mod 20) it follows that there exists a (v —2,5,2)
minimal covering design such that its excess graph consists of v — 4

isolated vertices and the same graph on the remaining four vertices.
Assume in this design we have the block (1 2 34 a). Delete this block.

take a (v + 4,5,1) optimal packing design [32], v # 243. Careful in-
spection of these designs shows that their complement graph contains
a circuit graph C,, where n > 23, that is, a regular connected graph
of degree 2 on n vertices.

Assume in this design we have the block (v v+1 v+2 v+ 3 v+4), delete
this block. Furthermore, we may label the points of this design so that the
. circuit looks as follows.
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vty

v+1

Now change v+ 3 and v+ 4 to v, and changev+1,v+42tov —1.
It is easy to check that the above four steps yield a (,5,11) optimal
packing design for v = 19 (mod 20), v > 59.
Corollary 8.2. Let v = 19 (mod 20) be a positive integer. Then (v, 5, A)
= ¥(v,5, ) — e for all X > 2 with the possible exception of (v, ) = (19,2)
(39,10m + 1), where m > 1 is a positive integer where e = 1 if A = 2
(mod 10) otherwise e = 0.

Proof: We have shown that o(v, 5, \) = ¥(v, 5, A) — e where ¢ is as above
for all positive integers v = 19 (mod 20) and 2 < A < 12 with the possible
exception of (v, \) = (19,2)(39,11).

But for A = 0 (mod 10) there exists a B[y, 5,10] for all positive integers
v =19 (mod 20). Now apply lemma 4.2 to give the result.

Theorem 8.1. Let v > 5 be a positive integer. Then o(v,5,11) =
¥(v,5,11) with the possible exceptions of v = 28, 39.

9 Packing with index 13
9.1 v =4 (mod 20)

Lemma 9.1. 0(24,5,13) = (24, 5,13)
Proof: A (24,5,13) optimal packing design can be constructed as follows:

1) Take two copies of a (24,5,4) optimal packing design [10]. The comple-
ment graph of this design consists of 22 isolated vertices and another
two vertices connected by 4 parallel edges. Assume in the first copy
these two vertices are (8,22) and in the second copy they are (6,22).
Furthermore, assume in one copy of these designs we have the block
(123 129) where {1, 2, 3} are arbitrary numbers. In this block change
9 to 24.
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2) Take a (23,5,1) optimal packing design [32]. The complement graph
of this design is Ca3, the circuit graph. So we may assume that (2,22)
(2,8) (8,6) (6,16) are edges in Cos.

3) Take a (24,5,3) optimal packing design [9]. The complement graph
of this design consists of 18 edges. We may relabel the points of this
design by interchanging 17 and 24. After relabeling the points of this
design, the complement graph will have the following subgraph.

2 /24
Lz 9 6 14 4 8

4) Take a B[25,5,1] and assume we have the block (1 2 3 24 25). In this
block change 25 to 9 and in all other blocks change 25 to 24.

5) Add the block (2 6 8 16 22).

Now it is easy to check that the above five steps yield the blocks of a
(24,5,13) optimal packing design.

Lemma 9.2.
(a) o(v,5,13) = ¥(v,5,13) for v = 44,64, 84.
(b) There exists a (24, 5, 13) packing design with a hole of size 4.

Proof: (a) A (v,5,13) optimal packing design for v = 44,64,84 can be
constructed as follows:

1) Take a (v,5,4) optimal packing design. The complement graph of
this design consists of v — 2 isolated vertices and two other vertices,
say, {v —2,v} joined by four parallel edges.

2) Take a (v, 5,4) minimal covering design [13]. The excess graph of this
design consists of v — 3 isolated vertices and three other vertices, say,
{4,5,v} the pairs of which are connected by two edges.

3) Take a (v,5,3) optimal packing design. Careful inspection of these
designs (v = 44, 64, 84) shows that their complement graph contains
the following subgraph on the four vertices, say, {4,5,v —1,v}.



v-1
4) Take a (v — 1,5,1) optimal packing design, and assume we have the
block (1 2 3 » —2 v — 1). In this block change v —1 to v.

5) Take a B[v + 1,5,1] and assume we have the block (1 2 3 v v + 1)
where {1,2, 3} are arbitrary numbers. In this block change v + 1 to
v — 1 and in all other blocks change v+ 1 to v.

Now it is easy to check that the above 5 steps give us the blocks of a
(v, 5, 13) optimal packing design for v = 44, 64, 84. )

(b) For a (24, 5, 13) packing design with a hole of size 4 proceed as
follows:

1) Take a (24, 5, 5) packing design with a hole of size 4 [8].

2) Take two copies of a (23,5,2) packing design, [5]. This design has a
hole of size 3, say, {21, 22,23}.

3) Take four copies of a B[25,5,1]. Assume in each copy we have the
block (21 22 23 24 25). Delete this block, from each copy, and change
25 to 24.

It is readily checked that these three steps yield a (24,5,13) packing design
with a hole of size 4.
Lemma 9.3. Let v =4 (mod 20) be a positive integer. Then o(v, 5,13) =
¥(v,5,13).
Proof: For v = 24, 44, 64, 84 the result follows from lemmas 9.1 and 9.2.

For v = 124, v # 144,184,224 simple calculations show that v can be
written in the form v = 20m 4+ 4u+ h+ s where m, u, h and s are chosen as
in lemma 5.3 with the difference that 4u+ h + 5 = 24,44,64,84 and h = 4.

Now apply theorem 2.9 with A = 13 and the result follows.

For v = 144 apply theorem 2.18 withn=7, h =4 and A =13.

For v = 104,224 apply theorem 2.11 with h =4, A =13 and m = 5,11
respectively.

For v = 184 apply theorem 2.12 with h=0, A =13, « =5 and m = 8.
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9.2 v=8or 12 (mod 20)

Lemma 9.4. Let v = 8 or 12 (mod 20) be a positive integer. Then
(v, 5,13) = ¥(v, 5,13) with the possible exception of v = 28.

Proof: For v = 12 (mod 20), o(v, 5,13) = o(v, 5, 11)+o(v, 5, 2) holds, and
for v = 8, 48, 68,88, o(v,5,13) = (1, 5,10) + o (v, 5,3) holds.

For v > 108 v # 128, 168, 208, 268 write v = 20m + 4u + h + s where m,
u, h and s are chosen the same as in lemma 8.2.

Now apply theorem 2.9 with A = 13 and the result follows.

The cases v = 128, 168, 208, 268 are treated the same as in lemma 8.2.

Notice that when applying theorem 2.7 for » = 208 we require a (48,5,13)
packing design with a hole of size 8. Such design can be constructed by
taking three copies of a (48,5,3) packing design with a hole of size 8 [9]
together with the blocks of a (48,5,4) packing design with a hole of size 8
[13].

9.3 v =2 (mod 20)

Lemma 9.5. (a) There exists a (26,5,13) packing design with a hole of size
6. (b) o(1,5,13) = ¥(v,5,13) for all v=2 (mod 20), v > 22.

Proof: For a (26,5,13) packing design with a hole of size six take a (26,5,5)
packing design with a hole of size 6 [11] and two copies of (26,5,4) packing
design with a hole of size 6, lemma 5.8.

For a (v,5,13) optimal packing design v = 2 (mod 20), v # 62,82 pro-
ceed as follows:

1) Take a (v,5,5) optimal packing design. This design has a pair, say,
(v — 1,v) that appears in zero blocks [8]. Furthermore, assume that
the pairs (5,9) and (4,10) appear at most 4 times.

2) Take a (v + 1,5,2) optimal packing design [5]. This design has a
triple, say, {v — 1, v, v+ 1} the pairs of which appear in zero blocks.
Change v+ 1tov

3) Take four copies of a B[y -1, 5, 1].

4) Take a (v + 1,5,2) minimal covering design v + 1 # 63,83. In this
design each pair appears exactly twice except one pair, say, (v —1,v)
that appears 6 times [31]. Furthermore, assume in this design we have
the two blocks (a bcv v+ 1) (d e f v v+ 1) where {a,b,¢c,d,e, f}
are arbitrary numbers not necessarily disjoint. In these two blocks
change v +1 to v — 1 and in all other blocks change v 41 to v.
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to v.

Assume in (3) we have the two blocks (abc9 v —1) (de f 10 v —1).
In these two blocks change v —1 to v.

The above 4 steps gives us a design such that each pair appears at
most 13 times except (9,~) and (10,v) which appear at most 14 times
and (v — 1,v) which appears at most 10 times. To reduce the number of
appearances of (9,~) and (10, ») from 14 to 13, assume in (1) we have the
block (11 1213 9 v), (14 15 16 10 v). In the first block change v to 5 and in
the second change v to 4. Furthermore, assume in (3) we have the blocks
(111213 v —1 5), (14 15 16 v — 1 4) in these two blocks change 5 and 4

Now it is easy to check that the above construction gives the blocks of a
(v, 5, 13) optimal packing design for all v =2 (mod 20) v > 22, v # 62, 82.
For v = 62, 82 see next table.

Point Set

Base Blocks

Zse U Hg

On Zsg U Hs construct a B[61,5,8] with a hole of size 5,
say, Hg and take the following blocks.

(0 16 28 44 h;)half orbit

(0137 27)(0513 23 47)(08 19 34 44)(0 1 3 5 14)

(04 19 27 39)(0 6 16 32 38)(0 1 5 15 33)(0 6 19 26 35)

{0219 31 Fig){0 3 11 34 hp)(0 1 2 11 ha){0 3 16 21 hy)

(04 9 21 hs){0 6 13 33 he){0 7 22 37) U {hy, A1, hs, he)

(0811 25 he)(0 7 21 38) U {m:}7,

||

82

Z76 U Hg

On Z7¢ U Hs construct a B[81,5,8] with a hole of size 5,
say, Hs and take the following blocks

{0 20 38 58 hy) half orbit

(0139 25) twice (0 4 14 27 46) twice (0 11 26 47 50)

twice (0 1 5 40 45)(0 2 24 31 44)(0 6 16 39 64)

(071731 35)(013827)(0 6 16 3851)(0 8 26 47 56)

{07 18 37) U {h:}1_,{0 15 35 49hs) (0 3 15 36 hy)

{05922 h3){01 3 30 hg){0 5 11 26) U {hy, ki, ks, kel

(07 19 60 he)(0 8 25 39 he)(0 9 20 43 hg)

9.4 v =14 (mod 20)

Lemma 9.6. There exists a (v,5,6) optimal packing design, for v =
14,54,74,94, such that their complement graphs contains a 1-factor sub-
graph on v — 2 vertices.

Proof: For v = 14 see [11]. A close observation of this design shows that
the edges of the 1-factor are {(1,5)(2, 6)(3, 7)(4,9)(10,12)(11, 14)}.
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For v = 54,74,94 the (v,5,6) optimal packing design, [11], was con-
structed by taking a (v,5,2) packing design with a hole of size 4, say,
{a,b, ¢,d} and a (v,5,4) minimal covering design. Since the (v,5,4) mini-
mal covering design, ¥ = 2 or 4 (mod 5), has each pair appears in exactly 4
blocks except the pairs of a triple, say, {a, b, c}, that appearing in 6 blocks,
it follows that these two steps yield the blocks of a (v, 5, 6) optimal pack-
ing design. It is clear from the above construction of the (v,5,6) optimal
packing design that if the complement graph of the (v, 5, 2) packing design
with a hole of size 4 has a subgraph which is 1-factor on the v — 4 vertices
then the complement graph of the (v,5,6) optimal packing design has a
subgraph which is 1-factor on v — 2 vertices.

For a (v, 5, 2), v = 54, 94, packing design with a hole of size 4 that satisfies
the above see [4).

For v =74 let X = Z5 x Z35 U H4 then the required blocks are
((0,0)(0,7)(0,14)(0,21)(0, 28)) + (—, %), i € Z7
«Os 0)(0, 1)(0) 5)(0r 17)(1: 0)) (mOd ) 35)

«0, 0)(0’ 3)(0: 11)(03 20)(1: 1» (mOd ) 35)
{(0,0)(0,4)(0,13)(1,15)(1,27)) mod —, 35
{(0,0)(0,3)(0,13)(1,9)(1, 30)) (mod —,35)
«O, 0)(0s 7)(ls 10)(1’ 19)(]') 29)) (mOd e} 35)
{(0,0)(0,11)(1,4)(1,24)(1,32)) (mod —, 35)
((0,0)(0,12)(1,2)(1,8)(1,20)) (mod —,35)
«0, 0) (0, 15)(1) 6)(1: 9)(1: 22)) (mOd ) 35)
((0,0)(0,1)(1,14)(1,34)h,) (mod —,35)
((0,0)(0,2)(1,12)(1,21)hs) (mod —,35)
((0, 0)(0: 5)(11 20)(1' 28)h3) (mOd ) 35)
((0,0)(0,6)(1,17)(1,24)h4) (mod —,35)
((1,0)(1,1)(1,5)(1,11)(1,22)) (mod —,35)

Lemma 9.7. o(v, 5,13) = ¥(v, 5,13) for v = 14,54, 74,94.
Proof: For v = 14, 54, 74, 94 the construction is as follows:
1) take a (v, 5, 6) optimal packing design on Z,. By the previous lemma

the complement graph of these designs contains a 1-factor on v — 2
vertices say Z,_s.

2) take a (v, 5,4) optimal packing design on Z,. The complement graph
of this design consists of v — 2 isolated vertices and two vertices, say,
(v —1,v) joined by 4 edges.

So the two complement graphs in (1) and (2) contains a subgraph
that is 1-factor on Z,,.
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3) take a (v, 5, 3) minimal covering design [9]. The excess graph of this
design is a 1-factor.

Now apply theorem 3.1 to give the result.

Lemma 9.8. Let v = 14 (mod 20) be a positive integer. Then o(v,5,13) =
¥(»,5,13).

Proof: For v = 14,54,74,94 the result follows from the previous lemma.
For v = 34, let X = Z33 U Hg then the required blocks can be constructed
by developing, under the action of Z»s, the following base blocks.
(0 5 14 19)w{hy, ha} half orbit
(01248)(031219 k) (051318 h1)(0124 hy)
(03918 hy)(04 1218 hy) (0511 21 hg)(0 5 12 20 hg)
(0126 h3)(02 11 18 hg) (0 3 11 19 hys){0 3 13 17 hy)
(041117 hs)(0 12 3 hs) (025 10 hs)(0 3 13 17 he)
(04 11 20 hg){0 6 12 19 he) (0 5 11 18 v{h;}¢ 4

For v = 114, v # 134, write v = 20m + 4u + h + s where m, u, h and
s are chosen as in lemma 6.9. Apply theorem 2.9 with A\ = 13 to give the
result.

For v = 134 apply theorem 24 withn=7,u =2, h=6 and A =13.

9.5 v =18 (mod 20)

Lemma 9.9. o(y, 5,13) = ¥(v,5,13) for v = 18, 38, 58, 78, 98.
Proof: The required constructions are given in the next table.

v | Point Set | Base Blocks
18 | Zs Take the blocks of a (18,5,6) optimal packing design on Z;g. |
Careful inspection of this design shows that each pair
appea.rs precisely 6 times except the pairs (i,i + 9),
i= .8, each of them appears 4 times.

'I‘a.ke a.lso the following blocks

(012509){0161012){0271013){0123 6)

(014911){026 9 14)
“ 38 | Za x Z19 | Take a (38,5,6) optimal packing design on Zazs. Careful
inspection of the design shows that its complement graph
consists of two 1-factor. We now take more blocks such
that each pair appears precisely 7 times except of 19
pairs each of them appears in 8 blocks, that is, they
form 1-factor. Apply theorem 3.1 to give the resuit.
Notice that these blocks are precisely the blocks of
a (38,5,7) minimal covering design.
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{(0,0)(0, 1)(0, 2){0, 3)(0, 8)){(0, 0)(0, 2)(0, 6)(0, 10)(0, 14))

(@,0)(1,1)(1,3)(1, 7)1, 11)){(0, 0)(0,3)(0, 7)(0, 10)(1, 0))

{(0,0)(0,3)(0,9)(1, 13)(1, 18))((0, 0){0, )(0, 11)(1, 5)(L, 7))

{(0,0)(0,5)(0, 11)(1, 7)(1,17)){(0,0)(0,1)(1,0)(1, 1)(1,4))

((0,0)(0,2)(1,4)(1,8)(1,15))((0,0)(0,3)(1, 0)(1, 1)(1, 3))

{(0,0)(0,4)(1, 1)(1, 6)(1,12)){(0,0)(0,5)(1, 10)(1, 14)(1, 18))

{(0,0)(0, 6)(1,8)(1,10)(1,15)){(0, 0)(0, 7)(1, 5)(1, 11)(1, 14)

{(0,0)(0,8)(1,3)(1,10)(1, 15)){(0,0)(0, 9)(1, ) (1,8)(1,17))

{(0,0)(0, 3)(0,8)(0, 13)(1, 0)){(0, 0)(0, 1)(0, 2)(1, 3)(1, 6))

{(0,0)(0, 1)(1, 0)(1, 2)(1, 8)){(0,0)(0, 2)(1,5)(1, 11)(1, 12))

{(0,0)(0, 3)(1, 12)(1, 14)(1, 17)){(0,0)(0,4)(1, 13)(1, 15)(1, 18))

{(0,0)(0,5)(1,10)(1,15)(1, 16)){(0,0)(0, 6)(1, 3)(1, 12)(1, 13))

{(0,0)(0,9)(1, 6)(1, 13)(1, 17)}{(0, 0)(0, 2) (0, 9)(1, 1)(1, 14))

Zss

Take the blocks of a (58,5,6) optimal packing design. Careful
inspection of this design shows that its complement graph
consists of two 1-factors. Take also the following blocks. In
these blocks each pair appears precisely 7 times except the
pairs (i,i +29) (=0,...,28) which appear 8 times, that is,
they form a 1-factor. Now apply theorem 3.1 to give the result

{013 20 33) twice (04 9 16 31) twice (0 6 14 24 35) twice

(02613 43){0 3 12 22 38){0 1 3 7 21){0 5 17 30 39)

(081832 43){0 1 3 7 15)(0 5 13 23 39){0 5 21 30 41)

{013 2033)(04 9 16 31)(0 6 14 24 35)(0 1 2 8 19)

(03 12 32 36){0 5 15 28 42)

78

Zgo U His

On Zgo U His construct a B[76,5,4] with a hole of size 16, say,
Hje, Such design can be constructed by taking a T([5,4,15].
Add a point to the groups. On the first group construct a
B[16,5,4] and consider the last group with the point to be

the hole. We also take the following blocks.

{0 18 30 48) U {hu7, s} half orbit.(0 3 9 26) U {hi}ics

{05 27 46) U {ha}ep{0 7 17 38) U {h:}1%(0 215 29) U {ha}it 15

(04 816 32){0 1 11 35 £1){0 2 20 34 h2){0 6 24 40 hs)

(0210 22 ha){0 6 14 26 h5){0 1 3 10 he){0 4 15 29 hr)

{05 18 37 ha){0 6 23 39 ho){0 11 24 45 h10)(0 1 2 5 h11)

(05 11 32 h12){0 7 22 43 h13)(0 9 25 34 h14)(0 10 23 41 his)

(01314 he){0 5 25 34 ha7){0 7 22 39 h17){0 7 23 42 hu7)

(0827 37 h1s){0 1 3 6 h18){0 4 11 19 h18){0 6 20 24 h1)

{0 812 28 h2){0 8 10 32 h3){(0 4 16 22 ha){(0 9 21 38 hs)

{010 23 37 he){0 12 25 45 h7){0 1 2 5 ha){0 3 16 33 hg)

{07 24 35 10){0 9 20 39 h11){0 1 6 13 h12){0 3 14 33 hia)

(0 515 36 hi14){(0 7 15 38 hls)(o 9 18 35 hie)
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98 | ZsoU His | On Zso U Hy7 construct a B[97,5,10] with a hole of size 17.
Such design can be constructed by taking a T[6,5,8].

Inflate this design by a factor of two, that is, replace

all the blocks of T[6,5,8] by the blocks of a GD[5,2,2,12], [28].
Add a point to the groups and on the first five groups
construct a B[17,5,10]. Take the last group with this

point to be the hole. We also take the following blocks.

(016 3248 64) +3, i € Z16

(062230 50)(0 8 20 32 54){04 17 18) U {h:}i;

(6 21 31 59) U {h}o-1(0 4 17 18) U {h: ] :59(6 21 23 59) U {h:} 1o

(025 43 h13){0 6 25 35 h1a){0 7 16 47 h1s){0 7 10 48) U{hs1, ha}

{0920 43) U {ha, ha}{0 21 31 66) U { ks, he}{0 1 4 57) U {h, his}

{02769)V {hg,hlo}(o 526 55) U {hu, hm}(o 615 37) U {h13, '314}

{0 819 47) U {h1s, h16}{0 3 26 47) U {hi17, h17, h17, h1s}.

Lemma 9.10. Let v = 18 (mod 20) be a positive integer. Thena(v,5,13) =
¥(v,5,13).

Proof: For v = 18, 38,58, 78,98 the result follows from lemma 9.12. For
v > 118 the proof is the same as lemma 6.11.

In this section we have proved.

Theorem 9.1. Let v > 5 be a positive integer. Then o(1,5,13) =
(v, 5,13) with the possible exception of v = 28.

10 Packing with index 14
10.1 v =4 (mod 20)

Lemma 10.1. Let v =4 (mod 10) be a positive integer and assume that
there exists

1) a (v,5,4) minimal covering design;

2) a (v,5,4) optimal packing design;

3) a (v,5,2) packing design with a hole of size 4.
Then there exists a (v, 5, 14) optimal packing design.

Proof: A (v,5,14) optimal packing design for v = 4 (mod 10) can be
constructed as follows:

1) Take a (v,5,4) minimal covering design [13]. In this design each pair
appears in precisely 4 blocks except a triple, say, {a,b, c} the pairs of
which appear in 6 blocks.

51



2) Again take a (v, 5,4) minimal covering design. In this design assume
the triple is {a,c, d}.

3) Take a (v,5,4) optimal packing design [10]. In this design each pair
appears in precisely 4 blocks except one pair, say, {a, c} which appears
in zero blocks.

4) Take a (v,5,2) packing design with a hole of size 4, say, {a,b, ¢,d}.

Now it is easily checked that the above four steps yield a (v, 5, 14) optimal
packing design.
Lemma 10.2. Let v = 4 (mod 20) be a positive integer. Then there exists
a (v,5,2) packing design with a hole of size 4.

Proof: For v = 24,44 the result is given in [4].
For v = 64, 84 the constructions are given in the next table.

v | Point Set Base Blocks
64 | Zax ZsoUHa | {(0,0)(0,6)(0,12)(0,18)(0,24)) + (—,i), € Zs
| {(1,0)(i, 2)(3, 5)(3, 13) (s, 20))i=0,1
1l {(0,0)(0, 2)(1,1)(1, 10)(1, 24)){(0,0)(0, 1)(0, 4)(1, 7)(1, 13

{(6,0)(0,9)(0, 14)(1,11)(1, 28)){(0, 0)(0, 13)(1, 0)(1, 4)(1, 18))
{(0,0)(0,8)(0, 14)(1, 13)(1, 16)){(0, 0)(0, 4)(1, 0)(1, 1)(1, 10))
((0,0 :0' 11)(11 4) (1, 23)(1s 28» «0, 01 [o’ 10)(1, 25)(11 26)h1)
{(0, 0)(0, 1) (1, 21) ;l: 25)h2) «0, o)(ol 7)(1) 14)(1, 22)"’3)
(0,0)(0,9)(1, 18)(1,20)h4)

0,0)(0, 8)(0, 16)(0, 24)(0, 32)} + (—,1), i € Zs

(,0)(3, 2)(5, 7)(, 195(": 29»” =0,1
(0,0)(0,18)(1, 0)(1, 14)(1, 39)){(0, 0)(0, 2)(1, 1)(1, 4)(1, 21))
I (0,0)(0,4)(1, 10)(1, 32)(1, 38)){(0, 0)(0, 8)(1, 13)(1, 24)(1, 37))
I {(0,0)(0, 5)(0, 15)(1, 23)(1, 27){(0, 0)(0, 6)(0, 19)(1, 26)(1, 35))
{(0,0)(0,6)(0,20)(1, 15)(1, 31)}{(0, 0)(0, 1)(0, 4)(0, 15)(1, 24))
{(0,0)(1,0)(1, DA, 3)(1, 7)) {(0,0)(0, 9)(0, 16)(1, 27)(1, 35))
{(0,0)(0,17)(1, 5)(1, 10)(1, 31)}{(0, 0)(0, 1)(1, 30)(1, 38)h1)
(0,0)(0, 9)(1,2)Q, 17)"'2)«0) 0)((" 3)(1,6)(1, 15)h3)

(0,0)(0, 12)(1, 16)(1, 25)ha)

84 | ZaxZ4oUH,

o~

For v > 104, v # 144, write v = 20m + 4u + h + 8 where m, u, h
and s are chosen the same as in lemma 5.6. Applying theorem 2.9 with
the appropriate parameters gives that for all » > 104, v # 144, there
exists a (v,5,2) packing design with a hole of size h = 4,24, 44,64, or 84.
But since there exists a (k,5,2) packing design with a hole of size 4 for
h =4,24,44,64,84, it follows that for all » = 4 (mod 20), v # 144, there
exists a (v, 5,2) packing design with a hole of size 4. For v = 144 apply
theorem 2.13 with m =7, s = h =0 and X = 2 gives us a (144,5,2) packing
design with a hole of size 24 and hence with a hole of size 4.
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Lemma 10.3. Let v =4 (mod 20) be a positive integer. Then o(v,5,14) =
¥(v,5,14).

Proof: We have shown, lemma 10.2, that for all » = 4 (mod 20) there
exists a (v, 5,2) packing design with a hole of size 4. We also have shown
that for all » =4 (mod 20), there exists a (v, 5,4) minimal covering design,
[13], [17] and for all » =4 (mod 20) there exists a (v, 5,4) optimal packing
design [10]. Now apply lemma 10.1 to get the result.

10.2 v =8 (mod 10)

Lemma 10.4. Let v = 8 (mod 10) be a positive integer. Then o(v,5,14) =
¥(v,5,14).
Proof: In this case o(v, 5,14) = o(v, 5,8) + o(v, 5, 6).

10.3 v =12 (mod 20)

Lemma 10.5. Let » = 12 (mod 20) be a positive integer. If there exists
a (v,5,2) packing design with a hole of size 2 then there exists a (v, 5, 14)
optimal packing design.

Proof: The blocks of a (v, 5, 14) optimal packing design, v = 12 (mod 20),
can be constructed as follows:

1) Take a (v,5,4) minimal covering design. In this design there is a
triple, say, {a,b,c} the pairs of which appear in 6 blocks while each
other pair appears in precisely 4 blocks.

2) Take two copies of a (v, 5,4) optimal packing design [10]. This design
has a pair that appears in zero blocks while each other pair appears

in 4 blocks. Assume that in the first copy the missing pair is (a, b)
and in the second copy the missing pair is (a, c).

3) Take a (v, 5,2) packing design with a hole of size 2 and assume the
hole is {b,c} [4].

It is easily checked that these three steps yield the blocks of a (1,5, 14)
optimal packing design for » = 12 (mod 20).

Lemma 10.6. There exists a (v,5,2) packing design with a hole of size 2
for all positive integers v = 12 (mod 20).
Proof: For v = 12, 52,92 the result is given in [4].

For v = 32 let X = Z3, U Hj then the blocks are.
(061218 24) +14,i€ Zs (01 24 10) (mod 30)
(0 3 11 16 20) (mod 30) (0 5 12 19) (mod 30) U {hy, h2}.
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For v = 72 take a T[6,2,3] and inflate it by a factor of 4, that is, replace
each block by the blocks of a GD[5,1,4,24]. Finally, on the first five groups
construct a (12,5,2) optimal packing design and on the last group construct
a (12,5,2) packing design with a hole of size 2.

For v > 112, v # 132, write v = 20m+4u+h+ s where m, u, h and s are
chosen the same as in lemma 8.4. Applying theorem 2.9 with A = 2 gives
us that for all v > 112, v # 132, there exists a (v, 5,2) packing design with
a hole of size 12, 32, 52, 72 or 92. But a (v, 5,2) packing design with a hole
of size 2 exists for v = 12,32, 52,72,92. Hence for all » = 12 (mod 20),
v # 132, there exists a (v, 5,2) packing design with a hole of size 2.

For v = 132 applying theorem 24 withn =7, v =2, h=0and A =2
gives a (132,5,2) packing design with a hole of size 12 and hence a (132,5,2)
packing design with a hole of size 2.

Corollary 10.1. o(v,5,14) = ¥(v, 5, 14) for all positive integers v, v = 12
(mod 20).

Proof: By lemma 10.6 there exists a (v, 5,2) packing design with a hole of
size 2. There is also a (v, 5,4) optimal packing design, [10], and a (v, 5,4)
minimal covering design, for all » = 12 (mod 20), [13]. Now apply lemma
10.5 and the result follows.

104 v =2 (mod 20)

Lemma 10.7. Let v = 2 (mod 20) be a positive integer. Furthermore,
assume

1) There exists a (v, 5,2) packing design with a hole of size 2.
2) There exists a (v, 5,4) optimal packing design.
3) There exists a (v, 5,4) minimal covering design.
Then there exists a (v,5,14) optimal packing design.
Proof: The proof of this lemma is the same as lemma 10.5.

Lemma 10.8. There exists a (v,5,2) packing design with a hole of size 2
for all positive integers v, v =2 (mod 20).
Proof: For v = 22, 62, 82 see [4].

For v = 42 let X = Z4o U Hs then the blocks are
(081624 32) +i,i€ Zg (012511) (mod 40)
(0 4 12 23 30) (mod 40) (0 3 18 23) (mod 40) U {hy, h2}.

For v > 102, v # 142,182 write v = 20m+4u+h+s where m, u, h and s
are chosen as in lemma. 5.3 with the difference that 4u+h+s = 22,42, 62, 82
and h=6.
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Now applying theorem 2.9 with A = 2 gives us that there exists a (v, 5, 2)
packing design with a hole of size 2, 22, 42, 62 or 82 (see [4] for the existence
of a (26,5,2) packing design with a hole of size 6). But a (v,5,2) packing
design with a hole of size 2 exists for v = 22,42, 62, 82. Hence there exists
a (v, 5,2) packing design with a hole of size 2 for all positive integers v,
v =2 (mod 20), v 5 142, 182.

For v = 142 applying theorem 24 withn =7, h=2, u=5and A =2
gives a (142,5,2) packing design with a hole of size 22 and hence a (142,5,2)
packing design with a hole of size 2.

For v = 182 applying theorem 2.13 (or theorem 2.12) with m = s = 8
and h = 6 gives us a (182,5,2) packing design with a hole of size 42 and
hence a (182,5,2) packing design with a hole of size 2.

Corollary 10.2. Let v = 2 (mod 20) be a positive integer. Then o(v,5,14) =
¥(v,5,14).
Proof: By lemma 10.8 there exists a (v, 5,2) packing design with a hole
of size 2 for all v = 2 (mod 20). There is also a (»,5,4) optimal packing
design, [10], for all » =2 (mod 20).

On the other hand, for all v =2 (mod 20) there exists a (v, 5,4) minimal
covering design [13], [17]. Now apply lemma 10.7 and the result follows.

10.5 v =14 (mod 20)

Lemma 10.9. Let v = 14 (mod 20) be a positive integer. Theno(v,5,14) =
¥(v,5,14).

Proof: We first prove the lemma for v = 14,34,54,74,94. But for v =
34,54, 74,94 there exists (1) a (v,5,4) minimal covering design, [13] (2) a
(v, 5,4) optimal packing design, [10]; (3) a (v,5,2) packing design with a
hole of size 4: see [4] for v = 34,54,94 and lemma 9.6 for v = 74. Now
apply lemma 10.1 and the result follows.

For v = 14 let X = Z4 then the required blocks are
(0123 6) (mod 14), 3 times (0 14 8 10) (mod 14) twice
(025 710) (mod 14) twice (013 7 9) (mod 14)

(01489) (mod 14).

We now show that a (22,5,14) packing design with a hole of size two
exists. The blocks of this design are the blocks of a (22,5,8), (22,5,4) and
(22,5,2) packing designs with a hole of size 2.

For v > 114, v # 134, write v = 20m +4u+ h + s where m, u, h and s
are chosen the same as in lemma 9.8 with the difference h = 2. Now apply
theorem 2.9 with A = 14 and the result follows.

For v = 134 apply theorem 24 withm =7, h=2, u =3 and A = 14 to
give the result.
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In this section we have shown.
Theorem 10.1. Let v > 5 be a positive integer then o (v, 5,14) = ¥(v, 5, 14).

11 Packing with index 15
11.1 v =4,8 or 12 (mod 20)

Lemma 11.1. Let v = 4,8 or 12 (mod 20) be a positive integer. Then
a(v,5,15) = ¢ (v, 5,15) with the possible exception of v = 28.

Proof: If v =4 (mod 20) then o(v, 5, 15) = o(v,5,8) +o(v, 5,7).

Since a (44,5,7) optimal packing design is still unknown, we need to
construct a (44,5,15) optimal packing design. For this purpose we first
show that a (44,5,3) packing design with a hole of size 4 exists. Such design
can be constructed as follows:

1) Take a (42,5,1) optimal packing design, [9], and assume the pair
(41,42) appears in zero blocks.

2) Take a B[45,5,1] and assume we have the block (41 42 43 44 45).
Delete this block and in the remaining blocks change 45 to 44.

3) One more time take a B[45,5,1] and assume we have the block
(41 42 43 44 45). Delete this block and in the remaining blocks change
45 to 43. It is easy to check that the above three steps yield a (44,5,3)
packing design with a hole of size 4.

We now construct a (44,5,15) optimal packing design as follows.

1) Take a (44,5,4) minimal covering design. In this design each pair
appears in exactly four blocks except a triple, say, {a,b,c} the pairs
of which appear in 6 blocks.

2) Again take a (44,5,4) minimal covering design. In this case assume
the triple is {a, ¢, d}.

3) Take a (44,5,4) optimal packing design. In this design there is exactly
one pair that appears in zero blocks. Assume the pair is (g, c).

4) Take a (44,5,3) packing design with a hole of size 4, say, {a, b, c,d}.

Now it is easy to check that the above four steps yield a (44,5,15) optimal
packing design.

For v = 8 (mod 20), o(v,5,15) =o(v,5,8) + o(v, 5, 7).

For v = 12 (mod 20), (v, 5,15) = o(v, 5,11) + (v, 5,4).
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11.2 v =2 (mod 20)

Lemma 11.2. a) Let v = 2 (mod 20) be a positive integer. Then o(v, 5, 15)
= 9¥(v,5,15). b) There exists a (22,5,15) packing design with a hole of size
2.

Proof: (a) The blocks of a (v, 5, 15) optimal packing design for all positive
integers v = 2 (mod 20), can be constructed as follows:

1) Take a (v,5,4) minimal covering design which exists for all positive
integers v = 2 (mod 20) [13],[17]. This design contains a triple, say,
{a,b,c} the pairs of which appear in 6 blocks while each other pair
appears in exactly 4 blocks.

2) Take two copies of a (v,5,4) optimal packing designs. This design
contains a pair that appears in zero blocks. Assume that the pair in
the first copy is (a,b) and in the second copy (b, ¢c).

3) Take a (v,5,3) packing design with a hole of size 2, [7]. Assume the
hole is (e, c).

Now it is easy to check that the above three steps yield the blocks of a
(v, 5, 15) optimal packing design for all positive integers v = 2 (mod 20).
(b) For a (22,5,15) packing design with a hole of size two take three copies
of a (22,5,4) and one copy of a (22,5,3) packing design with a hole of size
2, [10} [7).

11.3 v =14 (mod 20)

Lemma 11.8. Let v = 14 (mod 20) be a positive integer. Theno(v,5,15) =
¥(,5,15).
Proof: If v = 14 (mod 20) then o(»,5,15) = o (v, 5,11) + o(v, 5,4).

114 v =18 (mod 20)

Lemma 11.4. Let v = 18 (mod 20) be a positive integer. Theno(v,5,15) =

¥(v,5,15).

Proof: The blocks of a (v,5,15) optimal packing design for all v = 18
(mod 20) can be constructed as follows:

1) Take a (v,5,4) minimal covering design, [13], [14]. In lemma 5.8 we
have shown that for all » = 18 (mod 20), v # 18, 178 the excess graph
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of this design consists of ¥ —4 isolated vertices and the following graph
on the remaining four vertices, say, {1,2,3,4}.

1

4 3

2) Take a (v, 5, 8) optimal packing design. In this design each pair ap-
pears in exactly 8 blocks except one pair say (1,3) which appears in
4 blocks.

3) Take a (v — 1,5,2) optimal packing design and assume that the pair
(2,4) appears in at most one block.

4) Take a (v +2,5,1) optimal packing design and assume that the pairs
of the quadruples {1,2,3,4} and {v — 1,v,v + 1,v + 2} appears in
zero blocks. Now change v+ 1 and v+ 2 to v.

Now it is easily checked that the above 4 steps give a (v, 5, 15) optimal
packing design for all positive integers v = 18 (mod 20) v # 18,178.

For v = 18, an (18,5,15) optimal packing design can be constructed as
follows:

1) Take an (18,5,4) minimal covering design [12]. The excess graph of
this design consists of v — 4 isolated vertices and the following graph
on the remaining four vertices, say, {1,2,3,4}.

1 2

4

2) Take an (18,5,8) optimal packing design. In this design each pair
appears in exactly 8 blocks except one pair, say, (1,2) which appears
in 4 blocks.

3) Take a (17,5,2) optimal packing design. The complement graph of
this design consists of 11 isolated vertices and the following graph on
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the remaining 6 vertices.

2

1
4) Take a (20,5,1) optimal packing design and assume that the pairs of

the quadruples {1,2,3,4} and {17,18,19, 20} appears in zero blocks.
Now change 19 and 20 to 18.

It is easy to check that the above construction yields an (18,5,15) optimal
packing design.

For a (178,5,15) optimal packing design apply theorem 2.9 with m = 7,
u=26 s=8and h = 6 to give a (178,5,15) with a hole of size 38.
The application of this theorem requires a (26,5,15) packing design with a
hole of size 6. Such design can be constructed by taking the blocks of a
(26,5,3) packing design with a hole of size 6 [7] together with four copies of
a B[26,5,4] with a hole of size 6 (see lemma 5.9, case 5 for a B[26,5,4] with
a hole of size 6).

In this section we have shown.

Theorem 11.1. Let v > 5 be a positive integer. Then o(v,5,15) =
(v, 5,15) with the possible exception of v = 28.

12 Packing with index 17
12.1 v =4,8 or 12 (mod 20)

Lemma 12.1. Let v = 4,8 or 12 (mod 20) be a positive integer. Then
o(y,5,17) = ¥(v,5,17).
Proof: If v =4 or 8 (mod 20) then o(y, 5,17) = o(v, 5,10) + o (v, 5, 7).

Since a (28,5,7) and a (44,5,7) optimal packing designs are still unknown,
the above method does not work for v = 28,44,

For v = 28 see the next table.

For v =44, 0(v,5,17) = o(v, 5, 14) + o(v, 5, 3).

For v = 12,52,72,92, o(v,5,17) = 0(v, 5, 14) + o(v, 5, 3).

For v = 32 see the next table.

For v > 112 the proof of this case is the same as lemma 8.4.
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“ v | Point Set | Base Blocks

28 | Zas On Zas construct a (28,5,8) optimal packing design

and take the following blocks.

{01238) 3 times (0 2 6 14 19) twice (0 3 10 14 19) twice
{0310 16 20) twice (027 15 18){03 9 1319){04 9 17 21) |
32| Za2 On Z3z construct a (32,5,4) optimal packing design

and take the following blocks

On Z32 construct a (32,5,4) optimal packing design

and take the following blocks.

(0124 11) 4 times (0 3 8 15 21) 4 times

(0410 19 24) 4 times (0 1 4 15 20){0 2 10 16 23)
{012420)(0381727)(04 1016 25)(01 2 4 10)

{0 3715 22){0 5 11 16 23)

12.2 v =2 (mod 20)

Lemma 12.2. (a) Let v = 2 (mod 20) be a positive integer. Then
o(v,5,17) = ¥(v,5,17). (b) There exists a (26,5,17) packing design with a
hole of size 6.

Proof: (a) For a (v, 5,17) optimal packing design v = 2 (mod 20), v > 22
proceed as follows:

1) take a (v,5,4) minimal covering design [13], [17]. The excess graph
of this design consists of v — 3 isolated vertices and 3 other vertices,
say, {a,b,c} the pairs of which are connected by two edges.

2) take two copies of (v, 5,4) optimal packing design. The complement
graph of this design consists of v — 2 isolated vertices and two other
vertices connected by 4 edges. Assume in the first copy the two ver-
tices are (a,b) and in the second copy the two vertices are (a,c).

3) take a (v,5,5) packing design with a hole of size two, say, (b,c), [8].
(Close observation of these designs shows that these designs have a
hole of size 2). It is easy to check that these three steps give a (v, 5, 17)
optimal packing design for all positive integers » = 2 (mod 20).

(b) For a (26,5,17) packing design with a hole of size 6 take a (26,5,5)
packing design with a hole of size 6, [8], and a B[26,5,12] with a hole of size
6. To construct a B[26,5,12] with a hole of size 6 take a T[5,12,5], add a
new point to the groups. On the first four groups construct a B[6,5,12] and
take the last group with the point to be the hole.



12.3 v =14 (mod 20)

Lemma 12.3. Let v = 14 (mod 20) be a positive integer. If there exists
a (v, 5,11) optimal packing design such that its complement graph consists
of three 1-factor then o(v,5,17) = ¥(v, 5,17).

Proof: A (v,5,17) optimal packing design, v = 14 (mod 20), can be con-
structed as follows:

1) Take two copies of a (v,5,3) minimal covering design. The excess
graph of each (v, 5,3) minimal covering is a 1-factor.

2) Take a (v,5,11) optimal packing design such that its complement
graph consists of three 1-factor. Now apply theorem 3.1 and the
result follows.

Lemma 12.4. o(v,5,17) = ¥(v,5,17) for v = 14, 34, 54, 74, 94.

Proof: In view of the previous lemma we need to show that there exists
a (v, 5,3) minimal covering design such that its excess graph is a 1-factor,
for this purpose see [9]. We also need to show that there exists a (v, 5, 11)

optimal packing such that its complement graph is a three 1-factor for this
purpose see lemma. 8.6.

Lemma 12.5. Let v = 14 (mod 20) be a positive integer. Theno(v,5,17) =
¢(V’ 57 17)'
Proof: For v = 14, 34, 54, 74, 94 the result follows from lemma 12.4.

For v > 114, v # 134 write v = 20m+4u+ h+ s where m, u, h and s are
chosen as in lemma 6.9. Apply theorem 2.9 with A\ = 17 to give the result.

For v = 134 apply theorem 2.4 withu =2, h=6,n=7, and A =17.

124 v =18 (mod 20)

Lemma 12.6. o(v,5,17) = (v, 5,17) for v = 18, 38, 58, 78, 98.
Proof: For an (18,5,17) optimal packing design proceed as follows:
1) Take an (18,5,5) optimal packing design [8]. In this design the pair

(6,12) appears exactly three times and the pairs (5,12), (7,12) (2,6)
(6,16) appear exactly 4 times.

2) Take an (18,5,12) minimal covering design. In this design each pair
appears in precisely 12 blocks except one pair say, (6,12) that appears
in 16 blocks [17].
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The above two steps give a design where (5,12), (2,6), (6,16) and (7,12)
appear exactly 16 times and the pair (6,12) appears 19 times. To reduce
the appearance of (6,12) from 19 to 17 assume in design (2) we have the
following two blocks

(abc612) (de f612)

where {a,b, c,d, e, f} are arbitrary numbers not necessarily disjoint. In the
first block change 12 to 16 and in the second change 12 to 2.

Furthermore, assume in this design we have the two blocks
(e bc716) {(de f52)

In the first block change 16 to 12 and in the second block change 2 to 12.
It is readily checked that the above construction yields the block of an
(18,5,17) optimal packing design.
For the other values see next table.

v | Point Set | Base Blocks

38 | Zsz U He | On Za2 U Ha construct a (34,5,8) packing design
with a hole of size 2, [12] say, {h1, h2}
and take the following blocks

{0 3 16 19) U {h1, ha} half orbit {0 2 6 14 24)

{028 14 h1){0 2 10 14 ho)twice(0 1 2 11 hy)

(0315 18 ha){0 4 11 17 he){0 5 11 24 h5)(0 5 9 12 he)

(01716 ha)(01 25 he){0 25 13 hs){0 5 12 23 he)

(061323 h3){0 129 ha)(0 3716 hs){05 11 22 he)

(0313 20 ha){04 12 21 hq)(0 5 14 21 he){0 3 13 18) U {h1}is

58 | Zsa U He | On Zsg construct a (52,5,11) optimal packing design.
The complement graph of this design is a 1-factor.
Assume the 1-factor is (i, +26) i=0,...,25

and take the following blocks.

(09 22 27) U {hs}:_5(0 11 26 37) U {R1, ha} half orbit

(0246 hy){0 4 10 20 £3){0 6 16 34 hs){0 8 20 32 hq)

{0822 34 hs){0 8 22 36 he)(0 1 2 5 h1){0 3 9 22 ko)

(072132 h3){0717 36 hsa){0 8 23 35 hs)(0 1 3 16 he)

(0523 32 h,){0 7 17 38 hz){0 8 19 31 h3)(0 1 4 19 hy)

(05 20 20 hs){0 6 19 27 he){0 7 24 35 h1){0 1 2 5 ha)

(0312 25 h3){(0 5 15 26 ha)(0 6 17 39 h5)(0 7 14 23 hs)

78 | ZraUHg | On Zra U {h1,h2} construct a (74,5,12) packing
with a hole of size 2, say, {h1, ha},
and take the following blocks.

I {0 17 36 53) U {h1, ha} half orbit (0 17 30 35) U {hs}is

I {02 6 14 34) twice (0 7 23 33 48) twice (0 9 22 43 54) twice
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v | Point Set | Base Blocks

{02 6 26 h;){0 8 22 50 h3)(0 12 28 54 h3){0 1 2 5 ha) I
{03916 hs){0 8 33 43 he){(0 11 30 45 h1){0 14 31 51 ha)
{0149 h3){0 1752 hq){0 10 23 53 h5){0 11 23 58 he)

(015 31 48 h1){0 1 3 24 h2){0 3 18 29 h3){0 5 12 45 h4)
(0522 41 hs){0 9 19 44 he)

98 | 292U Hg | On Zgz U Ha construct a (94,5,12) packing design

with a hole of size 2, say, {h1, ha}.

Take also the following blocks

{0246 48 hy) half orbit {0 7 21 54) U {h:}i-s

{025 16 40) twice {0 4 19 52 69) twice (0 6 26 47 55) twice
{010 28 58 70) twice (0 7 36 46 68)(0 9 13 25 43)

{07 25 39 45)(0 10 29 59) U {hy, h, k1, ha}{0 8 14 36 ho)
{01 2 5 haytwice(0 8 17 39 hq){0 13 47 67 hs){0 11 35 66 he)
{01328 69 ha){0 7 15 24 h5){0 9 19 40 he){0 11 37 62 h3)
(012 33 65 hq){0 13 36 63 hs){(0 7 16 35 he){0 1 6 17 hs)
{03 23 58 ha){0 12 27 53 h5){0 13 31 56 he)

Lemma 12.7. Let v = 18 (mod 20) be a positive integer. Theno(v,5,17) =
¥(»,5,17).

Proof: For v = 18,38, 58,78, 98 the resuit follows from lemma 12.6. For
v > 118, v # 138 write v = 20m + 4u + h + s where m, u, h and s are

chosen as in lemma 6.11. Now apply theorem 2.9 with A = 17 to give the
result.

For v = 138 apply theorem 2.4 with h =6, A\=17,n=7 and u = 3.
To summarize this section, we have proved:

Theorem 12.1. Let v > 5 be a positive integer. Then o(v,5,17) =
¥(1,5,17).
13 Packing with index 18

Theorem 18.1. Let v > 5 be a positive integer. Then o(,5,18) =
¥(v,5,18).

Proof: It is clear that we only need to do the cases v = 2,4 or 8 (mod 10).
But for v = 2 or 4 (mod 10), o(v,5,18) = o(v,5,14) + o(v,5,4) and for
v = 8 (mod 10) we have o(v, 5, 18) = o(v, 5,12) + o(1, 5, 6).
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14 Packing with index 19
14.1 v =4 (mod 20)

Lemma 14.1. Let v =4 (mod 20) be a positive integer. If there exists (1)
a (v,5,4) minimal covering design (2) a (v,5,4) optimal packing design (3)
a (v—2,5,1) optimal packing design. Then there exists a (v, 5, 19) optimal
packing design.

Proof: A (v,5,19) optimal packing design, v = 4 (mod 20), can be con-
structed as follows:

1) Take a (v,5,4) minimal covering design. The excess graph of this
design consists of v — 3 isolated vertices and 3 other vertices, say,
(v — 2,v — 1,v) the pairs of which are connected by two edges.

2) Take three copies of a (v,5,4) optimal packing design. The comple-
ment graph of this design consists of v — 2 isolated vertices and two
vertices connected by 4 edges. Assume in the first copy the two ver-
tices are (v — 2,v — 1), in the second the two vertices are (v —1,v),
and in the third the two vertices are (v — 2, v).

3) Take a (v —2,5,1) optimal packing design and assume (4,9) appears
in zero blocks.

4) Take a B[y +1,5,1]. Assume we have the block (1 2 3 » v+ 1) where
{1,2,3} are arbitrary numbers. In this block change v +1to v -1
and in all other blocks change v +1 to v

5) Again take a B[v+1,5,1]. Assume we have the block (123 v—1v+1).

In this block change v+ 1 to v and in all other blocks change v + 1
tov-—1.

The above 5 steps give us a design such that each pair appear at most
19 times except the pairs (v — 2,v — 1), (v — 2,v) which appear at most
17 times and the pair (v — 1,~) which appears 20 times. To reduce it to
19 assume in (1) we have the block (1 2 3 v — 1 v} and in (2) we have the
block (1 2 3 4 v — 2) where {1,2,3} are arbitrary numbers. In the first
block change v to v—2, and in the second block change v —2 to v. Now the
pair (4, v) appears 20 times. To reduce it, assume in (4) we have the block
(56 74 v) and in (5) we have the block (5 6 7 v — 2 9) where {5,6,7,9}
are arbitrary numbers. In the first block change v to 9 and in the second
block change 9 to v. Now it is easy to check that the above construction
yields a (v, 5,19) optimal packing design.

Corollary 14.1. o(v,5,19) = ¥(,5,19) for v = 44, 64, 84.



Proof: In view of the previous lemma we need to show that a(v,5,4) =
(v, 5,4) for v = 44,64, 84 for this purpose see [13]. We also need to show
that o(v,5,4) = ¥(v,5,4) for v = 44, 64, 84, for this purpose see [10]. We
also need to show that o(v,5,1) = ¥(v,5,1) for v = 42,62, 82, see [9].
And since there exists a B[y +1,5,1] for all v+ 1 =5 (mod 20) it follows
o(v,5,19) = ¥(v,5,19) for v = 44, 64, 84.

Lemma 14.2. (a) There exists a (24,5,19) optimal packing design. (b)
There exists a (24,5,19) packing design with a hole of size 4.

Proof: (a) A (24,5,19) optimal packing design can be constructed as fol-
lows:

1) Take a (24,5,3) optimal packing design [9]. A close observation of this
design shows that the following pairs are missing: (1,11) (2,6) (2,14)
(2,16) (2,17) (3,16) (4,16) (5,19) (7,13) (8,16) (9,17) (10,20) (12,17)
(15,18) (16,22) (17,23) (21,24) each is missing exactly once except
(2,17) which is missing twice.

2) Take two copies of a (24,5,4) minimal covering design [17]. In this
design there is a triple the pairs of which appear in 6 blocks while
each other pair appears in four blocks. Assume that in the first copy
the triple is {2,16,17} and in the second copy the triple is {2, 3,16}.

3) Take two copies of a (24,5,4) optimal packing design [10]. In this
design there is a pair that appears in zero blocks. Assume that in the
first copy the pair is (2,16) and in the second copy the pair is (2,3).

Since (2,17) is missing twice and (3,16) is missing once in the blocks of
(24,5,3) optimal packing design, it is easy to see that the above three steps
give us a design such that each pair appears at most 19 times except (16,17)
that appears in at most 21 blocks and (3,16) that appears in at most 20
blocks. To fix this, assume in step 2 we have the following three blocks
(1231617) (456 16 17) (7 8 9 16 3). In the first block change 17
to 22, in the second block change 17 to 8 and in the third block change
3 to 4. Furthermore, assume in step 3 we have the following three blocks
(1231222) (45698) (7892 4). In the first block change 22 to 17, in the
second block change 8 to 17 and in the third block change 4 to 3. After this
manipulation of blocks the pairs (16,17) and (3,6) appear at most 19 times.
But the pairs (16,22) (8,16) (4,16) (12,17) (9,17) and (2,3) will appear one
more time. But (16,22) (8,16) (4,16) (12,17) (9,17) are missing once in the
(24,5,3) optimal packing design and since we assumed that (2,3) appears
zero times in the blocks of (24,5,4) optimal packing design then these pairs
will appear at most 19 times and as a result there exist a (24,5,19) optimal
packing design.
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(b) Let X = Z29 U Hy. Then the blocks of a (24,5,19) packing design with
a hole of size 4 can be constructed as follows:

1) Take 3 copies of a (23,5,2) packing design with a hole of size 3, [5].

2) Take 6 copies of a B[25,5,1]. Assume in each copy we have the block
(21 22 23 24 25), which we delete, and in all other blocks change 25
to 24.

3) Take also the following base blocks developed under the action of Z.
(04812 16) +1, i € Zy, twice
(035 14) U {h}i, (036 13)U {hy,h2} (02 711)U{hs, hy})
(0123 hy) (02612 hz) (03815 hs) (03913 hy)
(01238)(015914)

Lemma 14.8. Let v =4 (mod 20) be a positive integer. Then o(v,5,19) =
¥(v,5,19).

Proof: For v = 24, 44, 64, 84 the result is given in the corollary and lemma
14.2. For v > 124, v # 144,184,224, write v = 20m + 4u + h + s where
m, u, h and s are chosen the same as in lemma 5.6 then apply theorem 2.9
with A = 19, to give the result.

For v = 144 apply theorem 2.18 withn=7, h=4 and A =19.

For v = 104, 224 apply theorem 2.11 with A =4, A= 19 and m = 5,11
respectively.

For v = 184 apply theorem 2.12 withm =8, h=0and u = 5.

14.2 v =2,8,12 14 or 18 (mod 20)

Lemma 14.4. Let v = 2,8,12,14 or 18 (mod 20) be a positive integer.
Then o(v,5,19) = %(v, 5, 19) with the possible exception of v = 28.
Proof: We distinguish the following two cases.
Case 1: v =2or 14 (mod 20). In this case the blocks of a (v, 5,19) optimal
packing design are those of a (v, 5, 16) and a (v, 5, 3) optimal packing design.
Case 2: v = 18 (mod 20). In this case the blocks of a (v,5,19) optimal
packing design are those of a (v,5,13) and (v, 5, 6) optimal packing design.
Case 3: v =8or 12 (mod 20). In this case the blocks of a (v, 5,19) optimal
packing design are those of a (v, 5,11) and a (v, 5, 8) optimal packing design.
Since a (28,5,11) optimal packing design is still unknown, the above con-
struction does not work for v = 28.
In this section we have shown:

Theorem 14.1. Let v be a positive integer. Then o(v,5,19) = ¢¥(v,5,19)
with the possible exception of v = 28.
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15 Packing with index 21

Since o(v, 5,1) is far from being settled and since o(v, 5,1) # ¥(v, 5, 1) for
v=9,10,...,19 and 22, [19)], its worth looking at optimal packing designs
with index 21. It is clear that the only cases we need to consider are v = 2,4
or 8 (mod 10) and v = 39.

15.1 v =2 (mod 20)

Lemma 15.1. a) There exists a (22,5,21) and (26,5,21) packing design
with a hole of size 2 and 6 respectively.
b) o(v,5,21) = ¥(v,5,21) for v = 22,42, 62, 82.

Proof: For a (22,5,21) packing design with a hole of size 2 take four copies
of a (22,5,4) and a (22,5,5) packing design with a hole of size 2, [10], [8].
For a (26,5,21) packing design with a hole of size 6 take 4 copies of a
(26,5,4) [10] and a (26,5,5) packing design with a hole of size 6 [8].
b) To construct a (v, 5,21) optimal packing design for v = 42, 62, 82 take
the blocks of a B[y, 5,20] and a (v, 5, 1) optimal packing design, [9].
For v = 22 see the following table.

v Point Set Base Blocks
22 | Z2 x ZyoU Ha | On Z3 x Z1o U H2 construct a (22,5,4) packing design
with a hole of size 2, say, {hy,ha}. Take 4
copies of this design and take the following blocks

{(0,0)(0,2)(0,4)(0,6)(0, 8)) + (—, 1)i € Z2, twice
{(1,0)(1,2)(1,4)(1,6)(1,8)) + (—, )i € Z2

{(0,0)(0,1)(0, 3)(0,4)(1, 0)){(0, 0)(0, 1)(0, 5)(1, 0)(1, 1))

{(0,0)(0, 3)(0,4)(1,2)(1, 7)){(0, 0)(0, 2)(1, 3)(1,4)(1, 7))
{(0,0)(0,3)(1,4)(1, 6)(1, 8))}{(0, 0)(1,0)(1, 1)(1, 2)(1, 3))

{(0,0)(0, 5)(1,0)(1, 3)(1, 6)){(0,0)(0,1)(1, 5)(1, 8)h1)

((0» 0)(0: 2)(114)(1v 9)h2> ((0’ 0)(0’ 3)(1’ g)hl: h2>

«01 O)(lx 2)(1v 8)"1 2 h2)

Lemma 15.2. Let v = 2 (mod 20) be a positive integer. Then o(v,5,21) =
¥(v,5,21).

Proof: For v = 22,42,62, 82 the result was established in the previous
lemma.

For v > 122, v # 142 write v = 20m + 4u+ h + s where m, u, h and s
are chosen as in lemma 10.8. Now apply theorem 2.9 to give the result.

For v = 102 apply theorem 2.11 with m =5, h=2 and A = 21.
For v = 142 apply theorem 2.18 withn=7, h =2 and A = 21.
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15.2 v =14 or 18 (mod 20)

Lemma 15.3. Let v = 14 or 18 (mod 20) be a positive integer. Then
o(v,5,21) = ¥(v,5,21).

Proof: If v = 14 (mod 20) then o(v,5,21) = o(v,5,17) + o(v, 5,4), and
for v = 18 (mod 20), o(, 5,21) = (v, 5,13) + o (v, 5, 8).

15.3 v =4,8 or 12 (mod 20)

Lemma 15.4. Let v = 4,8 or 12 (mod 20) be a positive integer. Then
a(v,5,21) = ¥(v,5,21).
Proof: For v =4 (mod 20) apply lemma 4.2.

For v = 8 or 12 (mod 20), o(v,5,21) = o(v,5,11) + o(v,5,10). Since
(28,5,11) is still unknown, we need to construct a (28,5,21) optimal packing
design. The blocks of this design are the blocks of a (v, 5,9) and a (v, 5, 12)
optimal packing design.

In this section we have shown.

Theorem 15.1. Let v > 5 be a positive integer. Then o(v,5,21) =
¥(v,5,21) with the possible exception of v = 39.

16 Conclusion

To conclude our result, we have shown (theorem 5.1 - theorem 15.1) that
for all positive integers v, o(v,5,v) = ¥(v,5,v) — e holds where e = 1 if
AMy—=1)=0 (modv—-1)and Av(v—1)/(k—1) =1 (mod k) and e =0
otherwise with the possible exceptions listed in theorem 1.3.
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