A lower bound for the parallel complexity of
periodicity on multi dimensional arrays

Clive N. Galley*

Department of Computer Science
Kings College London
University of London

ABSTRACT. Given that an array Afis,... ,#4),1<i; <m,...1<
ig < m has a period A[py,... ,pa] of dimension p; X ...p4 if
Alir,...4d) = Afir1 +p1,... ,ia +pd] for i1,...5a = 1...m —
(P1,... ,pa). The period of the array is Alpy,... ,pd] for the
shortest such ¢ = p1,...p4.

Consider this array A; we prove a lower bound on the com-
putation of the period length less than m?/2¢, of A with time
complexity

Qloglog, m) , a = m?

for O(m?) work on the CRCW PRAM model of computation.

1 Introduction

An array Aliy,...,44],1 < i3 <m,...1 < ig < m hasa period Alpy, ... ,pd]
of dimension p; x...pg if A[éy,.. .12 = A[i1+p1, ... ,ia4pd) for 41,...i4 =
1...m — (p1,... ,pa). The period of the array is Alpy,...,p4] for the
shortest such ¢ = p1,...pa. This paper concentrates on the inter-related
algorithmic and combinatorial problem of d dimensional periodicity arising
in applications which involve extensive manipulations of arrays and strings.
Such application areas are pattern recognition and computer vision, speech
synthesis and recognition, data compression and encoding, data commu-
nication, text retrieval and editing, etc. Perhaps less typical, but equally
important applications are found in graph problems and in molecular biol-
ogy.
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The primary reason that molecular biology is of great interest to com-
puter scientists is that genes, chromosomes, genomes, proteins, and enzymes
can be viewed, at one level, as simply strings (or sequences) of symbols from
a finite alphabet (the alphabet C,G,A,T of the four nucleotides, or the al-
phabet of 20 amino acids). A second reason for computer scientists’ interest
is that the genome project raises many intractable computational questions
of an optimization flavour. While many biologists intuitively realized that
a problem such as DNA fragment assembly is intractable and, therefore,
developed heuristic algorithms, few proofs of intractability, and even fewer
proofs of the quality of the results of the heuristic algorithms have been
established. A third reason is that genomic databases are extremely large;
for example the human genome, which for one individual consists of 23
chromosomes, consisting of approximately three billion nucleotides. We
are facing an information overload that will paralyse our computer sys-
tems, unless we develop new techniques, or adapt existing techniques, to
summarize and visualize genomic data.

The study in this paper is upon periodicity-related combinatorial prob-
lems. These problems were studied over seventy years ago by Thue, see
[T1),[T2]). The inequality underlying our bound on periodicity was also
stated around that time, in 1917, by Hardy and Ramanujan, see [HR]. This
inequality was upon the number of prime factors of any integer n. By
considering the bound on primes in [RS] by Rosser and Schoenfield, Bres-
lauer and Galil showed the first lower bound on one dimensional pattern
matching, see [BG]. :

Here we provide a multi dimensional generalisation of the lower bound
for periodicity from [BG]. Our bound has an Q(loglog, m) time complex-
ity, where & = m? for an array bounded by m9, and our bound requires
linear work. Given the bound on primes used by an adversary in [BG], an
alternative method was used in [GI] using some multiples of primes for the
same adversary. In corollary to these multiples of primes we show here that
exponents of primes may also be used by the adversary. Moreover these
exponents of primes can be shown to take a general form set here to the
dimension of the array.

Section 2 contains our proof, followed by a conclusion in Section 3.

2 The Lower Bound

Definition 2.0
A vector (zy,... ,Z4) = (Td+1,..- ,T24) is a prime vector iff
(i) {z1,... ,%24} all force a comparison in one dimension.

(i) P € {z1,--.,Z2q} issuch that V P m/2 < P < m.
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(iii) P; € {z:},i € {1...d} is such that m/2 < P; < 3m/4.
(iv) P; € {z;},5 € {d+1...2d} is such that 3m/4 < P; < m.

o

We begin with a reminder of the other salient definitions. An array
Aliy, ... ,ig),1 £ 41 < m,...1 < ig < m hasa period Alp,,...,pd] of di-
mension p; X ...pq if Afiy,...44) = A[i1 +p1,... 4 +pd] for i1,...54 =

m—(p1,...,pa). The period of the array is Alpy,... ,p4] for the short-
est such q = p1,...pa. The array we consider is bounded by m9, and we
use m? symbol comparisons in each iteration. The lower bound holds for
testing whether such an array has a period of length smaller than 2 5-

We use the following strategy, which is a generalization of that used in
one dimension by Breslauer and Galil. Given an adversary, he could answer
Q(loglog, m), a= md’
iterations of vector comparisons in such a way that there is still a choice of
fizing the input array A in two different ways. One way is that the output
array has a period of length smaller than 32- The other way is that the
output array does not have such a period. This implies that any algorithm

using less iterations than this will be erroneous.

We continue with some definitions used in [BG]. An integer k is a pos-
sible period length of A if the array A can be fixed consistently using the
output from previous vector comparisons in such a way that k is a pe-
riod length of A. For k to be a period length it is necessary that each
residue equivalence class modulo k is fixed to the same symbol. Thus, if
h...la=3j1...74 mod k, then A[h] = A[i].. A[ld] = A[jg] where A[‘I.d] is
the i4-th element of A, and A is a d dimensional array.

At the start of iteration ¢ Breslauer-Galil’s adversary will maintain an
integer, k;, which is a possible period length. During iteration i this ad-
versary answers vector comparisons such that some k;,, is also a possible
period length, and some symbols of A are fixed. Moreover, given a pattern
array bounded by m¢, the following Lemma from the Breslauer-Galil proof
is critical to what follows

Lemma 2.1. ([BG]) If p,q > 1/% and are relatively prime, then a com-
parison S[l] = S(k] is forced by at most one of pk; and gk;. o

We continue with a reminder of the key Lemmata from our improvement
to the one dimensional pattern matching lower bound, see [GI].

Lemma 2.2. Let p = p1ps, q = q1g2, With

/m /m
— < . < _—
) '_.Pj:QJ_ ki,
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where pj, ¢;,J = 1,2 are prime numbers. A comparison is forced by at most
one of pk; and gk;.
Proof: The lemma holds when gcd(p, ) = 1, see [BG].

Assume w.l.o.g. that ged(p,q) = p1 = q1, | = k mod pk; and | = k mod
gk; for 1 <1,k < m. Then we have | = k mod pogop1 k; and g2 > 2, which
implies p2gep1k; > m; this implies ! = k&, a contradiction. (u}

Lemma 2.8. Let p = p1p2p3, ¢ = q19293, with

m \ /3 m\1/3
@) smos(z)

where p;,q;,% = 1,2,3 are prime numbers. A comparison is forced by at
most one of pk; and gk;.
Proof: The lemma holds when the ged(p, g) =1, see [BG].

Assume ged(p,q) > 1, I = kmod pk; and l = kmod gk; for 1 <1,k < m.

If the gcd(p, q) is just one prime number and w.l.o.g ged(p, q) =p1 = a1,
then we have | = k mod popsqeqspi k: and

P2P3q2q3prki > m
this implies ! = k, a contradiction.
If the ged(p, q) is a product of two primes and w.lo.g let ged(p,q) =
P1P2 = q1q2 then we have ! = k mod p3qsp1p2k; and
p3gspipzk: > m
this implies ! = k, a contradiction. (|

There is now a generalisation of the second case from Lemma 2.3 which
is needed by the d dimensional lower bound. A generalisation of the first
case of Lemma 2.3 would lead to a greater lower bound than that shown
here. However there are as many different cases to consider in general, as
there are dimensions. We leave such a proof for future work. In [G3] the
calculation of a lower bound given this hypothetical generalisation can be
found. We give the resulting complexity in the conclusion here.

Lemma 2.4. For a prime k form all the powers of k from
. m m
Kilke {1...p}lj € {1...log,p}p € {EEE}
A comparison is forced by at most one of two such k’s above.

Proof: Let p = p{ and ¢ = q{ where p; and q; are two such k’s. Assume
ged(p,q) > 1,1 = kmodpk; and l = kmod gk;, for 1 < L,k < m. If
ged(p, q) is the product of two such k7 and wlog let

ged(p,q) =pi ' =q"!
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then we have ! = k mod p} 'p1gi ™! and

i mark: = plark = parki > m, for g1 > 2
This implies ! = k, a contradiction. O
In the one dimensional case, as above, k; is a candidate for the period

length of a string of length n. However in cur many dimensional case which
follows, k; is a candidate for the period length of an n¢ array.

We also need the following four theorems from [G] which improve the
bound by counting comparison forcing multiples.

Theorem 2.5. [RS] For n > 17 the number of prime integers. between 1
and n denoted by w(n) satisfies the following

n 5n
- <2
mn <" < 3mm

O

Corollary 2.6. For log,n > 17 the number of prime integers between 1
and log, n denoted by w(log, n) satisfies the following
logk n
In logk n

5 log,n
< <2
<78 ™) < Fiogin

Proof: We substitute n by log, n in Theorem 2.5 o
Corollary 2.7. There are at least

1 logen \ _
4Inlog,n =

distinct prime integers in the range [log,(n/2), log, n] for k > 2.

Proof: By Corollary 2.6 we have

log, n
>
m(log.n) 2 Inlog,
and 5 log, B
n 08} 5
<l
i (log,, ) = 4Inlog, 3
which implies that

n log;. n 5 log,
— AN _2
m(logy ) — (Iogk 2) “Inlogyn 4lnlog, 3

1 ( logn 5 log %
" logk \Inlogn —Inlogk 4Inlog % —Inlogk

S 11 logn
logk4 \Inlogn — Inlogk
(2.7.1)
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The corollary follows from (2.7.1) O

Theorem 2.8. There are at least

Gk
II o, > klogn where g = ill‘;gk n
k=2 o(k) nI0g, n

distinct exponents of primes, P, in the range 3 <P <n

Proof: From Corollary 2.7 there are g primes in the range [log,(n/2), log, n].
Choosing k — 1 of these, say ps,... ,pk, will give us an exponent such that

gs?”,...,k"‘ <n

Excluding primes raised to a prime, which are duplicates, we can choose
only
k—qx = O(k)

(using log,(n/2) < p; < log, n), as there are at least gx such primes by
Corollary 2.7. Simplifying gives

kl;'[z (02::)!) 2 H (O(kk)) >qf > klogn

W}

In the many dimensional case we apply the same analysis as in [G2], but
here we have new prime vectors, and the lower bound, which follows in a
similar fashion, requires developing a calculation based on the size of the
set of these new prime vectors.

Lemma 2.9. Given anm? array, and two arbitrary vectors @ = (I, ... ,lg) —
(lat1, ... ,l2a), and @ = (j1,... ,4a) — (Jar1,...J24), 1 < i < m, and
1 < ji < m, and a prime vector, W = (zy,... ,%a) = (Tdy1,... , T2a), then

a vector comparison ¥ = i is forced by the prime vector 7.

Proof: Assume j; =!; mod (z4+1) and so on until jg = Iy mod (z24).

By d counts of Lemma 2.4, a symbol comparison at (j1,..., jg) to
(l,... ,1a) is forced.

Assume jgi1 = lg41 mod (z;) and so on until jog = lpg mod (z4).

Again by d applications of Lemma 2.4, a symbol comparison at (Fat+1s-++»
J2d) to (lat1, ... ,l24) is forced.

As both ends of the prime vector, 7, force a symbol comparison at both
ends of ¥, and # a vector comparison is forced. In other words we force the
symbol at (Iy,...,1s) to be compared with the symbol at (54, ...34), and
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we force the symbol at (l4+1, ... ,l24) to be compared with the symbol at
(Jd+15--- »J24)- That is

(G1s--- »Ja) = Udt1s--- »J24)

is forced by
(11, cee ,ld) - (ld-l-h eve ,lzd)

The lemma follows (m]

Lemma 2.10. There are at least
1
Zz (k log n)zd
prime vectors @ in the range n/2 < W < n for all co-ordinates.
Proof: By Theorem 2.8 there are at least
klogn

co-ordinates of distinct integers to choose from such that n/2 < (p,q) <n

so there are
(klogn)?

of these co-ordinates in total. To form the vectors we partition according
to each dimension giving

41—d (klog n)d
thus there are 1
44 (Flog n)%?
on consideration of both ends of each prime vector. [m]

The proof continues in much the same way as in [BG], but the invariants
that are involved differ in the following ways:

® k; is a prime vector multiple as in Lemma 2.9,
e modular residues are in all co-ordinates,

e K; is the dth power of the function in [BG], that is

K, (ml“r“_l))d
i b—

Thus an adversary to any algorithm maintains the following invariants
at iteration z:

(1) 1Ki<k < K;
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(2) Given an m? array, then for each symbol fixed to (Iy,...,ls) —
(la41,-- - »l24), for every j; = Iy mod (z441), and so on until for
every ja = lq mod (x24), and for every jg+1 = lg+1 mod (z4), and so
on until for every jaq = log mod (z4);

(jl:--- ;jd) i (jd+h--- r.72d)

is fixed to the same symbol, where z;, ..., Z34 are components of a
prime vector.

(3) If a symbol comparison is equal then both symbols compared were
fixed to the same symbol.

(4) If a symbol comparison is unequal then

(a) it is between different residues modulo zy, x5, ..., and z24
(b) if the symbols were fixed to values then those values are different

(5) The number of fixed symbols satisfies f; < K;.

A candidate denotes a possible new period length after an iteration of
any algorithm. Next to be considered are the candidates for k11, which are
prime vector multiples of k;, which also, as a check, satisfy the condition of
Lemma 2.4 in all co-ordinates. As mentioned earlier this enables us to claim
that the one dimensional proof is a special case of our multi dimensional
version.

Lemma 2.11. There are the following candidates for k;1 which are prime
vector multiples of k;, and satisfy the invariant held by the adversary that
1Kii1 < kiy1 < Kiy, and the pair (k;,kiy1) satisfy the conditions of
Lemma 2.4 : 1

4_d(d Iog m)zd

(Where we define a vector multiple as the conjunction of the co-ordinate
scalar multiples.)

Proof: These candidates are of the form 7k; for a prime vector ¥. The
count of these follows from Lemma 2.10. We set k from Lemma 2.10 to
d. O

Lemma 2.12. Each such candidate satisfies the condition of Lemma 2.4
for all co-ordinates.

Proof: As zy...zgk; > KH.I/Z, Tdi1 ... Tagki 2 Kit1, and k; < K; then

d d(3d—2)-4* d
(z1...7a)% 2 1 Ky _m Z%
3

“Rk2KFT!T Pk
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the cases up to zg41...z2q4 are all less restrictive (greater) than above. O

Lemma 2.13. There exists a candidate for k;, in therange K1 -+ Ki1
that forces at most

2d
49m2d
dlogm

vector comparisons. (Recall a vector comparison is defined as the simulta-
neous comparison of the symbols to be found at the co-ordinates of both
ends of the vector.)

Proof: By Lemma 2.10 there are at least
1
4_4(d log m)?¢

such candidates that are prime vector multiples of k;. By Lemma 2.8 each
of the m?? vector comparisons (m? for each end of each vector) is forced
by at most one of them. O

Theorem 2.14. Any comparison based algorithm for finding the period
length, smaller than (m/2)?, of an array of size

d times
e a—
mxm---m
using m® symbol comparisons in each iteration requires

loglog,m , a= md’

iterations.

Proof: The proof is similar to that in [BG] except the invariants hold at
iteration ¢ + 1 as follows :-

The basis for induction follows from the Breslauer-Galil proof, as there
are no changes from their proof at that stage. By Lemma 2.13 k;.; exists

and it forces at most
d, 2d 1 2
4 —_—
m (dlo'gm)
vector comparisons.

These vector comparisons are equal iff z1,... , T2 modulo k;4+; fix the
residue class modulo k;; to the same symbol. All others are unequal. k;;
is a prime vector multiple of k;, so each residue class modulo k; has 2d
scalar residue classes modulo zi, .. .z24 Which split into

kiy1/z1, ... s kiy1/T2q
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residue classes modulo k;4;. If two indices are in different (respectively
the same) residue classes modulo k;, i.e. all 2d scalar residue classes, then
they are also in different (respectively the same) all 2d scalar residue classes
modulo ki ;.

The invariants can now be itemized

(1) By Lemma 2.10, %K,-.H < ki+1 < Ki+1, as the prime vector multiples
are in the required range.

(2) By the argument above, each symbol is still fixed as before.
(3) Likewise, by the argument above, for equal symbols.

(4) (i) Residue classes of any of the 2d points may differ to produce an
unequal answer.

(ii) Any previous differing class is maintained, by consistency of the
calculation. Two multiples which force a comparison composed will
not fail to force a comparison.

(5) By induction fi;; < kiy1. Here we must consider the induction in
each co-ordinate in order to validate the proof. Where f7}; is the z;
co-ordinate of f; 1, and so on until likewise f_ﬁ is the zo4 co-ordinate
of f; 11, then let the prime vector x; — 441 fix fi7};, and let the prime
vector T4 — o4 fix fi7#, each having two scalar residue classes. Given
that we show in the following proof that fiy1 < ki1 = £}, and so
on until f2¢ < k{},, and so on until k4, and all sets of co-ordinate
vectors are of the same size, this implies that f}, < ki}, and so on
until 724 < k734.

Each residue class modulo k;4; has, at most,
dezd/k.-.*.l <2x 2dm2d/Ki+1

elements and

2 1
1 < K .gdgd2d T < K:
fir1 £ K; ll +2-2%4°m’ KH.I dlogm < Ki+1

2d
1+2-2°‘4‘m4d( 1 ) <£(-"+—1

K1 \dlogm K;
2d
1 K;
. 9d4d,n4d < (23 _ A
2. 2949 (dlogm) _( % 1) Kis1
2d
2.294%m34 (—dlogm) <mdt < mdtTt _ gt
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2 .
4-242m® (ng—m) <mtTT e

d

_4—loglogg m d m
firt ki1 < (‘m1 4 ) S57

38 Conclusion

In conclusion we have the following summary of results

o For three dimensional pattern matching, where one must first com-
pute the period length less than m3/8, we provide a generalisation
which improves the constant of the Q(loglog m), linear work, CRCW
PRAM lower bound.

¢ Given a dimension d we prove a lower bound for d dimensional pattern
matching, where one must first compute the period length less than

m?/24, of
Qloglog, m) , a=m?

for O(m?) work on the CRCW PRAM. The bound is subject to the
following restriction on m.

loggm > 17, or m > g17°8¢
Unlike the bound for two dimensional pattern matching, see [G2], which

extends to O(log® m) extra work, our d dimensional bound does not extend
to O(log® m) extra work. For a more general case than that in Lemma 2.3

of 1/k 1/k
m m
P=p1...Pk,q=¢q1---Gk | (2k) Spj,qJ'S(E)

forcing a comparison, a hypothetical lower bound follows of
N o
Q (log4 log,, (m“ (log m)zu ) * “d)

time for O(m“) work, see [G3]. In this case there is a generalisation to
O(m%log®m) work.
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