On Surjective Semispan of Abstract Graphs*

Thelma West

Department of Mathematics
University of Southwestern Louisiana
Lafayette, Louisiana 70504

1 Introduction

In [2] Lelek defined the surjective semispan of a continuum, which is an
analogue of the diameter of a continuum. Since the surjective semispan of a
continuum depends on the metric, this could be thought of as a “geometric”
span. This concept has led to interesting questions and results for such
simple geometric objects as simple closed curves and simple triods [2, 3, 4,
5, 6, 7, 8]. Sam B. Nadler, Jr. has defined the surjective semispan of an
abstract graph (in private communications). It is a natural combinatorial
version of “geometric” span.

We calculate the surjective semispans for some basic abstract graphs. An
algorithm for the surjective semispan of a tree is determined (Theorem 2).
Bounds are found for the surjective semispan of the wedge of two graphs
(Theorem 3) and we give corresponding examples. It is shown that in
calculating the surjective semispan of a graph we can restrict our attention
to homomorphisms where the domains are paths (Theorem 4). It is shown
that the surjective semispan is invariant under subdivision only for paths
(Theorem 5). We generalize the result for trees (Theorem 2) by determining
an algorithm for the surjective semispan of a Husimi tree (Theorem 6).
(Both proofs are given since the proof of Theorem 2 motivates and clarifies
the proof of Theorem 6).

2 Notations and Definitions

All of the graphs in this paper are abstract graphs. All of these graphs
are simple graphs (no loops or multiple edges). The following terminology
from [1] is used. We denote the path of length n by P, or by vp — v, —
+++ —v,. The edge set of a graph G is denoted by E(G) and its vertex
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set by V(G). The cycle of order n is denoted by C, where V(C,) =
{v}- and E(C,) = {'v.-'u,-i.l}}:(,2 U {vn—1v0}. The complete graph on
n vertices is denoted by K,. A complete n-partite graph is denoted by
K(p1,...,pn) where V1, V3,...,V, is a partition of its vertex set, |Vi| = p;
fori=1,2,...,n,and forp € V(V;) and g € V(V}), pg € E(K(Py,..., P,))
if and only if % # j. By a tree we mean a connected acyclic graph. A Husimi
tree is a connected graph such that each of its blocks is a complete graph.
Note that a tree is a Husimi tree where each block is K.

We also define the following terms. By a diameter path of G, we mean
a path in G of length the diameter of G, where the distance between the
endpoints of the path is also the diameter of the graph. By G¥ Vv H” we
mean the graph obtained by identifying the vertex v in G with the vertex
w in H. We will refer to G¥ V H" as the wedge of G and H, with v and
w identified. Let G and H be two graphs. A function f: V(G) — V(H)
is called a homomorphism if whenever vw € E(G) either f(v) = f(w) or
f(v)f(w) € E(H).

As mentioned in the introduction, the definition of the surjective semis-
pan of an abstract graph is motivated by a similar definition for continua.
In order to motivate our definition and clarify our notation, we give the
following terminology due to Lelek ([2], [3])-

Let (X, d) be a continuum, that is a compact, connected, metric space.
For any two continuous functions f and g from a continuum Z into X, let

glb(f,9) = glb{d(f(2), 9(2)): z € Z}

Then, the surjective span of X denoted by o*(X), is defined as follows:
o*(X) =lub{gld(f,g): f and g map some continuum Z onto X, where f
and g are continuous}. The surjective semispan of X denoted by o3(X) is
defined in the same way but by requiring only one of the maps f, g: Z — X
to map onto X. Now the span of X and the semispan of X denoted by

o(X) and 0o(X) respectively, are defined so as to take into account the
subcontinua of X namely:

o(X) =lub{o*(Y) | Y is a subcontinuum of X};
do(X) = lub{og(Y) | Y is a subcontinuum of X}.

In general, note that the diameter of a continuum (X, d) may be thought
of as being

lub{glb(f, g): f and g map some space Z into X}.

Thus the various spans of a continuum may be considered to be analogues
of diameter using continuous functions on continua with equal or related
ranges.
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The following definition (motivated by the above definitions) is due to
Sam B. Nadler, Jr. Let G be a connected abstract graph. If G, is a
connected graph and f,g: V(G.) — V(G) are arbitrary maps then let

d(f, g) = min{d(f(v), 9(v:)) }i=1s

where {v;}%., = V(Ga) and d(f(v:), g(w:)) is the length of the shortest
path in G from f(v;) to g(v;). We define the surjective semispan of G,
03(G) by 03(G) = max{d(fx; 9a): fa: 9a’ V(Ga) = V(G), fa and g, are
homomorphisms, G is a connected graph and f, is surjective}.

It is clear from this definition that 0 < 03(G) < diamG. The diameter
of an abstract graph G may be thought of as being

lub{glb(f,g): f and g are homomorphisms from some vertex set into V(G)}.

So, the surjective semispan of G may be considered an analogue of the
diameter of G.

3 Theorems and Examples

Theorem 1. Let G be a connected graph. Then o§(G) = 0 if and only if
G =K.

Proof: It is clear that o§(K;) = 0. Suppose that G # K. Let v € V(G)
and let w € V(G) — {v} such that d(v,w) =1. We define homomorphisms
f,9: V(G) = V(G) as follows.

fW=u, weV(©)
o) = {” ur

w u="v.

Hence, o3(G) > 1 since f(V(G)) = V(G) and d(f,g) = 1.

Next we give some easy examples.

Example 1. o3(P,) =1.

We see that o3(P,) > 1 by Theorem 1. Next, we will see that o5(Py) is
not larger than 1. Let f,g: V(G) — V(P,) be homomorphisms where G is
a connected graph, f(V(G)) = V(P,) and d(f,g) > 1. There are vertices
v,w € V(G) such that f(v) = vp and f(w) = vn. Let v—wy—+ - —wp—1—w
be a path in G from v to w. We can assume that f(w;) N {vo,vn} =0 for
i=1,2,...,m —1. Let wo = v and wy, = w. So, g(wp) = vy, where h > 0
and g(wy,) = v where k < n. Let

i =max{j: 0 < j <m, f(w;) = v, 9(w;) = va and ¥’ < h'}.
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Hence, f(wj4+1) = vir and g(wjt1) = vpr where h” < k”. It must be the
case that k' +1 = &/, since k' < k', k" € {k' — 1,K',k' + 1}, " € {h' —
1,h’',h’ + 1}, and h” < k. Hence, d(f, g) = d(vis, vn) = d(vpsr, vpr41) = 1.
Consequently, o§(P,) = 1.

Example 2. 03(Cn) = [2].

Let f,g: V(Cn) — V(C,) be homomorphisms given by f(v;) = v; and
g(vi) = v for i = 0,1,...,n — 1 where k(i) = (i + [2]) mod n. So
03(Cn) = [3], since f(V(Cn)) = V(Ca), d(f,9) = [4] and diam (C..) =
[3]-

Example 3. o3(K,) =1.

This is clear since o§(Ky,) > 1 by Theorem 1 and diam K, = 1.
Example 4. o3(K(3,3)) =2.

Let Vo = {uo, u1,u2}, Vi = {wo, w1, w2} be the partition of V(K (3, 3))
such that ww; € E(K(3,3)) for each i,5 € {0,1,2}. Let f,g: V(Ps) —
V(K(3,3)) be homomorphisms defined as follows:

i og(w) flw)
0 uy up
1 w wo
2 wup uy
3 wg wy
4 Uug
5 ayp wo

Consequently, o5 (K(3,3)) = 2 since f(V(Fs)) = V(K (3,3)), d(f,9) =2,
and diam K(3,3) = 2.

Example 5. o5(K(p1,p2,...,Pn)) =2if p; > 2 for each i € {1,2,...,n}
and n > 2.

This can be shown by defining homomorphisms similar to those in Ex-
ample 4.

Example 6. oj(K(p1,p2,...,Pn)) =1if p; =1 for some i € {1,2,...,n}
and n > 2.

Let f,9: V(G) —» V(K(p1,p2,- - - ,Pn)) be homomorphisms where G is a
connected graph and f(V(G)) = V(K (p1,p2,...,pn)). Let v € V(K (p1,p2,
.++,Pn)) such that vw € E(K(p1,p2,...,pn)) for each w € V(K(py,p2,...,
Pn)) — {v}. There is a vertex u € V(G)) such that f(u) = v. Hence,
d(f(u),9(u)) <1 and o§(K(p1,P2,---,Pn)) < 1. By Theorem 1 we have
that og(K(p1,p2,...,pn)) = 1.

Example 7. o3(P) = 2, where P is the Petersen graph (see Figure 1)
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Let f,g: V(P12) — V(P) be homomorphisms as defined below.

v g(w) flw) v g(w) f(w)
0 Vg4 Ve 7 m V3

1 V4 m 8 Vo V4

2 Vs V2 9 V2 V9

3 ws vy 10 v V4

4 o v 11 g vg

5 (1 v3 12 v3 V10

6 v Ug

Consequently, o§(P) = 2 since f(V(Py)) = V(P), d(f,g) = 2, and
diamP = 2.

Let T be a tree which is not a path. Let P, =vp—v; —---—v, be a
diameter path in T. We define graphs T; and B; for j = 1,2,...,n—1, a
set {b.,'}_;.‘;l1 and an integer b(P,) all based on P,.

(¥) Let T; be the subgraph of T such that V(T;) = V(T) and E(T;) =
E(T) — {vj-195,vvj41} for j = 1,2,...,n — 1. For each j, let B; be
the component of T; which contains v;. If V(B;) — {v;} = @ then let
b; = 0. If V(B;) — {v;} # 0 then let w; be a vertex in V(B;) such that
d(vj, w;) > d(v;,w) for each w € V(B;) and let b; = d(v;,w;). Note that
j+b; <nandb;+n—j<nsince diamT =n. So b; < min{j,n — j}.
Let b(Pn) = max{b;}7={. We refer to b(P,) as the branch length for T
determined by P,. Note that since T is not a path, b(P,) # 0.

Lemma 1. Let T be a tree which is not a path. Let P, and P}, be two
diameter paths in T. Then b(P,) = b(P.).
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Proof: Let P, =vp—v; —---—vy and P, = vj —v} —- - - — v}, be diameter
paths in T. Let T; and B; for j = 1,2,...,n -1, {;}}. 1,:a.ndb(P)bc:‘.
defined as in (*) above. Let 7} and Bj for] =1,2,...,n—1, {§;}}2
b(P,,) be defined as above but based on the path P, mstead of P,.

Next we will show that V(P,) N V(P.) # 0. Suppose that V(P,) N
V(P.) = 0. The graph T is connected, so there is a path from some
v; € V(P,) and to some v € V(P;). Also,1 <i<n—-land1<k<n-1
since diamT = n and T is acyclic. Also notice that eitheri > §orn—i > 3
and either k >  or n — k > %. Since d(v;,v}) 2 1 and T is acyclic we see
that, d(vo,vg) = i+1+k, d(vo,v},) > i+1+n—k, d(vn,vp) = n—i+1+k,
and d(v,,, vp) 2n—i+14n—k. Ifi> % and k > % then d(vo, vp) > n+1.
If i > % and n—k > % then d(vo,v;,) > n+1. Ifn—i > % and k > 3 then
d(vn,v0) 2n+1. If n—i > % and n—k > % then d(vs,v;,) > n+1. So we
would have diamT > n + 1, contrary to our assumption that diamT = n.
So V(P,)NV(P.) #8.

Let g = min{j | v, € V(P,)} and k = max{j | v; € V(P.)}. Let
vg = vp and vy = v},. To simplify the proof we may assume that p < m.
Since T contains no cycl, m—p==Fk—gqandvg; = vy, for j =
0,1,...,k — q. Since T contains no cycles and diamT = n we see that
dv,vn) =p+k—q+n—-k=p—qg+n <n So, p—q<0. Similarly,
d(vo,vy,) < g+m-—p+n-m=g-ptn<n Sog-p<Oandp=g.
Consequently, k¥ = m and v; = v} for ¢ < j < k. Recalling how B; was
defined, we can see that if k¥ — q>2then Bj=Bjforg+1<j <k—1
Soifk—g>2thenb; =b;forg+1<j<k-1.

Next we will show that bq = bg and bi = bj,. Since vg—v] —---—v; C B,

and vg—vz—---—vy C By, we see that by, b > g. But bg, b, 5 min{q,n—q}
so, g <n-— qs.ndbq_b —q Since v}, — v}y — Vpyo — -+ — v, C Bi
and vy — V41 — Viq2 — — v, C B’ we see that by, bk >n— k But
bk, b, < min{k,n —k} so,n—k Skand by =b, =n—k.

Next we will show that b(P,) = b(P.). For j where 1 < j < ¢ -1,
b3,b; <min{j,n—j} <j < g<n-q<n-j and b}, b; < g=by. Forj
where k+1 < j <n—1, b}, b < min{j, n—g}<n—_1 <n k<k<j and
bj,b; < n —k = bs. Consequently b(P,) = max{b;}; 1= max{b;}5_, =
ma.x{b’ }Ys—q = b(P,). Now we can represent the branch length of a tree by
b, since this value does not depend on the particular diameter path which
was used to determine it.

J'—l

Theorem 2. Let T be a tree which is not a path. Then o§(T) = b where
b is the branch length of T.

Proof: Let P, = wp — vy — -+ — v, be a diameter path of T. Let T}
and B; for j=1,2,...,n—1, and {65332 ?~) be defined as in (*) above. So
max{b;}}=] = bk for some k where 1 g k < n — 1. By the definition of
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branch length and Lemma 1, b = b(P,) = bx. Let wx € V(Bg) such that
d(wk, vk) = by.

Let G be the subgraph of T such that V(Gg) = V(T) and E(G%) =
E(T) — {vk—1vc}. Let Gp be the component of G’z which contains vy.
Let G be the subgraph of T such that V(G%) = V(T) and E(G%}) =
E(T) — {vkvi+1}. Let Gr be the component of G4 which contains vg.

Let G = (G7* vV Q¥ )* vV Gg* where Qn = 29 — 21 — - - - — 2. We define
homomorphisms f,g: V(G) — V(T) as follows:

{f W=v V(G5)

g(v) = o
{f(z.—)=wk 0<i<n
g(z)=n

fo)=v
{g<v>=v,. cViCn)

We observe that for v € V(GB), d(f(v), 9(v)) = d(f(v), v0) = d(vk,v0) =
k, for v € V(Gr), d(f(v), 9(v)) = d(f(v),vs) 2> d(vk,vs) =n -k, and for
i where 0 < i < n d(f(2:), 9(%)) = d(wk, v) > d(wk, vi) = bi. So d(f,g) =
min{k, bx,n — k} and min{k, bx,n — k} = by since by < min{n,n — k}
as we observed previously. Also, f(V(G)) 2 f(V(GB))U f(V(Gr)) =
V(GB)UV(Gr)=V(T). So o§(T) > by =b.

Next we will show that o§(T) < bx = b. Let f,g: V(H) — V(T) be
homomorphisms where H is a connected graph, f(V(H)) = V(T) and
d(f,9) = 03 (T). We define a homomorphism k: V(T') — V(P,), where P,
is a diameter path in T, in the following manner:

h(vo) = vo
h(v)=v; forve B;wherel<i<n-1
h(vp) = vy,

So, hof, hog: V(H) — V(P,) are homomorphisms such that ho f(V(H)) =
V(P,). Hence there are vertices v,w € V(H) such that ho f(v) = vp and
ho f(w) = v,. Let v = up —u; —-+- —ug = w be a path from v to w in
H. We can assume that ho f(u;) # vo when i # 0 and ho f(u;) # v, when
i#d.

Let ' = max{i € {0,1,...,d}: h o g(w;) = vj», ho f(u;) = vx» and
_’i" > k”}- Let ho g(uj:) = vyn and ho f('uj:) = Ug. Then j" - k"
is either 1 or 2. If 5 — k" = 2 then ho g(uj41) = ho f(uj41) = verya,
9(ujo41) = f(ujrq1) = vinyr and d(f, g) = 0. However, d(f, g) = o(T') and
03(T) 2 1 by Theorem 150 j” —k” = 1. If ho f(ujiy1) = hog(ujt1) = vju
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then f(uj:.,.l) = vjn, g(uj:+1) € Bjn and d(f(ujr+1),g(uj:+1)) < bj" <b. If
ho f(uj+1) = hog(uj 1) = vgr then f(uy11) € Ber, g(ujry1) = v and
d(f(uje41), 9(ujet1)) < bew < b. If ho fujep1) = vju and hog(ujisr) = viw
then f(uj) = ve» and g(uj) = vj» and d(f,g) < 1 < b. Consequently, in
all cases we have seen that d(f, g) < b. So, o§(T) =b.

We saw in Examples 5 and 6 that complete n-partite graphs have sur-
jective semispan either 1 or 2. However for any positive integer n, there is
a bipartite graph G such that o3(G) = n. This follows immediately from

Theorem 2 since a tree is a bipartite graph and obviously there are trees
with arbitrary branch length.

Theorem 3. Let G and H be connected graphs. For each v € V(G) and
w € V(H),
max{g5(G), o5(H)} < 03(G” v H)
< min{og(G) + diam H, o5 (H) + diam G, max{diam G, diam H}}

Proof: Let v € V(G) and w € V(H). Let f,g: V(G") — V(G) be
homomorphisms where G’ is a connected graph, f(V(G')) = V(G), and
d(f,g) = 03(G). There is a vertex z € V(G') such that f(z) = v. Let

f'g: V(G'*Vv H®) = V(G v HY)

be homomorphisms given by
iy — J fw) vweV(G)
flw) = {u u € V(H)
v = (90 wev(©)
= {g(z> ue V(H)

So, f(V(G'*VH"))=V(G*VH™). Note that d(f'(u), ¢'(w)) = d(f(u), 9(u))
when u € V/(G’) and that d(f'(u), ¢'(u)) = d(u, 9(2)) 2 d(v,9(2)) > d(f, 9)
when v € V(H). So it follows that d(f’,g’) = 03(G). Hence, a3(G® V
H*¥) > o§(G). Similarly, we see that o3(G’ V H¥) > o4(H). Hence,
max{o§(G), 0g(H)} < 05(G" Vv H™).

Next we will show that o3(G” V H") < min{o§(G) + diam H,c§(H) +
diam G, max{diam G, diam H}}. Let f,g: V(G’) — V(G* V H¥) be homo-
morphisms where G’ is a connected graph, f(V(G')) = V(G* v H?), and
d(f,g) = o§(G*VH"). We define a homomorphism k: V(G*VH?) — V(G)

by
_Ju uweV(G)
Pu) = {w ue V(H).
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So, ho f and h o g are homomorphisms from V(G’) into V(G) such that
ho f(V(G’)) = V(G). So, d(hog,ho f) < 0§(G). Let u € V(G’) such that
d(hog(u), ho f(u)) < a3(G).

We consider four cases.

Case 1. ho f(u) = f(u) and ho g(u) = g(u).

So, d(g(u), f(u)) < 03(G).

Case 2. ho f(u) =hog(u)=w.

So, f(u), g(u) € V(H) and d(f(u),g(u)) < diam H.

Case 3. hog(u) € V(G) — {w}, ho f(u) =w.

So, d(g(u), f(u)) < d(g(u), w)+d(w, f(u)) = d(hog(u), hof(u))+d(w, f(u)) <
0(G) + diam H.

Case 4. ho f(u) € V(G) — {w}, hog(u) =w.

Similarly, we get that d(g(u), f(u)) < 64(G) + diam H.

In all four cases we see that d(g(u), f(u)) < 03(G)+diam H. So, (G’ V
H"Y) < 0§(G) + diam H. Similarly, we can show that o§(G* vV H¥) <
o5(H) + diamG.

There is a vertex u € V(G’) such that f(u) = w and either g(u) € V(G)
or g(u) € V(H). and so

d(f(u), 9(u)) < max{diam G, diam H}
and
d(f,9) < max{diam G, diam H}.

Hence, we have shown that
05 (G*VH™) < min{oj(G)+diam H, 0§ (H)+diam G, max{diam G, diam H}}

and we have proved Theorem 3.

In Example 8 we give two graphs such that the surjective semispan of
a wedge of the two graphs is equal to the lower bound but not the upper
bound given in Theorem 3. Following that is an example of two graphs for
which the surjective semispan of a wedge of the two graphs is equal to the
upper bound but not the lower bound given in Theorem 3. In Example 10,
two graphs are given such that the lower bound and upper bound for the
surjective semispan of their wedge, as given in Theorem 3, are equal.
Example 8. Let G = I¥o v J¥o v K% and H = Py, where I, J, K, and
Py are the paths up — uy — u2, wo — w1 — w2, Yo —y1 — Y2, and vo — vy
respectively. Then 03(G) = 2 and o3(G¥° V H*) = 2 both by Corollary 1.
So,

max{og(H),05(G)} =2 <
min{og(G) + diam H, o5 (H) + diam G, max{diam H, diam G}}.
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Example 9. Let G = I* v J*“ Vv K% and H = P;, where I, J, K and P;
are the paths up —uy — uy, wp — wy — ws, Yo — y1, and vy — v, respectively.
Then o§(G¥! V H%) = 2 by Corollary 1. So,
max{og(H),03(G)}=1<2=
min{og(G) + diam H, 65 (H) + diam G, max{diam H, diam G}}

Example 10. o3(Cy° vV C2°) = max{[%], [2]}. It follows from Example.
2 that

o5(Cr) = 3] = dism(C),
for any r > 3. Thus
max{o3(Cn), 03(Com)} = max{diam (C,), diam (Cm)} = max{[ 7] , [2]}-
It follows from Theorem 3 that
max{o5(Cr),05(Cm)} < 06(C;° V C°) < max{diam (Cy), diam (Cpn)},
so we get

max{a3(Cn), 5(Cm)} =
03(Cae v C) = max{diam (Cn), diam (Cm)} = max{[ 5] , [ 2]

Theorem 4. Let G be a connected graph. Then there are homomor-
phisms f,g: V(Pn) — V(G) for some m such that f(V(P,)) = V(G) and
d(f,9) = o5(G).

Proof: Let f’,¢’: V(G') — V(G) be homomorphisms such that G’ is a
connected graph, f'(V(G’)) = V(G), and d(f’,¢') = ao(G) Let V(@) =
{a:i}o- Since G’ is connected there is a path in G/, agp = y3 --y1 ce—yh =
a; from ag to a;. Similarly, there are paths a;_; = yk‘ +1 y,“ ng = G

. in G’ from a;_; to a; for i =2,3,...,n where k; = Y\ _inJ
We define a homomorphism h: V(Pm) —V(G') where m =37, n; by
h(v;)=y; 0<j<m
h(vj) =9 ki+1<j<ki+n
We see that f' o h,g’ o h: V(Pp) — V(G) are homomorphisms from
V(P,,) into V(G) such that f/ o h(V(P,)) = f'(V(G")) = V(G) and d(f’ o

h,g'oh) =d(f’,g’) = 03(G). So, f = f'oh and g = g’ o h are the required
homomorphisms and we have proved Theorem 4.

Theorem 5. Let G # Ko be a connected graph. Then d§(G) = o§(G’)
for each subdivision G’ of G if and only if G is a path.
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Proof: If G = P, for some n € Z* then for a subdivision G’ of P,
G’ = P, for some m > n and o§(Py,) = o§(P,) = 1.

Now suppose that G # K is a connected graph which is not a path. So,
G is either a cycle or it has a vertex of order greater than two. In both
cases we can find a subdivision G’ of G such that o§(G’) > 0§ (G).

If G = Cy, for some n then we let G’ be a subdivision of G obtained by
subdividing any two edges of G. Then G’ = Cp4, and o§(G’) = [242] =
(2] +1=03(G) +1.

If G has a vertex v of order greater than two, let vou, v1v and vov be
three edges of G. Suppose that §(G) = n. We obtain a subdivision G’ of
G by replacing each edge v;v Wlth the edges viw}, .y, wh whyo, ..., wh, v},
viwl, wiug, ..., w)_jwi, and wiv for i =0,1,2.

Let G be the graph obtained by removing the vertices w,,+1 and g
from G'. Let D; be the component of G, whlch contains v. Let G5 be the
graph obtained by removing the vertices w, +1 and w} from G'. Let D; be
the component of G5 which contains v.

We now define homomorphisms f,g: V' [(D'l’; V Py v D;"l’] - V(G")
where k = 4n + 4 and P;. is the path wg — wy — - -- — wy, as follows:

{f(") = ul u € V(D)

(u) =vg
('w:) = '02 s
{9(w,) =w) ' e
f(Wnp1) =v3
g(Wnt1) =v
{f(w.)—vz i=n+2...,2n+1
g(w.) = w2n—s+2

flwany2) = ”2
g(wany2) = v}

flw;) =} —(2n+2) i=2n+3,...,3n+2
(ws) = ‘01

f(wsnys) =v

g(w3n+3) = '”1

f(w;) —w4n—k+4 t=3n+4,...,4n+3
g(w;) = vj
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{f (Wan4a) =5

9(wanya) = v}

f(u) =ul ue V(Dy)
g(u) =v;

We see that f(V (D} v Pym)es v D:;%]) = V(G') and d(f,g) = n+1.

Consequently, 03(G’) > n+1 = 0§(G) +1 and we have proved Theorem 5.

4 Husimi Trees

Let T be a Husimi tree which is not a path. Let P, =vp —v; —+--— vy, be
a diameter path in T. We define graphs T; and B; for j =1,2,...,n -1,
a set {w;};ea Where A C {1,2,...,n -1}, a set {b,-}_',-‘;l1 and an integer
b(P,) based on P,.

Let T for j =1,2,...,n—1 be the subgraph of T such that V(T};) = V(T
and E(Tj) = E(T) - ({vj—1w | vj1w € E(By;_,v,)} U {wvjs1 | vj1w €
E(By;;,,)}) where By, .., is the block of T which contains v; and v;4
forj=0,1,...,n—1.

For each j, let B; be the component of T; which contains v;. By the
definition of T} it is clear that v; & V/(B;) for i # j. If V(B;)—{v;} = @ then
let b; = 0. If V(B;)—{v;} # 0let w; € V(B;) such that d(vj, w;) > d(v;, w)
for each w € V(B;) and b; = d(v;,w;) for each j = 1,2,...,n — 1. Let
b(Pa) = max{b;}]—s.

Next we will determine an upper bound for each b; where b; # 0. Since
T is not a path, it is clear that not all of the b;’s are equal to zero. For each
j such that b; # 0, w; has been defined. If d(wj,v;) > d(wj,v;) for i # j
(which means every path from w; to v; when i # j goes through v;) then
d(vo, w;) = j +bj < n and d(va, w;) =n — 3+ b; < n since the diameter of
T is n. Consequently,

* b; < min{j,n — j}.

If there is an ¢ # j such that d(v;, w;) = d(v;,w;) then there is a path
from w; to v; which does not include v; and a path from w; to v; which does
not include v;. The union of these two paths and the edge v;v; contains a
cycle which includes the edge v;v;. Consequently, v; and v; are in the same
block of T'. Since all such blocks in a Husimi tree are complete, d(v;, v;) =1
and |i — j| =1.

If j — i =1 then d(vo, wj) = d(vo,v:) + d(vi,w;) =3 —1+b; <nand
d(vn, w;j) = d(vn,v;) + d(vj,w;) =n—j+b; <n. Sowheni=j -1,

** b; <min{n —j +1,j}.

188



If i — 5 = 1 then d(vo,w;) = d(vo,v;) + d(vj,w;) < j+b; < n and
d(?ln,‘ll)j) = d(’Un,‘UJ'+1) + d(v,-_,.l,w_,-) =n- (‘7 +1)+ bj < n. So when
= j +1,

*x% by < Iﬁin{n—j,j+1}.
Next we will determine upper bounds for certain subsets of {b; };‘;11
**%x Let 1 < j <i <24 Then b; < max{min{j,n — j},min{rn - 5,5 +
1},min{n —j+1,5}} =max{j,j +1,j} =5 + 1 <.
* %k %% Let "—;—1 < i< j <n-—1. Then b; < max{min{j,n—j}, min{n—j,5+
1},min{n—j+1,j}} = max{n—j,n—j,n—j+1} =n—j+1 <n-—i.
Theorem 6. Let T' be a Husimi tree which is not a path. If P, is a
diameter path of T, then o§(T) = b(Py).

Proof: Let P, = vg —v; —- - - — v, be a diameter path of T. Suppose that
b = b(P,) = bi. There are three cases to consider:

Case i) d(wk,v;) > b forj#k
Case ii) d(wk,vk_l) = b
Case iii) d(wk, 'Uk+1) = bk

Case i. d(wy,v;) > by for j #k.

Let H be the connected subgraph of T where E(H) = E(T') — E(Byx) and
Q=20—21—+—2zm Where m = n+bi. Let G = (HY Vv Q*)*~ Vv B}*. Let
Wy = qop — - - - — gt = Uy, be the shortest path in T from wy to v,. Note that
t = by + n — k. We define homomorphisms f,g: V(G) — V(T') as follows:

f=v
{g(v)=wk v

fE)=v o it btn—k
g(z:‘)=(Ii

J@&) =vinb) § yn h<i<me=ndtb
9(z) = vn

{f(”) =Y veV(B
g(”) =Un

So, f(V(G)) = V(T) and d(, g) = min{k,n — k,bi} = bs.
Case ii. b = d(wk, vk) = d(wk,vk_l).
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Let H] be the subgraph of T such that E(H}) = E(T) — {vg—1v | v €
By, _,u.}. Let Hy be the component of H! which contains v. Let Hj be
the subgraph of T' such that E(H;) = E(T) — {vkv | v € By,_,u, }. Let Hy
be the component of Hj which contains vk—;. Let Q = z9—2z; —- - -— 2z, and
G = (H{™ VvV Q*)* Vv Hy"*. We define homomorphisms f,g: V(G) — V(T)
as follows:

{g ((;’)) ::0 v e V(H))

f(z) = wy i <n
{g<z,.)=,,,. O0sis

{5((:)) :: v € V(Hy).

So, f(V(G)) = V(T) and d(f,g) = min{k,n — k + 1, by} = by.
Case iii. bk = d('wk,'uk) = d(wk,vk+1).

The proof is similar to the proof of case (ii).

Consequently, in all three cases we have seen that o(T) > b. Next we
will show that o§(T) = b.

Let f,g: V(H) — V(T) be homomorphisms such that f(V(H)) = V(T).
Define a homomorphism k: V(T) — V(P,), where P, is the diameter path
v9—v —-+-—v,inT by

h(v) = v; when d(v,v;) < d(v,v;) for0<j<mnandj#i
- Vs when d(v, 'Ui) = d(v, 'U,'_l).

Let go—g1—- - -—g, be a path in H such that ko f(g) = vo, ko f(q,) = v,
and hof(g;) & {vo,vn} for1 <i < r—1. Lett = max{i | hof(gi) < hog(g:)}
where we consider P, to be ordered by vy < v; < -+ < . So for ¢ where

t+1<£€<r, hog(qe) < ho f(ge). Let ho f(q:) = vj. There are four cases
to consider:

Case i.

hog(q:) =vjn
and

ko f(g+1) = hog(ges1) =v;
Case ii.

ho g(q:) = Vj+1,

hog(get1) = Vj,
and

ko f(ge+1) = vjt1
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Case iii.

hog(q:) = vj42
and

ko f(ge+1) = ho g(ges1) = vipa
Case iv.

hog(qt) = vj41
and

ko g(ge+1) = ho f(ges1) = vjta.

Case i.

hog(q:) = vj41
and

ho f(ge+1) = hog(ges1) = v;

Since hog(qe) = vj+1 and hog(ge+1) = vj, 9(ge) € V(Bu; ), (5, 9(g))
=1, and g(qe+1) = v5. Since ho f(ge+1) = vj, flge41) € V(B;). Conse-
quently, d(f, g) < d(g(ge+1), f(ge+1)) = d(vj, f(ges1)) < b; < b.

Case ii.

ho g(qt) = Yj+1,

ho g(qH-l) = V5,
and

ko f(ge+1) = vj41

Since ho f(g:) = v; and ko f(ge+1) = vj41, f(ge) = v;. Since ho g(g,) =
Vj+1 and h °9(¢h+1) = V5, g(qt) € V(ij,vj+1) and d(g(%)vvj) = 1. So,
d(f,g) < d(f(a:), 9(q¢)) < d(vj,9(g)) =1 <b.

Case iii.

ho g(Qt) =Vj42
and

ko f(ge+1) = hog(ger1) = vj41

Since h o g(¢) = vj42 and h o g(g41) = vj41, it must be the case
that g(g:) € V(Byyy,u542) a0d g(41) = vj41. Since ko f(g) = v; and
h o f(ge+1) = wjy1, it must be the case that f(g:) = v; and f(ger1) €
V(Bv,-,;j+1)- Consequently, d(f, g) < d(9(ge+1), f(@e+1)) = d(vjs1, F(qe1))

Case iv.

ho g(q:) = vj41
and

hog(git1) = ho fges1) = vj41.

Since h 0 g(ge) = h © g(ge+1) = vj41, We see that g(g;) € V(Bjy1) and
g(q:+1) € V(Bj+1). Since hOf(qt) =5 and h°f(¢1t+1) = Vj4+1, We see that
flge) = vj and f(ge4+1) € V(B”j:”:'+l) - {”j}'
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If f(ge+1) = vjs1 then d(f,9) < d(f(ge+1),9(qe+1)) = d(vj+1,9(ge+1)) <
bjr1 < b. If g(qe+1) = vj41 then d(f,9) < d(f(ge+1), 9(ge+1)) = d(f(ge+1),
v5+1) <1 <b

Next, we need to consider the case where g(g:+1) € V(Bj41) — {vj+1}
and f(ge+1) € V(Buo;pjya) — {vj41,95} Let r* =min{i |t +1 < i <
r and f(g) = vj+1}. If 9(q7) € V(Bj41) then d(f,9) < d(f(qr),9(qr)) =
d(v541,9(at)) < bja1 < b. I 9(g?) & V/(Bj41) then let ¢* = min{i | ¢+1 <
i<r®and Q(Qi) = '"j-i-l}' So, f(q:) € V(Bu,-,'u,-+1) since hOf(q:) 2 hog(q:)
So d(f,g) < d(g(a?), £(a2)) = d(vss1, £(@})) < bjar < b.

Consequently, in all cases we have shown that d(f,g) < b. Hence,
o3(T) = b. Also, since the diameter path we choose in this proof was
arbitrary, we get the following corollary.

Corollary 1. Let T be a Husimi tree which is not a path. Let P, and P),
be two diameter paths of T. Then b(P,) = b(P}).
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