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ABSTRACT. We introduce a generalisation of the concept of a
complete mapping of a group which we call a quasi-complete
mapping and which leads us to a generalised form of orthogo-
nality in latin squares. In particular, the existence of a quasi-
complete mapping of a group is shown to be sufficient for the
existence of a pair of latin squares such that if they are superim-
posed so as to form an array of unordered pairs each unordered
pair of distinct elements occurs exactly twice. We call such a
pair of latin squares quasi-orthogonal and prove that an abelian
group possesses a quasi-complete mapping if and only if it is not
of the form Zym+2 ® G, |G| odd. In developing the theory of
quasi-complete mappings we show that the well known concept
of a quasi-complete latin square arises quite naturally in this
setting. We end the paper by giving a sufficient condition for
the existence of a pair of quasi-orthogonal latin squares which
are also quasi-row-complete.

1 Introduction and Basic Definitions

A latin square of order n is an n x n array defined on a symbol set S of size
n such that each member of S occurs exactly once in each row and once
in each column. A permutation @ of the elements of a finite group (G, -)
is said to be a complete mapping if the mapping ¢ : g — g- 8(g) is again
a permutation on G. A latin square of order n is called row complete if
each of the n(n — 1) ordered pairs of distinct symbols occurs in adjacent
positions in exactly one row of the latin square. Two latin squares are said
to be orthogonal if, when they are superimposed so as to form an array of
ordered pairs A, each of the n? possible ordered pairs occurs in A exactly
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once. In this paper we introduce a generalisation of orthogonality in latin
squares which we call quasi-orthogonality.

Definition 1.1 Two latin squares of order n, each defined on the same
alphabet, are quasi-orthogonal if, when they are superimposed so as to form
an array of unordered pairs A, each unordered pair of the form {z,z} occurs
in A ezactly once and each unordered pair of distinct elements {z,y} occurs
in A exactly twice.

In view of the non-existence of a pair of orthogonal latin squares of or-
der 6, the following pair of quasi-orthogonal latin squares of order 6 is of
interest.

1 23 45 6 1 3 426 5
216 5 4 3 2 413656
3512 6 4 3 25 6 41
4 6 2135 4165 2 3
5 3 4 6 21 56 3 41 2
6 4 56 3 1 2 6 521 3 4

It is well known that a group based latin square has an orthogonal mate if
and only if the group possesses a complete mapping (Mann [11]). Similarly,
a group based latin square has a quasi-orthogonal mate if and only if the
group possesses a quasi-complete mapping (to be defined below). A group
which has no complete mappings may nonetheless possess quasi-complete
mappings. (The smallest group for which this is the case is the cyclic group
of order 4, as we shall show.) There exist statistical experiments for which
a pair of quasi-orthogonal latin squares may serve as well as an orthogonal
pair so this fact is potentially useful.

An analogous situation arises as between row complete and quasi-row
complete latin squares (see Freeman [5] and Bailey [3]). In this paper
we show that, for group based latin squares, the analogy is no accident by
developing the concept of a quasi-near complete mapping as a generalisation
of a near-complete mapping (of which a sequencing is a particular case) and
hence producing a unification of earlier results.

In the next section we will present a method for constructing sets of
MQOLS by generalising the concept of a complete mapping of the elements

of a group. Before we do this we define a concept which will be of use to
us.

Definition 1.2 Let (G, -) be a finite group of order n with identity element
e. A list of elements a,,as,...,a, of G is a quasi-ordering of G if and
only if:

(i) the list contains ezactly one occurrence of each element = of G such
that 22 = ¢;
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(i) for every element y of G such that y? # e, the list contains two
occurrences of y and none of y~!, or ezactly one occurrence of each of y
and y~1, or exactly two occurrences of y~! and none of y.

In this paper we will continue to denote the identity element of a group
by e except where the group operation is 4 in which case 0 will be used.

2 Quasi-Complete Mappings

Definition 2.1 Let (G,-) be a finite group of ordern, G = {g1,92... ,9n}-
A mapping 0 : G — G is quasi-complete if the mapping ¢ defined by ¢(z) =
z0(z) is a permutation on G and 0 is such that 8(g1),0(g2),...,0(gn) s a
quasi-ordering of G.

Note that if, in the above definition, @ is a quasi-complete mapping of G
in which @ is a permutation on G, then 0 is a complete mapping as defined
by Mann [11] and ¢ is an orthomorphism as defined by Johnson, Dulmage
and Mendelsohn [10]. It therefore seems natural to call the mapping ¢ in
Definition 2.1 a quasi-orthomorphism of G.

Example: a quasi-complete mapping 6 of the elements of (Z4,+) together
with its corresponding quasi-orthomorphism ¢ are

01 2 3 012 3
0—(0 11 2)¢_(0 2 3 1)
We now consider mappings which give rise to group based, quasi-orthogonal
latin squares.

Definition 2.2 Let (G,-) be a finite group and let p and q be permutations
on G, then p and g are quasi-orthogonal permutations ifp(g1)~q(g1), p(g2) !
a(g2),- - - ,P(9n)""a(gn) is @ quasi-ordering of G.

In order to demonstrate that two latin squares L, Lo are quasi-orthogonal
it will sometimes be convenient to superimpose L; and Ls and to regard
the resulting array as an array of ordered pairs A. It will then be the case
that L, and L, are quasi-orthogonal if and only if each ordered pair of the
form (a, a) occurs in A exactly once and for each pair of distinct elements
a, b we have that (e, b) occurs twice in A with (b, ) absent, or (b, a) occurs
twice in A with (a, b) absent, or each of (a,b) and (b, a) occur in A exactly
once.

Theorem 2.3 Let (G, ) be a finite group and let ¢, and ¢ be permutations
on G. Let L be the Cayley table of (G,-) and Lg,,Ly, be obtained by

permuting the columns of L according to ¢1 and ¢o respectively. Then, if
¢1 and @2 are quasi-orthogonal, Ly, and Ly, are quasi-orthogonal.
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Proof: Let A be the array of ordered pairs obtained by superimpos-
ing Ly, and Lg,. Then the (,j)th cell of A contains the ordered pair
(9i#1(g;), 9ip2(g;)). If we define the difference of an ordered pair (z,y) to
be 2™y, then the cells in the jth column of A contain all of the ordered
pairs whose difference is ¢1(g;) ™ ¢2(g;)-

Now consider a particular ordered pair (a,b), where a~1b = d, there are
two possibilities:

(i) If &2 = e, then, by the quasi-orthogonality of ¢; and ¢, there exists
a unique element gx in G such that ¢;(gx) " ¢2(gx) = d. Thus the kth
column of A contains all ordered pairs whose difference is d, these include
(a,b) and (b, a) (which are distinct if d # e).

(ii) If d® # e, then there exist exactly two distinct elements g;, g, of
G such that ¢1(g1) " 1¢2(g1) = d or d~! and ¢1(gm) '¢2(gm) = d or d~1.
If ¢1(g91)"¢2(9) = d, then the ordered pair (a,b) occurs once in the Ith
column of A. If ¢1(g:)"'¢2(g1) = d™!, then the ordered pair (b,a) occurs
once in the Ith column of A. A similar argument may be applied to the mth
column of A. Hence we must have one of the following four possibilities:

(a) ¢1(91) " ¢2(91) = d; $1(9m) " b2(9m) = d,

(b) ¢1(91)~*¢2(q1) = d; $1(9m) " p2(9m) = d 72,

(c) d1(g1) " b2(ar) = d~; $1(9m) ' B2(9m) = d,

(d) d1(a1) " d2(a1) = @75 61(9m) ' $2(gm) = d72.

In cases (b) and (c) we have that each of the ordered pairs (a, b), (b, a)
occurs in A exactly once. In (a) we have that the ordered pair (a,b) occurs
twice in A whilst (b, a) is absent, whereas in (d) we have that (b, a) occurs
twice in A whilst (a, b) is absent.

Parts (i) and (ii) imply that Ly, and Ly, are quasi-orthogonal.

Corollary 2.4 If (G, -) is a finite group which possesses a quasi-complete
mapping 0, with corresponding quasi-orthomorphism ¢, then L and Ly are
guasi-orthogonal.

Proof: We need only to show that I, the identity permutation on G, and
¢ are quasi-orthogonal. This follows since I(z)~¢(z) = z~1¢(z) = 8(x)
and 0(g1), 0(g2), ... ,0(gn) is a quasi-ordering of G by definition of 4.

The above theorem and corollary tell us that a set of m mutually quasi-
orthogonal, quasi-orthomorphisms of the elements of a finite group (G, -)
implies the existence of a set of m+1 MQOLS based on (G, -). For example,
in (Z4,+) the following quasi-orthomorphisms are quasi-orthogonal.

0123 0123
¢1=(0231)¢2=(0312)
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If, in the notation of Theorem 2.3, we superimpose Ly, and Ly, so as to
obtain an array of ordered pairs A we obtain

00 23 31 12
11 30 02 23
22 01 13 30 °
33 12 20 01

A=

In the above example {L, Ly, , Ly, } is a set of MQOLS.

3 Which Groups Possess Quasi-Complete Mappings?

The following Lemmas provide necessary conditions for a group to possess
a quasi-complete mapping. We will use these results to determine exactly
which finite abelian groups possess quasi-complete mappings.

Lemma 3.1 Let (G,-) be a finite group of order n with derived subgroup
(G',-), and = € G be such that [[;_, gi € zG'. Let (H,-) = (¢?,43,...,92)
and a1, 8, ... ,Gn be a quasi-ordering of G. Then [];._, a; € zHG'.

Proof: If a; = aj,j > i, define h; = o7 and g; = a;l. For all other
elements ax, define h; = e and gx = ax. We then obtain a list of elements
k191, h2gs,. .. ,hngn in which gy,g9,...,9, are all distinct, h; € H and
higi = a;,1 < i < n. Thus H‘_lag = H:‘_lh,g, Now H is normal in
G since, if g € zHz™!, then g = zg7¢?...giz~! = (zg?z~!)(zg?z~?)--
(zg? z‘l) = (zgiz™ 1)2(41:g z71)2.. (a:g z"'l)2 € H=zHz 'CH Thus
HG' is normal in G and [[_, higi € (ITi-; he)(TTi, 9:)G’ C HzG' =
zHG' as required.

Lemma 3.2 Let (G, ') be a finite group of order n which possesses a quasi-
complete mapping 6. Then there exists an indezing of the elements of G
such that n" O(gi) =ée.

Proof: Let ¢ be the quasi-orthomorphism corresponding to 8 written in
cycle notation as

= (g11912...91k,) -+ - (951952 - - - Gsk,) -
Then

H H 0(gs;) = H(yu %2)(9:3'9:3) . (g{,',:gu) =e.

i=1j=1

We note that Lemma 3.1 gives us no additional information about groups
of odd order since for all such groups (G, -) we have that H = G. Thisis of
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little consequence however since it is already known that any group of odd
order possesses at least one quasi-complete mapping, namely the identity
mapping.

In [12], Paige proved that a finite abelian group possesses a complete
mapping if and only if it is not of the form Z,, ® G, where |G| is odd. The
following theorem tells us exactly when such a group possesses a quasi-
complete mapping.

Theorem 3.8 The finite group Zzm ® G, where G is an abelian group of
odd order, possesses a quasi-complete mapping if and only if m is even.

Proof: Suppose that Z,,, ® G possesses a quasi-complete mapping 6. The
unique element of order 2 in Z3,, ® G is (m,0). By Lemma 3.1, and
the result due to Paige that the sum of all the distinct elements of an
abelian group with a unique element of order 2 is that element of order
2, we have that, for any ordering g1,...,gn of the n distinct elements
of Z2m o Gv E?:l 0(9!) € (m7 0) + H, where H = (291’ 292) (XX 12gn) =
{291,292, ... ,2g,} since Z,,, ® G is abelian. From Lemma 3.2 we have
that -7, 6(g:) = (0,0). Together these imply that (m,0) € H, i.e. there
exists (z,y) € Zom ® G such that 2(z,y) = (m,0). Clearly we requirey =0
since |G| is odd, and 2z = m has a solution in Zay, if and only if m is even
(in which case z = ).

Conversely, suppose m is even and define @ on Z2, ®G by (z,y) = (z,y)
for0<z<mO(z,y)y=(z-m+1,y) for m<z<2m. Thenfisa
quasi-complete mapping of Z,,,, ® G.

Thus we have that an abelian group possesses a quasi-complete mapping
if and only if it is not of the form Z4,,,2® G, where |G| is odd. As the next
theorem demonstrates, Lemmas 3.1 and 3.2 can also be used to generate
results for an infinite class of non-abelian groups.

Theorem 3.4 The dihedral group of order 2n represented by Dy, = {(a,b :
a" = e,b% = e,ab = ba') does not possess a quasi-complete mapping if n
is odd.

Proof: By Lemma 3.2, we have that a necessary condition for D,, to possess
a quasi-complete mapping 0 is that there exists a quasi-ordering of the
elements of D,, whose total product is the identity. Now since any element
of the form a'b has order 2 we must have that each of these elements occurs
exactly once in any such quasi-ordering and so the total product is of the
form @’b", for some integer j, but this can only equal the identity if n is
even.

If n is even, then D,, possesses a complete mapping. This is a consequence
of a result by Hall and Paige [7] who proved that a necessary and sufficient
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condition for a finite soluble group to have a complete mapping is that its
Sylow 2-subgroups be non-cyclic. As regards quasi-complete mappings of
groups we have the following extension theorem.

Theorem 3.5 Let (G,-) be a finite group and (H,-) a normal subgroup
of (G,:). If there exists a complete mapping of H and a quasi-complete
mapping of G/H, then there erists a quasi-complete mapping of G.

Proof: Let |G| = n and (G/H,-) & (K,-), where K = {k;,...kn}. Let
uk, € G be such that a(Hux,) = ki. Clearly each g € G has a unique
representation in the form g = uih, (since the elements uy,,... ,ux, are
all distinct and form a set of coset representatives of H in G). Let 6; be
a quasi-complete mapping of K with corresponding quasi-orthomorphism
¢, and 6, a complete mapping of H with corresponding orthomorphism
#2. Define 6 : G — G by 0(uxh) = 02(h)ug, (). We will show that @ is a
quasi-complete mapping of G.
Firstly observe that

{6(g:) : 9i € G} = Hug, () + - - - + Hug, () M

since by assumption 6, is a permutation on H and so &(uxh) = 02(h)ug, (x)
exhausts the elements of Hug, (k) as h varies across the elements of H with
k fixed.

If 6, is a permutation on K, then clearly {0#(¢:) : s € G} = G. We
now consider what happens if 6;(k;) = 01(k;),i # j. We then have that
Hug, (x;) = Hug,(x;) and so this coset occurs twice on the right hand side of
(1). In order to show that 8(g1),...,0(gn) is a quasi-ordering of G we are
required to show that if g € Hugl(,,‘) and g € Hug,x;),1 # Jj, then P H#e
and g~* ¢ {0(g:) : 9: € G}.

Let g€ Hugl(k.), so there exists h € H such that g = hug,(x,). Now

= (hug,(k;))* € Hug, (k) Hue, (k) = H‘U9l(1¢‘)2 and since 0;(k;)? # e
(by the assumptions that 8, (k.) =60 (k,) # 7 and 0, is a quasi-complete
mapping of K) we have that ° ¢ H=> g% #e.

Now consider g~

- — - -1
g = ‘uell(k‘)h 1 € “o,l(k;)H = H“ol(k.-) = H‘u.ol(k_.)—l

But H‘uol(k‘)—l cannot occur in the list of cosets (’[) since if 0,(k;) =
01(k;),i # j, then Ak € K such that 61(k) = 04(k;)~! since 6, is a quasi-
complete mapping of K.

We therefore have that 8(g1), ... ,0(gn) is a quasi-ordering of G. It now
only remains to show that the mapping ¢ defined by ¢ : g — g6(g) is a
permutation on G.
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Suppose ¢(ur,h) = ¢(ux,h'). We would then have that

ug hOo(hug, (k) = uk;h'02(h")ug, (k)

= ug, Po(R)ug, () = ur;P2(h)us,(x;) @
= Hugug (k) = Huk up (k)
= k,ol(k,) = k_,-e; (k,)

= ¢1(ks) = ¢i(k;)
=2k = kj since ¢, is a permutation on K

= ¢o(h) = ¢a(R) by (})
=2h = K since ¢ is a permutation on H

S ugh = ugh' as required.

4 Quasi-Near Complete Mappings and Quasi-Sequencings of Groups

In [5] Freeman defined a latin square A to be guasi-row-complete if the
n(n — 1) pairs {a;j,a; 1} contain each unordered pair of distinct ele-
ments exactly twice. Similarly A is quasi-column-complete if the n(n — 1)
pairs {a;j, ai+1,j} contain each unordered pair of distinct elements exactly
twice. Finally, A is said to be quasi-complete if it is both quasi-row and
quasi-column complete. Bailey [3] has shown that the existence of a quasi-
complete latin square based on (G,-) is equivalent to the existence of a

quasi-sequencing of G.

Definition 4.1 Let (G,-) be a finite group of ordern. Ifa1,az,... ,a, i3 a
quasi-ordering of G such that the partial products by = a1, b2 = a1a2,... ,b,
= ajaz---ay are all distinct, then ay,ay,...,a, i3 a quasi-sequencing of
G.

Bailey has called the list of partial products by, bs,... ,b,, in the defini-
tion of a quasi-sequencing of G, a terrace of G. Note that in any quasi-
sequencing of G it is necessarily the case that a; =b; = e.

Theorem 4.2 (Bailey [3]) Let (G,:) be a finite group of order n and let
(a1,as2,...a,) and (by,bs,... ,b,) be orderings of the distinct elements of
G. Then the latin square whose (%, j)th entry is a;b; is quasi-row-complete
if and only if (b1, be,... ,bn) is a terrace of G and quasi-column-complete
if and only if (a7}, a3, ... ,a3!) is a terrace of G.

If, in the notation of Definition 4.1, ai,as,...,a, are all distinct, then
the sequence is a sequencing of G as defined by Gordon [6]. In [9] Hsu
and Keedwell generalised the concept of a complete mapping, in an entirely
different way to that done in this paper, to that of a near-complete mapping
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and showed that a special type of near-complete mapping of G is equivalent
to the existence of a sequencing of G. In an analogous way we generalise the
idea of a quasi-complete mapping to that of a quasi-near-complete mapping,
and show that a quasi-sequencing of G is a special type of quasi-near-
complete mapping of G.

Definition 4.8 If 8 is a mapping from G\ {k} to G\ {e} with ¢,6(g2), ...,
0(gn) a quasi-ordering of G such that ¢ :  — z0(x) is a bijective mapping
from G\ {h} to G\ {k}, then @ is a quasi-near-complete mapping of G.

If, in the above definition, @ is bijective, then @ is a near-complete mapping
of G as defined by Hsu and Keedwell [9]. The following theorem is an exact
analogue of a result in [9)].

Theorem 4.4 Let (G,-) be a finite group of order n. Then G possesses
a quasi-sequencing a1, ag, ... ,ay i and only if G possesses a quasi-near-
complete mapping @ such that the bijection ¢ defined by ¢(z) = z0(z)Vz €
G, can be expressed as a single non-cyclic sequence of distinct elements
[91,92,-.. ,9n] where ¢(g:) = giy1 for1 < i< n.

Proof: Suppose that (G, -) possesses a quasi-sequencing a; = ¢, as, ... , .
Define b; = a; = ¢,b2 = a102,...,bp = aja2---a, and ¢(b,') = bi41,1 <
i < n. Clearly ¢ is a bijection from G \ {d,} to G\ {e} which can be
represented by the non-cyclic sequence [by,bs,... ,b,]. Furthermore, if we
define 8(b;) = b;'¢(b;) = b 'biy1 = aiy1,1 < i < m, it is easily seen
that @ is a mapping from G \ {b,} to G \ {e} with e,8(b,),... ,0(bp-1) a
quasi-ordering of G.

Conversely, suppose that (G,-) possesses a quasi-near-complete map-
ping @ such that ¢;0(g;) = gi+1,1 < % < n, in the non-cyclic sequence
[91,92,... ,9n)- If we define a;11 = 0(g:),1 < i < » and a; = e, then
ai,a2,...,ay is easily seen to be a quasi-sequencing of G.

A group which possesses at least one sequencing is called sequenceable,
we will similarly call a group which possesses a quasi-sequencing a quasi-
sequenceable group.

Example using the group (Zs, +).

Quasi-sequencing: 0 4 2 2 4
Partial sums: 0 4
2

. . 01 3
Quasi-complete mapping § = ( 4 2 4
Corresponding quasi-orthomorphism ¢ = ( g ; 2 g ‘11 )
Equivalent non-cyclic sequence for ¢ = [0,4,1,3,2].
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5 Quasi-Orthogonal, Quasi-Row-Complete Latin Squares

We end this paper by giving a sufficient condition for the existence of
quasi-orthogonal, quasi-row-complete latin squares. In [8] Heinrich gives
the following sufficient conditions for the existence of a pair of orthogonal,
row-complete latin squares.

Theorem 5.1 (Heinrich [8]) If (G,-) is a sequenceable group of order n
and if there are two orderings of the distinct elements of G, say hy, ..., hy
and ki, ... kn, such that the list of elements hik(},... ,hnk;! is again
an ordering of the distinct elements of G, then we can consiruct a pair of
orthogonal, row-complete latin squares based on (G, -).

We refer the reader to Heinrich’s original paper or to Dénes and Keedwell
[4, p50], for a complete proof of this result but the method of construction
is as follows. Let a;, as, ... ,a, be a sequencing of G with partial products
by = ay,b2 = ajas,...,b, = ajas---a,. Then the latin squares H and K,
whose (%, j)th entries are k;b; and k;b; respectively, are both row-complete
and are also orthogonal. Heinrich also observes that one of the squares can
be made complete, by permuting the rows of H and K, without affecting
orthogonality.

As Heinrich points out, a group satisfying the conditions of Theorem 5.1
cannot be abelian since the product of the elements in a sequenceable
abelian group is not the identity (since a; = b; = e) whereas clearly
[T, hik; ! = esince the k;’s are just the h;’s in a different order. In fact the
conditions on (G, -) in Theorem 5.1 are equivalent to the requirement that
(G, -) be a sequenceable group which also possesses a complete mapping.
This follows since, if we define 8(h;') = h;k;"!, then @ is a permutation on
G and the mapping ¢ : h;' — h;'0(h;') = k! is again a permutation
on G. Conversely, if  is a complete mapping of G, then gl_l, . LI
and ¢(g1)71, ¢(g2) 1, ... #(gn) ! are two orderings of the distinct elements
of G such that g7 '[¢(g1)~!]7,... .02 [#(gn) Y]} = 6(g1),...,0(gn) is
again an ordering of the distinct elements of G. We may therefore restate
Theorem 5.1 as follows.

Theorem 5.2 If (G,-) is a sequenceable group which possesses a complete
mapping, then there exists a pair of orthogonal row-complete latin squares
based on (G, -).

This theorem generalises easily to give sufficient conditions for the existence
of quasi-row-complete latin squares which are quasi-orthogonal.

Theorem 5.3 If (G,-) is a quasi-sequenceable group which possesses a
quasi-complete mapping 0 with corresponding quasi-orthomorphism ¢, then
there exists a pair of quasi-orthogonal, quasi-row-complete latin squares

based on (G, ).

222



Proof: Let a3, ay, ... ,a, be a quasi-sequencing of G with partial products

by = a3,b0 = aja,...,b, = a1a2---a,. Consider the latin squares H
and K whose (i, j)th entries are given by g 'b; and ¢(g;)~'b; respectively.
Then, since (by,b,...,b,) is a terrace of G, we have that H and K are

each quasi-row-complete by Theorem 4.2.

Suppose H and K are superimposed so as to form an array of ordered
pairs A. If we now define the difference of the ordered pair (a,b) to be ab—!
we have that the ijth cell of A contains the ordered pair (g; 'b;, #(g:) ~b;)
which has difference 8(g;). Thus the ith row of A contains all the ordered
pairs whose difference is 6(g;) and the quasi-orthogonality of H and K
follows from the fact that 6(g),...,0(gn) is a quasi-ordering of G in a
manner analogous to that in the proof of Theorem 2.3.

We observe that if, in the notation of the above theorem, (G,-) is a
sequenceable group, then H and K are both row-complete and, if 6 is a
complete mapping of G, then H and K are orthogonal.

Example using the group (Zs, +).

Quasi-sequencing 0 5 2 4 1 2 3 1

Partial sums o 5 7 3 4 6 1 2
g (01234567
“lo1231234
(01234567
$=\o2465713

00 55 77 33 44 66 11 22
76 43 65 21 32 54 07 10
64 31 53 17 20 42 75 06
52 27 41 05 16 30 63 74
43 10 32 76 07 21 54 65
31 06 20 64 75 17 42 53
27 74 16 52 63 05 30 41
15 62 04 40 51 73 26 37

Note that we may permute the rows of the above array so as to make
H quasi-complete without affecting the quasi-orthogonality of the latin
squares or the quasi-row-completeness of K.

In [2] Anderson and Ihrig have shown that all groups of odd order are
quasi-sequenceable. Since we know that any finite group of odd order pos-
sesses at least one complete mapping and that all such groups are quasi-
sequenceable it follows that, if (G,-) is a finite abelian group of odd or-
der, then there exists a pair of orthogonal quasi-row-complete latin squares
based on (G, ).
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