Baer *-Rings With Finitely Many Elements

N.K. Thakare and B.N. Waphare
Department of Mathematics
University of Pune
Pune -411007
Maharashtra, India

ABSTRACT. This paper contains a characterization of Baer *rings with finitely many elements in terms of matrix rings over
finite fields. As an application one can easily verify whether a
given matrix ring over a finite field is a Baer *-ring or not.

A *-ring A is a ring A with an involution *. An element e in a *-ring A is called projection if it is self adjoint (i.e. $e = e^*$) and idempotent (i.e. $e^2 = e$). A Baer *-ring is a *-ring in which the right annihilator of any subset S of A i.e. $R(S) = \{x \in A/sx = 0 \text{ for all } s \in S\}$ is a right principal ideal generated by a projection i.e. of the form eA where e is a projection. A *-ring is said to have proper involution if $x^*x = 0$ implies that x = 0. It follows that the involution of every Baer *-ring is proper.

Matrix rings over an involutory ring are important rings for examples and counter examples. Berberian [1] concentrates on matrix rings over Baer *-rings. He discusses conditions on the underlying Baer *-ring A so that the matrix ring $M_n(A)$ becomes a Baer *-ring. The main problem is of determining conditions on a Baer *-ring A that are sufficient to convert $M_n(A)$ into a Baer *-ring. Berberian candidly warns that it is very hard to show that a matrix ring is a Baer *-ring; the problem is largely open. In the literature $M_2(Z_3)$ was the only matrix *-ring which was frequently quoted as an example of a Baer *-ring.

Firstly we quote some necessary results.

Theorem 1. (Herstein [2], p. 127). Let F be a field, which is algebraic over a finite field. If the $n \times n$ matrix ring over F i.e. $M_n(F)$ has a proper involution, then n = 1 or 2. Moreover, if char(F) = 2 then $n \neq 2$.

Theorem 2. (Berberian [1]). Let B be any *-ring with unity, n a positive integer. Then

JCMCC 26 (1998), pp. 161-164

(i) the involution of $M_n(B)$ is proper if and only if B satisfies the following condition:

$$x_1^*x_1 + x_2^*x_2 + ... + x_n^*x_n = 0 \Rightarrow x_1 = x_2 = ... = x_n = 0;$$
 (*)

(ii) for an involutory division ring $B, M_n(B)$ is a Baer *-ring if and only if the involution of $M_n(B)$ is proper (i.e. B satisfies the condition (*)).

Theorem 3. (Herstein [[2], p. 128). Let A be a *-ring with finitely many elements and with proper involution. Then A is the direct sum of finite fields and rings of 2×2 - matrices over finite fields.

Firstly, we sharpen Theorem 1.

Theorem 4. Let F be a field which is algebraic over a finite field $F(p^{\alpha})$, p prime. If the $n \times n$ - matrix ring over F (i.e. $M_n(F)$) has a proper involution then

- (1) n = 1, or
- (2) n=2 and p is of the form 4k+3.

Proof: In the presence of Theorem 1 it remains to prove that p is of the form 4k+3. Consider the equation $X^*X+Y^*Y=0$ in F. It is clear by the same theorem that $p \neq 2$. Therefore, if p is not of the form 4k+3 then p-1 is divisible by 4. We get an element $\gamma \in \mathbb{Z}_p$ such that $\gamma^2=-1$. Since \mathbb{Z}_p is a subfield of F and restriction of any involution on F to \mathbb{Z}_p is the identity map, we have $X=\gamma$ and Y=1 as a solution of the equation $X^*X+Y^*Y=0$. By Theorem 2 (i) we get that the involution of $M_n(F)$ is not proper. Hence p must be of the form 4k+3.

Since the involution of every Baer *-ring is proper we get the following result as a particular case of the above theorem.

Corollary 5. Let F be a field which is algebraic over a finite field $F(p^{\alpha})$, p prime. If $M_n(F)$ is a Baer *-ring then

- (1) n = 1, or
- (2) n=2 and p is of the form 4k+3.

Now we completely classify *-rings with finitely many elements into Baer *-rings and non-Baer *-rings.

Theorem 6. A *-ring A with finitely many elements is a Baer *-ring if and only if $A = A_1 \oplus A_2 \oplus ... \oplus A_r$ where A_i is a field or A_i is a 2 x 2 -

matrix ring over a finite field $F(p^{\alpha})$ with α odd positive integer and p is a prime number of the form 4k+3.

Proof: Let A be a Baer *-ring. Clearly the involution of A is proper. Hence $A = A_1 \oplus ... \oplus A_r$ where A_i is a field or A_i is a 2 x 2 - matrix ring over a finite field $F(p^{\alpha})$ with $p \neq 2$ (by Theorem 3). We have also proved in Theorem 4 that p must be of the form 4k + 3. Suppose that α is even. Then we get that $q = p^{\alpha}$ is of the form 4k + 1. That is q - 1 is divisible by 4. If γ is a generator of the multiplicative group $F^*(p^{\alpha}) = F(p^{\alpha}) - \{0\}$ then $\gamma^{(q-1)/2} = -1$.

Case 1. The involution of $F(p^{\alpha})$ is the identity. Then $X = \gamma^{(q-1)/2}, Y = 1$ is a nontrivial solution to the equation $X^*X + Y^*Y = 0$ in $F(p^{\alpha})$. Hence by Theorem 2(i) we get that the involution of A is not proper, a contradiction. Case 2. Involution of $F(p^{\alpha})$ is not identity. Then the involution must be $*: x \mapsto x^{p^{\alpha/2}}$. Now consider the equation

$$X^*X + Y^*Y = 0$$
 i.e. $X^{p^{\alpha/2}+1} + Y^{p^{\alpha/2}+1} = 0$.

The element $\gamma_0 = \gamma^{(p^{\alpha/2}-1)/2}$ has the property that $\gamma_0^{p^{\alpha/2}+1} = \gamma^{(p^{\alpha}-1)/2} = -1$. Therefore if we put $X = \gamma_0$ and Y = 1, then we get a nontrivial solution to the equation $X^*X + Y^*Y = 0$. Thus by Theorem 2 we get that the involution of $F(p^{\alpha})$ is improper, a contradiction. Therefore α must be odd.

Conversely, let A be as stated in the theorem. If A_i is a field then it is obviously a Baer *-ring. Suppose that A_i is a 2 x 2 - matrix ring over a finite field $F(p^{\alpha})$ where α is an odd positive integer and p is of the form 4k+3. We prove that A_i is a Baer *-ring. Since α is odd, the field $F(p^{\alpha})$ has only the identity involution. Suppose that the equation $X^2+Y^2=0$ has a nontrivial solution in $F(p^{\alpha})$. That means there exists an element say γ_1 in $F(p^{\alpha})$ such that $\gamma_1^2=-1$. This means that $p^{\alpha}-1$ is divisible by 4, so p^{α} is of the form 4k+1. But p is of the form 4k+3 and α is odd imply that p^{α} must be of the form 4k+3, a contradiction. Hence there is no nontrivial solution for the equation $X^*X+Y^*Y=0$ in $F(p^{\alpha})$. Applying Theorem 2 (ii) we get that A_i is a Baer *-ring. Thus A is a Baer *-ring as required. \square

We have the following immediate corollary.

Corollary 7. (i) $M_n(Z_m)$ is a Baer *-ring for $n \ge 2$ iff n = 2 and m is a square free integer whose every prime factor is of the form 4k + 3.

(ii) Z_m is a Baer *-ring iff m is a square free integer.

Proof: (ii) The identity involution is the only involution on Z_m . Hence it follows that the involution on Z_m is proper if and only if m is a square free integer. If m is a square free integer then Z_m is a direct sum of fields and hence it is a Baer *-ring.

(i) Firstly we observe that if m is not a square free integer then the involution on Z_m is not proper, and Z_m being a *-subring of $M_n(Z_m)$, the involution of $M_n(Z_m)$ is also not proper, for any $n \geq 1$. Secondly, we observe that if m is a square free integer say $m = p_1, p_2, ..., p_t$, where each p_i is a distinct prime then $M_n(Z_m) = M_n(Z_{p_1}) \oplus M_n(Z_{p_2}) \oplus ... \oplus M_n(Z_{p_t})$. Now by Corollary 5 and Theorem 6 the result follows immediately.

References

- [1] S.K. Berberian, Baer *-rings, Springer-Verlag, Berlin, 1972.
- [2] I.N. Herstein, Rings with Involution, Chicago Univ. Press, London, 1976.