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ABSTRACT. For different properties P of a connected graph G,
we characterize the connected graphs F' (resp. the pairs (X,Y)
of connected graphs) such that G has Property P if G does
not admit F (resp. neither X nor Y) as an induced subgraph.
We consider here the lower and upper independence, domina-
tion and irredundance parameters which are related by the well
known inequalities ir < 7y <1 < o £ T < IR, and the prop-
erties P corresponding to the equality between some of these
parameters.

1 Introduction

Let G = (V, E) be a simple graph of order |V| = n. The subgraph induced
by a subset A of V is denoted by G[A]. The closed neighbor of a vertex z
is N[z] = N(z) U {z} and for AC V, N[A] =) 4 Nlz].

A set D of vertices of G is dominating if every vertex of V — D has
at least one neighbor in D. The minimum cardinality of a dominating
set is denoted by 4(G) and the maximum cardinality of a minimal (under
inclusion) dominating set by I'(G).
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A set S of vertices of G is independent if no two vertices of S are adjacent.
The maximum cardinality of an independent set is denoted by a(G) and
the minimum cardinality of a maximal independent set by i(G).

A vertex z of a set I of vertices of G is irredundant in I if N[z] — N[I —
{z}] # 0, and redundant otherwise. When z is irredundant in I, the vertices
of N[z] — N[I — {z}] are called the I-private neighbors of z. The external
I-private neighbors of z are its I-private neighbors which are contained in
V — I. The set I is irredundant if all its vertices are irredundant. Note
that if I is irredundant and z is a non-isolated vertex of G[I], then all the
I-private neighbors of z are external. Throughout the paper, if there is no
ambiguity, the accented letter =’ will always be used to denote an external
I-private neighbor of the vertex z of an irredundant set I. The maximum
cardinality of an irredundant set is denoted by IR(G) and the minimum
cardinality of a maximal irredundant set by ir(G).

The three notions of domination, independence and irredundance are
closely related. It is clear from the definitions that a set is a maximal
independent set if and only if it is both independent and dominating, and in
this case it is a minimal dominating set. Also, a set is a minimal dominating
set if and only if it is both dominating and irredundant, and in this case
a maximal irredundant set. This leads to the following inequality chain,
valid in any graph G as first observed in [3]:

(+) ir(G) < 1(G) < i(C) < o(€) ST(C) < IR(G).

However, a minimal dominating set is obviously not necessarily indepen-
dent, and a maximal irredundant set is not necessarily dominating. The
following property of the maximal irredundant sets is worth noting and of
common use:

Let I be a maximal irredundant set of G which does not
dominate V. Then, for every vertex » which is not domi-
nated by I, there exists at least one non-isolated vertex y
of G[I] such that u dominates the whole I-private neigh-
borhood of y.

The reason is that, if the conclusion was not true, I U {u} would be
irredundant, in contradiction to the maximality of I.

Given a family F = {Hi, Ha, ..., Hi} of graphs we say that the graph
G is F-free if G contains no induced subgraph isomorphic to any H;, i =
1,2, ..., k. In particular, if F = {F}, we simply say G is F-free.

Our aim is to characterize connected graphs F, or pairs of connected
graphs (X,Y), such that G has a given property P if G is F-free or (X,Y)-
free. We are interested here in properties P of the type “two among the six
previously defined parameters are equal”. Similar problems have already
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been considered for other properties, especially for hamiltonian properties
(see e.g. [2], [5]).

For each property P, the characterization of F (resp. of (X,Y)) contains
two parts. In the direct part we prove that every F-free (resp. (X,Y)-free)
graph has Property P. The direct parts are all contained in Section 2. In
the converse part we prove that if any F-free graph (resp. any (X,Y)-free
graph) has Property P, then the graph F (resp. the pair (X,Y)) belongs
to a previously defined list. Sections 3 to 8 are devoted to the converse
parts of the characterization of F for different properties P. For some of
them, the characterization is complete. For other ones, we have only partial
results. Note that all the properties considered in this paper are true for G
if and only if they are true for each connected component of G.

Let G be a family of graphs, and F a subfamily of G. If F-free implies
Property P, then obviously, G-free implies P. Therefore we look for minimal
families of forbidden subgraphs. In particular, if we know that for any
graph, F-free implies P, then in the research of pairs (X,Y) for which
(X,Y)-free implies P, we suppose that neither of (X,Y) is an induced
subgraph of F. Similarly we suppose that neither of (X,Y) is a subgraph
of the other one.

If the condition G is F-free (resp. (X, Y)-free) implies G satisfies P, then
a fortiori, for any induced subgraph F’ of F (resp. any induced subgraphs
X' of X and Y’ of Y), the condition G is F'-free (resp. G is (X’,Y")-free)
implies G satisfies P. Since after we have determined F, or (X,Y), it is
easy and of little interest to enumerate all the subgraphs F’ of F, or all the
pairs (X’,Y”) with X’ subgraph of X and Y’ subgraph of Y, we try only to
determine the maximal graphs Fy (resp. the maximal pairs (Xo, Yo)) such
that any Fo-free graph (resp. any (Xo, Yp)-free graph) satisfies P.

To establish the converse part of a result related for instance to one
forbidden graph F, we construct several graphs M;, M,,..., M, which do
not satisfy P. These graphs are thus not F-free and F is an induced
subgraph of each M;, that is a subgraph of a maximal common subgraph
Fp of all the M;’s. Moreover if the graphs M; are arbitrarily large, the
following stronger statement is proved: for a given positive integer ng, if
the condition “G is F-free” implies that G has Property P for any graph
G of order at least ng, then F is an induced subgraph of Fy. This is why in
Examples 3.1, 4.1, 5.1, 7.1 and 8.1 given later, we describe infinite families
of graphs H;(k) and L;(k) for which P is not satisfied. The same remark
holds for pairs of forbidden subgraphs.

Figure 1 shows some special small graphs which will be used in the paper.
The notation of some of them is classical such as the Claw C = K3, the
Bull B, the Deer D, or the Wounded W. In an extended claw C; ; k, i, j and
k denote the respective lengths of the branches. So C is an abbreviation for
C1,1,1. When we enumerate the vertices of a claw or of an extended claw,
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we always begin by the center and separate it from the other vertices with
a semi-colon.

g H

C Ciiz Cizz Cias
z, Z B w ) w
Figure 1

2 Direct results

In this section we give some forbidden subgraphs results, some of which
are straightforward or already known. These results are presented here for
convenience and to simplify the proofs of Theorems 3.2, 3.3, 4.2, 4.3, 6.1,
7.2 and 7.3.
Remark 2.1 : Any Ps-free graph satisfies ir=y=i=a=I=1IR.
Proof : If G is Ps-free, it is the disjoint union of q cliques, and ir = y =
i=a=I'=IR=q.
Theorem 2.2. (Allan and Laskar [1]) Any C-free graph satisfies i = +.
Theorem 2.8 (Favaron [6]) : Any (C, D)-free graph satisfies ir = 1.
Theorem 2.4. Any P;-free graph satisfies ir = v and a = IR.
Proof : Let I be a maximal irredundant set of a Pys-free graph G. If
there exists a vertex u which is not dominated by I, then u dominates
the I-private neighborhood of a non-isolated vertex = of G[I]. Then,
Glu,z’,z,y] ~ P, where z’ is a I-private neighbor of z, and y a neigh-
bor of z in I. So I is a dominating set and |I| > +.

If we chose I to be a minimum maximal irredundant set, we find ir > v
and thus ir = v by (*).

Let us now choose I to be a maximum irredundant set such that G[I] has
a minimum number of edges. If a connected component C of G[I] contains
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a vertex z of degree at least two, let z; and z» be two neighbors of z in I,
and let =, z}, =} be respective I-private neighbors of z, z,, z,. If 2z’ ¢ E,
then G[z},z1,z,2'] = P4, and if ziz’ € E, then G[z},z',z, 23] ~ P4. So
the components of G[I] are isomorphic to K; or K. Moreover, if {z,z;}
is a component of G[I], then z} can be adjacent to z’, but to no external
I-private neighbor 3/ of another vertex y of I for otherwise G|z, z},v,y] ~
P4. Theset I' = (I—{z,})U{z}}, of same order as I, is irredundant (z and
z] are isolated in I') and G[I’] has fewer edges than G[I], a contradiction
to the choice of I. Therefore I is independent and thus IR < «, which

implies IR = a by (*). o
Note that the second part of this theorem is also a corollary of Theorem
2.8.

Theorem 2.5.
a) Any (P4, K3 3)-free graph satisfies i = ir.
b) Any (Cy, H)-free graph satisfies i = .

Proof : Let A be a minimum dominating set such that G[A] contains the
minimum number of edges. If A is not independent, let £ and y be two
adjacent vertices of A. Since A is irredundant, the A-private neighborhood
B; = {z},25, -+ ,z}} of = is not empty. The vertex zj does not dominate
B, for otherwise A’ = (A — {z}) U {z} is a minimum dominating set
such that G[A'] contains fewer edges than G[A]. Hence z admits at least
two non-adjacent A-private neighbors z] and 5. Similarly, y admits two
non-adjacent A-private neighbors y; and 5.

a) If G is Py-free, then the four edges z!y{, =y}, zhy!, Thys exist and
Glz, 41,95, y, 7}, x5] =~ Ksz3. If moreover G is Kj3-free, we get a
contradiction, the dominating set A must be independent and thus
i < «. This implies i = o by (*), and ¢ = ir by Theorem 2.4.

b) If Gis H-free, then at least one of the four edges =} v}, =} v3, z5¥}, Thv}
exists, and G contains Cj. So, if G is also Cj-free, the dominating set
A is independent and i = «. o

In the study of the irredundance in Ps-free graphs, we use the following
two lemmas.
Lemma 2.6. Let I be an irredundant set of a Ps-free graph G.

a) If z; and z, are two non isolated vertices of G[I] which are not in the

same connected component of G[I], and if z) and =}, are respective
I-private neighbors of z, and z2, then x| and z are not adjacent.

b) G(I] contains no induced subgraph isomorphic to Py, Z;, Cy, or Cy+e
(see Figure 2).
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P, zZ, Cs Cyte

Figure 2

Proof : a) Let z3 be a neighbor of z; in I. If zz5 € E, then G[zs, 71,7},
zh, z2] ~ Ps, a contradiction.
b) Let z1, z2, z3, 4 be four vertices of I such that Gz, z2, z3, Z4] is one of
the graphs of Figure 2. If Glz1,z2, z3,z4] = P4 or Z;, then z}z5 € E for
otherwise G[z},z;, 2, z3, 73] ~ Ps, and thus Glz,,z}, 25, 73,%4] =~ Ps, 2
contradiction. If G[z1, z2, T3, z4] ~ C4 or Cy+e, then G[zh, x2, 21, T4, T4 #
Ps implies =4z} € E. Now, Gz}, z1,z2,z5, 2] % Ps implies zjz5 € E or
7z € E, say without loss of generality xiz5 € E. Then G[z4, 73, 22, 3, 71)
~ Ps, a contradiction. 0

Lemma 2.7. Let G be a Ps-free graph, and I a maximum irredun-
dant set of G such that G[I] contains the minimum number of edges.
Then, for every connected component C of order p > 2 of G[I], p is
at least 3 and C is isomorphic to the complete graph K,. Moreover, if
C = {z1,%2,...,%p} and z} is any I-private neighbor of z; for 1 <i < p,
then G[CU {z},75,... ,zp}] = Kp x Ka.

Proof : Let C = {z1,%3,... ,2p} be a component of G[I]. If C is a star
Kip-1 centered at z;, then, by Lemma 2.6.a, (I — {z1}) U {z}} is an
irredundant set which contradicts the choice of I. Therefore C is not a star
and thus p > 3. If p = 3, then C =~ K3. If p > 4, then, looking at every set
of four vertices of C, we see by Lemma 2.6.b that C is still isomorphic to K.

Moreover, by Lemma 2.6.a, I’ = (I —-C)U{z}, z5, ...,z,} is an irredundant
set of same order as I. If G[z{,25,... ,z;] # Kp, then I’ contradicts the
choice of 1. Therefore G[C U {z,z5,...,Zp}] = Kp X K. o

With these two lemmas we are prepared to prove the following theorem.
Theorem 2.8. Every (Ps, K3 x K3)-free graph satisfies a = IR.

Proof : Let I be a maximum irredundant set of minimum size in the graph
G. If I is not independent, then by Lemma 2.7, G contains an induced
K3 x K. Therefore I is independent, |I| < «, and thus o(G) = IR(G) by
*)- o
Theorem 2.9. Every (Z;,C1,2,2)-free connected graph G of order n > 18
satisfies a = IR.

Proof : It is known [7] that every connected Z;-free graph is Ks-free
or complete multipartite. Therefore if G contains a triangle then G is
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a complete multipartite graph Ky, n,,...,n, and thus a and IR are both
equal to the largest n;. Hence, we suppose G triangle-free, and we consider
a maximum irredundant set I of minimum size. As usually, if z is a vertex
of I, ' denotes an I-private neighbor of z. Let A(I) be the maximum
degree of the induced subgraph G[I].

If A(I) > 3 then, since G is Ks-free, G[I] contains a claw (z1; 22, z3, T4)
and G[z5, =3, 7] is not a triangle. Suppose without loss of generality z5z5 ¢
E. Then G[zy; z4, 22, T, z3,z5) = C1,2,2, & contradiction. Hence A(I) < 2.
If G[I] contains an induced path z,z,z3x45, then G[zs; x5, 2, T1, Z4, Z5) =
C1,2,2, a contradiction. Therefore every connected component of G[I] is a
cycle of length 4 or 5, a path of length at most 4, or an isolated vertex.

The remainder of the proof will be broken into five cases that depend on
the nature of the connected components C of G[I].

C = P3. Let C be a connected component of G[I] isomorphic to a path
Z1ToT3. Suppose the vertex z4 is adjacent to an I-private neighbor 3’ of
a non-isolated vertex y of I — C, and let z be a neighbor of y in I. Since
G is K3-free and Gzq; 1, 25,9, T3, T3] % C1,22, exactly one of y'z§ and
z5zy is an edge of G. If z3z5 € E, then Glzh;z3,y,y,%2,71] ~ Cia0,
and if y'z3 € E, then Gly'; 23, y, 2, 25, Z2] = C} 2.2. In both cases we get a
contradiction. So (I —C)U {z;, x5, z3} is an irredundant set contradicting
the choice of I. This proves that G[I] has no component isomorphic to P;.

C = P4. Let C be a connected component of G[I] isomorphic to a path
z1Z2z324. The properties G[:Dz;z'z, 21,25_,.’1:3,2:4] 4 Ci,2,2 and Glzs; x5, 24,
x4, %2, %3] # Cy22 imply ziz5 € E and zjz) € E. The vertex z} (resp.
z3) is adjacent to no external I-private neighbor y’ of any vertex y of
I —C for otherwise , since G is Ks-free, Gxh; 2,9, y, z2, 23] ~ C} 2,2 (resp.
Glzs; x4,y y, 23, Z2] = C1 22). If bz ¢ E, (I-C)U{zx1, Th, x5, 24} is an ir-
redundant set contradicting the choice of I. Therefore zoz5 € E. If z} is ad-
jacent to an external I-private neighbor 3’ of a vertex y of I —C, then, since
G is Ks-free and z3y’ ¢ E as previously verified, Glz{;z1,v/,y, 5, z§] =~
C1,2,2, & contradiction. Hence I’ = (I —C)U {z}, z2, 2§, 24} is an irredun-
dant set of order |I| such that G[I’] contains fewer edges than G[I]. This
proves that G[I] has no component isomorphic to P;.

C = Cj. Let C be a connected component of G[I] isomorphic to a cycle
T1ToTIT4T].

Claim: For 1 < i < 4, no vertex z} dominates the I-private neighborhood
of a vertex y of I - C.

Proof of the claim: First we show that the vertex z/ is adjacent to at least
one of z},, and z{_,, where the indices are taken modulo 4 with 1 <i < 4..
Consider without loss of generality ¢ = 1. Since G[z1;z}, z2, 2}, T4, 4] #
C1,2,2, either z] is adjacent to z} or to z, or z} and =/ are adjacent. But in
the latter case, G[z2; 23, 25, 2§, Z1, 7]] # C1,2,2 again implies z}z} € E or
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zizy € E. Suppose now some zj, say zj, is adjacent to some external
I-private neighbor 3’ of a vertex y of I — C. Then, if without loss of
generality x’lzfll € E, and since G is K3-free, G[zi; 3,2, y’: Y, 21, 24] = 01,2,2;
a contradiction. Hence no z| dominates the I-private neighborhood of a
vertexof I —C. ¢

The first consequence of the claim is that each z;, 1 < i < 4, has exactly
one I-private neighbor . For, if for instance z; has two I-private neighbors
z} and z{ (necessarily non-adjacent by the Kj-free condition), then (I —
{z1, z3})U{z}, z{'} is an irredundant set contradicting the choice of I. The
second consequence is that (I —C) U {z}, x5, z3,z}} is an irredundant set
of same order as I, and thus, by the choice of I, G[z}, z5, z5, z4] contains
at least four edges. Since G is K3-free, G|z}, 5, 5, zj] is isomorphic to a
cycle which can be zjzhziz)z] or, without loss of generality, z{zhzjz5x].
In the first case, I’ = (I —C)U {z1, z3, 25, 7, } is an irredundant set of same
order as I such that G[I’] contains fewer edges than G[I], a contradiction.
Therefore G|z}, x5, z§, 23] is the cycle zzhz)z5z].

Let M = Glz1, z2, 3,24, T}, Th, T4, z5). Suppose G contains a vertex
w at distance two from M. This vertex w is not dominated by M and
there exists a vertex v in G — M such that vw € F and, say by symmetry
between {z1,z2, 23,74} and {z}, x5, 25,24}, vz1 € E. Since G is Ks-free,
the condition G[z1; z}, v, w, 24, x}] % C\ 2,2 implies vz} € E. By symmetry
vz} € E and thus Gv, z5, 7] ~ K3, a contradiction. Therefore, since G is
connected, M dominates G. In particular, since a vertex v of I —C cannot
be adjacent to C nor to an I-private neighbor z}, I = C. If a vertex v of
G — M is dominated by C then, since the I-private neighborhoods of the
z;’s have order one, v is adjacent to exactly two vertices of C, either z, and
z3, or z3 and x4, by the K3-free condition. Let S;3 (resp. Sz4) be the set
of the vertices of G — M adjacent to z; and z3 (resp. to z2 and z4). The
sets Si13 and So4 are independent and disjoint. Similarly, the vertices of
G — M which are adjacent to some vertex of {z},z5,z5, z}} belong to two
disjoint independent sets, S14 = {v € G — M;v is adjacent to =i and z}}
and Sp3 = {v € G — M;v is adjacent to z;, and z3}. By the hypothesis
n > 18, at least one of these four independent sets, say S;3, contains at
least two vertices, and Sjg U {z2,z4} is an irredundant set contradicting
the choice of I. Therefore G[I] has no component isomorphic to Cj.

C = Cs. Let C be a connected component of G[I] isomorphic to a cycle
T1Z2T3T4Z5Ty. Since Glza; x5, 1, 2], Z3,24] # Ci,2,2, 125 € E and simi-
larly =iz; 11 € E for every i, 1 < i < 5, where the indices are taken mod-
ulo 5. Since G is Kz-free, Gz, x5, 23, 7}, z§] is the cycle zizhziz,ztx)
and G|z, z2, z3,z4, T5, T}, 5, 25, 24, 25] ~ Kz x Kj. Let us denote this
subgraph by M. Suppose that some vertex w of G is at distance two
from M. The vertex w is not dominated by M, and for some vertex
v ¢ M, vw € E and, say, z;v € E. Since G is Ks-free, the condition
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Glz1; x5, v, w, x2,z3] % Ci2,2 implies vz3 € E. By symmetry, vzy € E
and thus G[v, zs, z4] ~ K3, a contradiction. Therefore no vertex of G is at
distance two from M, and since G is connected, M dominates G.

If some vertex v € G — M is adjacent to, say, z}, then the condition
Glz1; x5, 21, v, 22, 23] # C1,2,2 implies that v is also adjacent to z2, z3 or
z5. In other words, the irredundant set C is dominating. C is thus a maximal
irredundant set of G and I = C. We now prove that the case where G[I] has
a component isomorphic to Cs, and is thus itself isomorphic to Cs, cannot
occur if G is sufficiently large.

Suppose first that z; has two I-private neighbors z} and z{. Then, as
seen previously, both G(z}, =5, z3,z}, z5] and Glz?,z}, z§, z§, %] are iso-
morphic to a cycle Cs. By the K3-free condition, =] and z{ are independent
and thus I’ = {z3,z4, 2}, 27, 23} is an irredundant set (since independent)
contradicting the choice of I. Similarly, each vertex z; has exactly one I-
private neighbor z}, and because of the Kjs-free condition each of the n—10
vertices of G — M has exactly two neighbors in I = C. If 2(n — 10) > 15,
that is n > 18, then at least four vertices of G — M have a common neigh-
bor z; in C. Again by the Ka-free condition, these four vertices and z}
form an independent and thus irredundant set contradicting the choice of
I. Therefore if n > 18, no component of G[I] is isomorphic to Cs.

C = P; or P;. We are now reduced to the case where G[I] consists of
isolated vertices and components isomorphic to Ka. Let {z1,z2}, {y1,%2},
{21, 22} be three such components. If ziy, € E and z{y} € E, then
y1y52 ¢ E by the Ks-free condition and G[z{;v3,¥],v1,%1,22] =~ Ci 2.2,
a contradiction. If ziy] € E and z}z] € E, then y{2] ¢ E by the Ks-free
condition and Giz};z1,9],%1, 2], 21] = Cj 2,2, a contradiction. Therefore
any I-private neighbor of a vertex of a Kz-component is adjacent to an I-
private neighbor of at most one vertex belonging to another K,-component.
If I is not independent, we start with a Kj-component {z1,z2}. If zi
has no neighbor in the I-private neighborhoods of the vertices of the other
Ko-components, we set I' = (I — {z12}) U {z},}. If !, is adjacent to, say,
z5;, we look at an eventual neighbor of 5, in the I-private neighborhoods
of the vertices of the other K,-components, and so forth. Finally we obtain
a path z1) %127, %5, £21Z22T5, - - - T4 Te1 Te2T}, Where z}, has no neighbor in
the I-private neighborhoods of the vertices of the not yet considered Ko-
components of G[I]. The set (I — {Z12,Z22,- - ,Ze2}) U {Z}2, Tho, -+ * , Tho}
is an irredundant set contradicting the choice of I.

Hence I is independent and thus a = IR, which completes the proof of the
theorem. ]
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3 Equality i=«

In this section we characterize those forbidden graphs and pairs of forbidden
subgraphs that imply that v = <. To do this we first describe five infinite
classes of graphs for which - # 7.
Examples 3.1
The graph Hj(k) of order 3k + 12 consists of a path z;z2---Z3ks, four
extra vertices ¥2, ¥3, ¥3k+6, ¥3k+7, and the four pendent edges z530, z3ys,
T3k+6Y3k+6s T3k+7Y3k+7- It satisfies v = k+4 and i = k+5 ({2, T3, s, Zo,
*** , T3k+3, T3k+6, T3k+7} is @ minimum dominating set and {z3, ¥3, x5, 28, 11,
- ++ ,T3k+2, T3k+5, Y3k+6, T3k+7} & Minimum maximal independent set).
The graph H(k) is the complete bipartite graph K3 x. It is Py-free, K3-free,
and satisfies y =2, i = 3.
The graph H3(k) consists of a clique K with vertex set {z;,za, - ,zx},
four extra vertices y;, 21, ¥2, 22, and the four pendent edges z1y1, 121,
Zoy2, T222. It is Ps-free, K 4-free and Cy-free. It satisfies ir = y = 2
and i = 3 ({z;, zo} is a minimum dominating set and a minimum maximal
irredundant set, {z;, %2, 22} is & minimum maximal independent set).
The graph Hy(k) of order 4k + 2 consists of a complete 2k-partite graph,
each vertex class of which has two elements z; and ¢;, 1 < ¢ < 2k; two
adjacent extra vertices z and y; and all the edges between = and the classes
{z,%:}, 1 <1 <k, and between y and the classes {z,¢;}, k+1 < i < 2k.
The graph Hy(k) is Ps-free and its only maximal induced complete bipartite
subgraph is K3 3. It satisfies ¥ = 2 ({z,y} is a minimum dominating set)
and i = 3 ({y, 21, t1} is a minimum maximal independent set).
The graph Hg(k) of order 2k+ 6 consists of a clique {z, ), z3, - - - , Zk, ¥, %1,
-+ ¥k}, four extra vertices u,v, 2, t, the six edges zu, zv, yz, yt, uz, vt,
and all the edges z;v, z;z, yu, ¥t for 1 < i < k. This graph is Cy 1 2-
free and the only maximal induced complete bipartite subgraphs are C
and K32 ~ Cy. It satisfies ¥ < ¢ since {z,y} is a dominating set and no
independent set of order two is maximal.

Theorem 3.2. Let F be a connected graph and ng a given positive integer.
The condition “G is F-free” implies ¥(G) = i(G) for any connected graph
G of order at least ng if and only if F is a subgraph of a claw.

Proof “onmly if? : The graph F is an induced subgraph of all the graphs
H, (k) and Hy(k) since they satisfy « # i. Hence F is a path or a tree of
maximum degree 3. Since Ha(k) is Py-free, F is necessarily a subgraph of
a claw.

“if? : By Theorem 2.2, if G is C-free then 4(G) = i(G). o

Theorem 3.3. Let (X,Y’) be a pair of connected graphs, neither of which
is a subgraph of C or a subgraph of each other, and let ng be a given
positive integer. The condition ‘G is (X,Y)-free” implies v(G) = i(G)
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for any connected graph G of order at least ng if and only if (X,Y) is
maximally one of the two pairs (P, K3 3) and (Cy, H) (cf Figure 1).

Proof “only if” : Suppose without loss of generality that X is a subgraph
of an infinite number of graphs of the family H;. Then X is a tree of
maximum degree at most 3 not contained in a claw, and thus not contained
in Hp. HenceY is a subgraph of H; not contained in C, and so is a complete
bipartite graph K, with r > 4, or K, , with r > 2 and s > 2. Such a
graph Y is not contained in Hgy. Therefore X is a subtree of H3, namely
Py, Cya20r H. If X =~ P4, then Y is a subgraph of Hy(k) which is P;-free.
This gives the first possible maximal pair (P, K33). If X ~ Cy,2 0or H,
then Y is a subgraph of Hs which is C},; 2-free and thus H-free. This gives
the second possible maximal pair (Cy, H).

“if? : By Theorem 2.5, if G is (Py, K3 3)-free or (Cy4, H)-free, then it satisfies
¥=1i. (]

4 Equality i =ir

In this section we characterize those forbidden graphs and pairs of forbidden
subgraphs that imply that i = ir. To do this we describe two infinite
families of graphs for which « # ir, and thus i # ir. These two classes
generalize the deer D.

Examples 4.1

The graph Hg(k) of order 6k + 7 consists of a triangle zz;y; with two pen-
dent paths ;73 - -zer13 and y1y2y3 (note that Hg(0) ~ D). The graph
Hg(k) is K4-free and Cy-free. It satisfies i = v = 2k+3 ({2, y, T2, z5,Zs, - - -
» Tek+2} is both a minimum dominating set and a minimum maximal inde-
pendent set) and ir < 2k + 2 ({1, y1,%6,%%, - , Tk, Tek+1} is & maximal
irredundant set).

The graph Hr(k) of order k + 4 consists of a clique K} with vertex set
{z1,Z2,--,zx}, and two pendent paths riy;z; and zoypzp (note that
Hy(3) ~ D). The graph Hy(k) is C-free. It satisfies i = v = 3 and
ir = 2 ({z1,21,y2} is 2 minimum dominating and a minimum maximal
independent set, and {z;,z2} is 2 minimum maximal irredundant set).
Theorem 4.2. Let F be a connected graph and ng a given positive integer.
The condition “G is F-free” implies ir(G) = i(G) for any connected graph
G of order at least ng if and only if F is a subgraph of Ps.

Proof “omly if? : If ir = i then ir = v and by Theorem 3.2, F is a
subgraph of a claw. But Hg(k) satisfies ir # ¢ and is C-free. So F is a
subgraph of Ps.

2. “if” : By Theorem 2.1, if G is Ps-free then ir = . 0O
Theorem 4.3. Let ng be a given positive integer and (X,Y) a pair of
connected graphs, neither of which is a subgraph of P; or a subgraph of
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each other. The condition “G is (X,Y)-free” implies ir(G) = i(G) for any
connected graph G of order at least ng if and only if (X,Y) is maximally
one of the two pairs (P,, K3 3) and (C, D).

Proof “only if” : If ir = i, then 4 = ¢ and by Theorem 3.3, either X or
Y is a claw, or (X,Y) is a subgraph of either (P4, K33) or (Cys, H). The
pair (Py, K3 3) is a first possible maximal pair. For the pair (Cy, H), we
remark that the only maximal connected subgraph of H or of C; which is
contained in Hr(k) is P4, a subgraph of H but not of Cy. So a pair coming
from (Cjy, H) is necessarily contained in (Cj, P4), which is itself already
obtained by the maximal pair (Py, K3,3). Hence the pair (Cy, H) gives no
new possibility for the property ir = i. Finally if X ~ C, then Y is a
subgraph common to Hg(k) and H(k), which are C-free, and so Y is a
subgraph of D. This gives (C, D) as a second possible pair.

“if” : By Theorems 2.3 and 2.5, any (C, D)-free or (P4, K3 3)-free graph
satisfies ¢ = ir. @]

5 Equality y=ir
In this section, we do not completely characterize the pairs of graphs, the
exclusion of which implies ir = 4. However, we give some partial results.
In addition to Hs and H~ (cf Examples 4.1), we describe six other infinite
families of graphs for which vy # ir.
Examples 5.1
The graph Hg(k) consists of a cycle z;z2---zx plus k — 1 pendent paths
Z¥i%, 1 <1 < k—1. Its girth is k which can be made arbitrarily large. It
satisfies ir < 4, since {z1, Z3,--- ,Zx—1} is a maximal irredundant set, and
{ylr Y2y s Yk—1, zk} a minimum domina.ting set.
The graph Hyg(k) is obtained from H7(k) by adding the edge y; 2.
The graph Hyo(k) is obtained from Hg(k) by replacing the clique {z;,z3,-- -,
zx} by a complete bipartite graph Kax—o of vertex classes {z;,z2} and
{z3,z4,--- ,zx}, and adding the edge z;x2.
The graph Hy, (k) is obtained from Hy(k) by adding a new vertex y adjacent
to 1 and 9, and the edge 2z; 2.

The graphs Hy, Hip and Hj; are Ps-free. Just as for H7(k), {31,22} is
a maximal irredundant set and {y, 2,1} a minimum dominating set of
these three graphs. So Hy, Hyo and Hy; satisfy ir < «.
The graph Hj2(k), k > 4, consists of a complete bipartite graph Ki i of
vertex classes {z1,z2,---,zx} and {t1,%2,-- , ¢k}, plus two pendent paths
T1y121 and zayz2;.
The graph H3(k) is obtained from H;3(k) by adding the edge y;2.

In Hya(k) and H,3(k), {z1,z2,t1} is a maximal irredundant set and
{v1,¥2, 1, ¢1} a minimum dominating set. So H;» and H;3 satisfy ir < .

204



They are both Kj-free.

Theorem 5.2. Let F be a connected graph and ng a given positive integer.
If the condition “G is F-free” implies ir(G) = ~(G) for any connected graph
G of order at least ng, then F is a subgraph of Ps.

Proof : The graph F must be a subgraph of Hg(k) for any k, and thus a
tree. Also, F' must be a subgraph of H7(k), and thus a path P, with ! < 6.
Since Hy and Hjg are Ps-free, F ~ P, with I < 5. (m}
The direct Theorem 2.4 only implies that if G is Py-free, then ir = 1.
However, we think that the following is true.
Conjecture 5.3. Every sufficiently large Ps-free graph satisfies ir = +.
If the conjecture is true, it is normal in the study of the forbidden pairs
(X,Y) that imply ir = - to suppose X and Y not included in Ps. We do
this in the next result.

Theorem 5.4. Let (X,Y) be a pair of connected graphs, neither of which
is a subgraph of Ps or a subgraph of each other, and let ng be a given
positive integer. If the condition “G is (X,Y)-free” implies ir(G) = 7(G)
for any connected graph G of order at least ng, then (X,Y) is maximally
one of the two pairs (Ps, W’) and (Ci,2,3, D) (cf Figure 1).

Proof : Suppose without loss of generality X is an induced subgraph of an
infinite number of graphs of the family Hy, and so X is isomorphic to Ps
or contains a triangle.

If X ~ P, then Y is a subgraph of Hyg(k), Hio(k) and Hi;(k) which are
Pg-free. Thus Y is a subgraph of W’, and so we get the first maximal pair
(Ps, W').

Suppose now X contains a triangle. Then Y is a subgraph of Hja(k),
Hy3(k) and Hg(k). Since the girth of Hg(k) is arbitrarily large, Y is a tree
of maximum degree at most 3. The maximal subtrees of maximum degree
at most 3 of H12(k) have at most one vertex of degree 3 and are isomorphic
to Cy,3,3. The maximal subtrees of Hy3(k) with at most one degree 3 vertex
are Cy 23 and Cj,1,4. Hence Y is a subtree of C) 2 3. If X contains a clique
K,, then Y is also a subgraph of Hg(k) and thus is a path, and of Hqo(k)
and thus is a subgraph of P, in contradiction to the hypothesis. Therefore
X is a subgraph of H(k) containing K3 but not K, and so is a subgraph,
different from a path, of D. We thus obtain the second possible maximal
pair (D, C1,2'3).

For this last pair, we can specify that if X ~ Z; or Z;, then Y is a
subgraph of Cj 23, but if X ~ D, W or B, then X is not contained in Hy
and Hjo and thus Y is a subgraph of C) 3 5. m]

Note: Since this paper was written, Puech has proved one of the direct
counterpart of Theorem 5.4, and as a corollary, Conjecture 5.3:
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Theorem 5.5. (Puech [8]) Every (P, W’)-free graph G, and in particular
every Ps-free graph, satisfies ir(G) = 4(G).

This new theorem allows us to restate Theorem 5.2 as:

Theorem 5.8. Let F be a connected graph and ng a given positive integer.
The condition “G is F-free” implies ir(G) = «(G) for any connected graph
G of order at least ng if and only if F is a subgraph of Ps.

6 Equality i=a

In this section we characterize those forbidden graphs and pairs of forbidden
subgraphs that imply that { = c.

Theorem 6.1. Let F be a connected graph and ng a given positive integer.
The condition “G is F-free” implies i(G) = a(G) for any connected graph
G of order at least ng if and only if F is a subgraph of Ps.

Proof “omly if? : Since both the cycle Cgx and the star K ; satisfy
i # a, F is a subgraph of Cs; and K x for any k, and thus a subgraph of
Ps.

“if* : By Remark 2.1, if G is Ps-free then i = a. o

Theorem 6.2. The positive integer ng being given, there is no pair (X,Y)
of connected graphs, neither of which is a subgraph of P; or a subgraph of
each other, such that the condition “G is (X, Y)-free” implies «(G) = a(G)
for any connected graph of order at least ng.

Proof : Suppose that such a pair exists and that X is a subgraph of Cg
for an infinite number of values of k. Thus, X ~ P, for some [ > 4. Then
Y is a subgraph of K, and so Y =~ K, with r > 3. But the graph
consisting of a clique K plus one pendent edge satisfies ¢ =1, o = 2, and
contains neither X nor Y, a contradiction. (]

Note that the inequalities (*) and the direct Remark 2.1 implies that
Theorems 6.1 and 6.2 remain valid for any equality A = u, where A €
{ir,v,1} and p € {a, T, IR}.

7 Equalities a=T and a=IR

In this section we characterize those forbidden graphs and pairs of forbidden
subgraphs that imply that o = T and a = IR. For each of the following
ten infinite families of graphs, « is strictly less than I'.

Examples 7.1

For a given positive integer k, the graph L (k) consists of a cycle z1z2 . .. T8k 1
of order 8k and the two chords zz4x+1 and zoxZex.

The graph La(k) consists of a cycle z1z2 . . . zgxx1 of order 8k and the four
chords T1Tak+1; T1T4k+2y T2T4k+1, T2T4k+-2- It is C-free and C4-free.
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The graph L3(k) consists of a cycle z1z2...zg;z; of order 8k and the 4k
chords z;z4x4; for 1 < i < 4k. It is Kj-free.

For 1 < ¢ < 3, L;(k) satisfies ' = 4k ({z,, 22, =5, T¢, T9, T10, - - - » T8K—3,
Tgx—2} is a minimal dominating set) and a = 4k—1 ({z;, z3, x5, ... , Tak—1,
Zak+2) Tak+4, - - - »T8k—2} is & maximum independent set).

The graph L4(k) consists of a cycle z1z5 .. .zgz; of order 8 with the three
chords z,x5, 276 and z4xg, an independent set S of k vertices, and an
extra vertex v joined to z2, x5, zg and to every vertex of S. The graph
L4(k) is Pe-free and Ks-free. It satisfies @ = k+ 3 (SU {z1, 23,76} is a
maximum independent set) and I' = k+4 (SU{z,, z7, x5, z¢ } is a maximum
minimal dominating set).

The graph Lg(k) consists of a clique K}, a triangle z,zoz3 disjoint from
Ki, and a perfect matching between the triangle z,zox3 and a triangle
y1y2ys of the clique. The graph Lg(k) is Ps-free and C-free. It satisfies
a =2 ({z1, 2} is a maximum independent set) and I' = 3 ({1, 52,3} is a
maximum minimal dominating set).

The graph Lg(k) consists of a clique K, a triangle z,zox3 disjoint from K,
a perfect matching between the triangle 1 x2z3 and a triangle y12y3 of the
clique, and all the edges between the triangle z,zoz3 and K — {y1, %2, y3}.
The graph Lg(k) is Ps-free and C-free. It satisfies a =2 and " = 3 for the
same reasons as for Ls(k).

The graph L+(k) consists of k graphs isomorphic to K, with vertex sets
{wi,t:}, 1 < i < Kk, one graph isomorphic to K3 x K, with vertex set
{z1, z2, 23,1, ¥2, ¥3}, and an extra vertex v joined to each vertex w; and ¢;
and to zi, Z2, y1, ¥s. The graph L(k) is Ps-free and K;-free. It satisfies
a=k+2 ({z1,y2, w1,ws, - ,w;} is independent and there exists a vertex
covering with k 42 cliques) and I > k+ 3 ({z1, z2, 23, w1, w2, - ,wi} is a
minimal dominating set).

The graph Lg(k) consists of a Petersen graph P, a clique K}, and all the
edges between the clique and P. The graph Lg(k) is Ps-free and Cj-free. It
satisfies @ = 4 (a maximum independent set of P is a maximum independent
set of Lg(k)) and I = 5 (a maximum minimal dominating set of P is a
maximum minimal dominating set of Lg(k)).

The graph Lg(k) consists of a Petersen graph of vertices z1, z2, T3, T4, Z5,91,
Y2, Y3, Y4, ¥s (Where the edges z;3;, 1 < i < 5, form a perfect matching of P),
two independent sets A = {a1,a2,...,ax} and B = {by,bs,... ,bi}, the k
edges a;b; of a perfect matching between A and B, and all the edges between
A and a maximum independent set{zy, za, y4, y5} of P. The graph Lo(k) is
K3-free. It satisfies @ = k+4 (BU{z1, z3, ¥4, ¥s} is a maximum independent
set) and I' > k+ 5 (BU {x;, Z2, Z3, T4, T5} is a minimal dominating set).
The graph L1o(k) consists of two disjoint graphs K3 x K3, the first labeled
{‘clv T2, Z3,Y1, Y2, y3}) and the second labeled {zlv 29, 23,11, L2, t3}t where
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ziys € E and zt; € E for 1 < i < 3; k triangles ujviw;, wivows,
WoUaWs, . .. , Wk-1Vxwy; and the four edges uyz;, wiy1, v121, vit:. The
graph Lyo(k) is C-free and Ky-free. It satisfies a = k+4 since {v1,vo,... , v,
Z2,¥3, 22, t3} is a maximum independent set, and I > k+5 since {v2,v3,...,
Uk, T1, T2, T3, 21, 22,23} is a minimal dominating set.

Theorem 7.2. Let F be a connected graph and ng a given positive integer.
The condition “G is F-free” implies a(G) = I'(G) (resp. a(G) = IR(G))
for any connected graph G of order at least ng if and only if F is a subgraph
of P4.

Proof “onmly if” : Since a # T for the graphs L; (k) and Ls(k), the graph
F is a common induced subgraph of all the graphs of these two families. The
only subgraphs common to all the L,(k) are paths, subdivisions of claws,
or trees of maximum degree 3 with exactly two degree 3 vertices that are
adjacent. But since Ls(k) is C-free and Ps-free, the largest possible F is
Py.

“if” : By Theorem 2.4, if G is Py-free, then a(G) = I'(G) = IR(G). D

Theorem 7.8. Let (X,Y") be a pair of connected graphs, neither of which
is a subgraph of P, or a subgraph of each other and let ng be a given
positive integer greater than 17. The condition “G is (X,Y)-free” implies
a(G) =T(G) (resp. a(G) = IR(G)) for any connected graph G of order at
least ng if and only if (X,Y’) is maximally one of the two pairs (Ps, K3 x K5)
and (Z,,C1,2,2) (cf Figure 1).

Proof “only if” : Suppose without loss of generality that X is an induced
subgraph of an infinite number of graphs of the family L;. The different
possibilities for X are given in the previous proof. In particular, X is a tree
of maximum degree at most 3.

If X ~ P;, then Y is an induced subgraph of Lg(k), Le¢(k) and L,(k)
which are Ps-free. The only maximal connected subgraph common to the
graphs of these three families is K3 x K2. So the only possible maximal
pa.ir (P5t Y) is (PSy K3 X K2)'

If X ~ P, with I > 6, then Y is still a subgraph of Ls(k), Le(k), L7(k),
and also of L4(k) and Lg(k) which are Pg-free. Hence Y is a subgraph
of K3 x Ko, L4(k) and Ls(k). But L4(k) is Ks-free and Lg(k) is Cy-free.
Therefore the only possibility for Y is P4, which is excluded.

If X is a tree of maximum degree 3, then Y is a subgraph of Ly(k), Ls(k),
Lg(k) and Ljo(k) which are C-free. Hence, Y is a subgraph of K3 x K3,
La(k), Lio(k), or of Ky, La(k), L1o(k) with p > 4. But Lig(k) is Ky-free
and La(k) is Cy-free. Therefore Y is a subgraph of Z,, different from a
path, that is Y ~ K3 or Z;. Now, since L3(k) and Lg(k) are Ks-free, X
is an induced subgraph of La(k) and Lg(k). No induced subtree of Ls(k)
contains two adjacent degree 3 vertices, so X is a subdivision of a claw.
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Moreover, each induced subtree of Lg(k) which is a subdivision of a claw
has at least one branch of length 1. Therefore, X ~ C;,, with r and
8 > 1. The only maximal subtree of Lg(k) of this kind is C} 2 2. This gives
(Z,,C1,2,2) for the second possible maximal forbidden pair.

“if” : By Theorems 2.8 and 2.9, every (Ps, K3 x K3) or (Z;,C)2,2)-free
graph of ordeér at least 18 satifies a =T = IR. |

8 EqualityI'=1IR

Here we only study the families of one graph, the exclusion of which implies
I’ = IR. First we describe two infinite classes of graphs for which I" # IR.
Examples 8.1

The graph L;;(k) consists of two disjoint cliques K, k > 3, with ver-
tex sets {z1,z2,-- ,zx} and {§1,&2, - - , &k}, joined by a perfect matching
{zi&;1 < i < k}, and two non-adjacent extra vertices, = joined to ev-
ery vertex x;, and £ joined to every vertex &. This graph is Ps-free and
C-free. Its only maximal induced subtree is P;, and the only induced cy-
cles have length 3 or 4. The graph L;;(k) satisfies IR = kand " = 2
({z1,z2,--- ,zx} is a maximum irredundant set and {z1,£;} a maximum
minimal dominating set).

Just as for Ly;(k), the vertex set of the graph Lia(k), where k is a prime
integer greater than 5, consists of two sets A = {z1,z3,--- ,zx} and B =
{&1,&2,- -+ , &}, and two non-adjacent extra vertices, z joined to every ver-
tex z;, and £ joined to every vertex §. The set A induces the cycle C =
Z1Z2 - - - Zxx1 and the set B induces the cycle C! = £1€3&5 - - - Ex€2bs - - - €161
Finally, the sets A and B are joined by the perfect matching {z:£;1 <i <
k}. This graph is Cs-free and K,-free.

Proposition 8.2. The graph La(k) satisfies T" < IR.

Proof : The set A is irredundant, so IR > k. We will prove that every
minimal dominating set D has less than k vertices (recall that every minimal
dominating set is irredundant).

If D contains z and &, then [D| = 2, since {z, £} is a minimal dominating
set. So wesuppose that at least z or £ isnot in D, and we denote | DNA| = a,
|DNB|=5.

If D contains z and not £, then |D| = a+ b+ 1. In this case, b # 0 since
£ must be dominated, a < k — 3 for otherwise z is redundant in D, and
every D-private neighbor of every vertex of DN A isin B. If b = 1, then
|D| < (k—3)+2=k—1. If b > 1, every D-private neighbor of every vertex
of DN B is also in B, and thus a + 2b < k. Hence 2(a + b) < 2k — 3, and
|D| < k. Similarly, by symmetry if D contains £ and not z, then |D| < k.

Suppose now that z ¢ D, £ ¢ D and |D| = k. This implies a # 0 since B
does not dominate z, and similarly 4 # 0. If a =1, say DN A = {x;}, and
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b = k—1, then the k—1 vertices of DN B have their D-private neighbors in
A, which is impossible since these D-private neighbors cannot be z;, x5 nor
k. So a > 2 and, by symmetry, b > 2. Let Y be the set of the non-isolated
vertices of D, Z = D —Y the set of the isolated vertices of D, Y’ the set of
the D-private neighbors of the vertices of Y, and T = (AU B) — (DU Y").
By the definition of Y, there is no edge between Z and Y”, and |Y’] > |Y].
Moreover, [Y U Z| = |Y’ UT| = k, and thus |T| < |Z|. The graph induced
by AU B is 3-regular, so the number 3|Z| of edges between Z and T is at
most 3|T|. Hence |T'| = |Z| and there is no edge between Y and T. By the
connectedness of G[AU B], Z =0, |Y| = |Y’| = k, and the edges between
Y and Y’ form a perfect matching of Y UY’. Therefore, each of Y and
Y’ induces a 2-regular subgraph, respectively called Red Graph for Y and
Blue Graph for Y.

Each B-vertex has exactly two B-neighbors and one R-neighbor, and each
R-vertex has exactly two R-neighbors and one B-neighbor. Since a # 0 and
b # 0, the Red Graph uses at least one edge x;£;, say z1£;. Starting from
x; and &, we color the vertices of G using the degree conditions on the red
graph and the blue graph. Suppose first x1, &1, =k, & are R. We have to
give the color B to zy, &2, 73, T4, £4, k-1, Th—1, Tk—2, £k—3, Tk—3, and the
color R to &k, &k, &, Zs, Ze, &6, ... We can continue the coloring without
any ambiguity. We find in this way the same pattern of length five for
the coloration of {zx_1,z1, 2, z3, %4, Ek-1, &1, €2, &3, €4}, Tepeated left and
right, and thus k must be divisible by 5. This situation is impossible since
we chose k prime greater than 5. Similarly, if we start with x;, &, z3, &3
colored by R, we find the same pattern, and a simple exchange of the colors
R and B leads to the same contradiction.

Therefore |D| < k and I'(L12(k)) < IR(L12(k)). u}

In the following theorem, 2K3 + e denotes the graph consisting of two
vertex disjoint triangles joined by one edge.

Theorem 8.3. Let F be a connected graph and ng a given positive integer.
If the condition “G is F-free” implies I'(G) = IR(G) for any connected
graph G of order at least ng, then F is a subgraph of 2K + e.

Proof : For any k, the graph F is an induced subgraph of L;;(k) and
Ly2(k). Hence, if F is a tree, it is contained in P;. If not, the only possible
cycles are disjoint triangles, and F is a subgraph of 2K3 + e.

By Theorem 2.4, we know that if G is Ps-free, then I' = IR (and even
a = IR). We think that P4 may be the only possible graph F satisfying
the conditions of Theorem 8.3. More precisely, does the triangle-free graph
Ly3(k), similar to Ly2(k) with the only difference being that in Ly3(k), z is
adjacent to zi, z3, Z5, ..., Tk-2, and 5 to &11 §5a 697 513’"'7 €2i+1v"1 where
the subscripts are taken modulo k, satisfy I' < IR? More generally, the
construction of any connected triangle-free arbitrarily large graph such that

210



I’ < IR, would be interesting.

Note: Recently, Cockayne and Mynhardt [4] succeeded to construct an
infinite class L14(k) of triangle-free graphs for which I' < IR (moreover the
difference IR —T can be arbitrarily large). Hence the graph F of Theorem
8.3 also belongs to Li4(k) and is triangle-free. Thanks to their result, we
can thus complete the study of the property I' = IR in the case of one
forbidden subgraph and get

Theorem 8.4. Let F be a connected graph and ng a given positive integer.
The condition “G is F-free” implies I'(G) = IR(G) for any connected graph
G of order at least ng if and only if F is a subgraph of Pj.

The following table summarizes the results of the paper. It needs two
comments:

1. In the case corresponding to pairs of forbidden subgraphs and Prop-
erty ir = +, the result is only partial since we do not know if in a
(C1,2,33 D)'free graph, ir =1.

2. In two cases, the references indicate that we used the corresponding

results to complete our study.
Froperty " iz i=ir y=ir li=a| 25 |[r=1r
One
forbidden Py Py
Sl.lbgraph K 1,3 P3 B Py
F (P [eM)
necessarily forn > 18

Pairs of
forbidden (P«hoff&s) (P4n°]1f3.3) (PG. w') 0 (P5| K3 x Kz)
subgraphs or or

xy) || #G | ¥1sD) | 613,0) (Cr22,%1)
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