The Covers Of A Circular Fibonacci String

Costas S. Iliopoulos

Department of Computer Science
King’s College London, University of London
email: csi@dces.kel.ac.uk

School of Computing
Curtin University of Technology
email: csi@cs.curtin.edu.au

Dennis Moore

School of Computing
Curtin University of Technology
email: moore@cs.curtin.edu.au

W. F. Smyth

Department of Computer Science & Systems
McMaster University
email: smyth@mcmaster.ca

School of Computing
Curtin University of Technology
email: smyth@cs.curtin.edu.au

ABSTRACT. Fibonacci strings turn out to constitute worst cases
for a number of computer algorithms which find generic pat-
terns in strings. Examples of such patterns are repetitions,
Abelian squares, and “covers”. In particular, we characterize
in this paper the covers of a circular Fibonacci string C(Fi) and
show that they are ©(| Fi|?) in number. We show also that, by
making use of an appropriate encoding, these covers can be
reported in ©(|Fk|) time. By contrast, the fastest known algo-
rithm for computing the covers of an arbitrary circular string
of length n requires time O(nlogn).

JCMCC 26 (1998), pp. 227-236

1 Introduction

For any nonnegative integer k, a Fibonacci string Fy is defined as follows:
Fy = b, F; = a, while for k > 2, Fx = Fx_1Fr_3. The number of con-
catenated entries in Fy is called its length, denoted by fi = |Fk|, where of
course fj is the kB Fibonacei number. For every pair of integers i and j
satisfying 1 < 4,7 < fk, Fxli..j] denotes the substring of F beginning at
position i and ending at position j; when ¢ = j, we write Fi[i..i] = Fi[i],
the element at the ith position in F; when i > j, Fi[i..j] = ¢, the empty
string.

Fibonacci strings are important in many contexts [B86], but our main
interest in them here will be as examples of the worst case behaviour for
algorithms which compute repetitions or (in some well-defined sense) “ap-
proximate” repetitions in arbitrary given strings. If z is a string of length
n which contains a substring z[i..j] = u™ for some greatest integer m > 2,
then u™ is said to be a repetition in z if and only if u is nonempty and
not itself a repetition. Thus F5 = abaababa contains the four repetitions
F5[1..6) = (aba)?, Fs[3.4] = a2, F5[4..7) = (ab)?, and F;[5..8] = (ba)?.
Note also that, according to this definition, z = a™ contains only the single
repetition a”. There are three well-known algorithms which compute all
the repetitions in a given string = of length n [AP83,C81,ML84]; each of
these algorithms executes in time ©(rlogn), a bound that is known to be
lowest possible [ML84)]. Thus ©(nlog n) is an upper bound on the number
of repetitions which can possibly occur in any string x, and, as Crochemore
has shown [C81], this bound is in fact achieved by the Fibonacci strings.
In fact, the squares in a Fibonacci string have recently been completely
characterized [IMS95].

The idea of a repetition can be weakened in the following way: if for
some greatest integer m > 2, y = ujuy - - - Uy, is a substring of z such that
for every integer ¢ € 2..m, u; is a permutation of »;, then y is said to be
a weak repetition in z. (In the case that m = 2, y is sometimes called
an Abelian quare.) Clearly every repetition is a weak repetition, and, in
addition to the four repetitions listed above, Fy also contains the weak
repetitions F;[2..5] = (ba)(ab) and F5s[3..8] = (aab)(aba). There is only
one known algorithm [CS95] to compute all the weak repetitions in a given
string z. This algorithm requires ©(n?) time and, as shown in [CS95], Fi
in fact contains ©(f2) weak repetitions, thus again achieving the upper
bound.

The idea of a repetition can be generalized in another way. If every posi-
tion of a given string z of length n lies within an occurrence of a substring
u within z, then u is said to be a cover of z. If, in addition, |u| < =,
we call u a proper cover of z. For example, z is always a cover of z, and
u = aba is a proper cover of F5. We see that if z = u™ is a repetition,

228

then it follows that u is a cover of z. There exists a linear time algorithm
to compute all the covers of z [MS95], and it is not difficult to show that z
has at most O(logn) covers; it follows from Lemma 2.5 of [IMS95] that Fj
has |(k — 3)/2] = ©(log fi) proper covers, and so here also F} attains the
upper bound.

It is a natural generalization of the idea of a cover that provides the
motivation for studying covers of circular strings: if a substring u of z is
a cover of some superstring y of z, then u is said to be a seed of z. For
example, u = aba is a seed of £ = abaabab because it is a cover of y = za.
It turns out [IMPS96] that the problem of computing all the seeds of z is
closely related to the problem of computing the covers of a corresponding
“circular string”.

The circular string, denoted C(z), corresponding to a given string z,
is the string formed by concatenating z[1] to the right of z[n]. As indi-
cated above, it is of interest to compute the covers (of length at most |z|)
of a circular string C(z) [IMP93], but, surprisingly, the number of covers
of C(z) can greatly exceed the number of covers of z: ©(n?) rather than
O(n). In this paper we characterize the covers of C(F}) and, as a byprod-
uct, show that they are ©(fZ) in number, thus again attaining the upper
bound. Notwithstanding this fact, the algorithm described in [IMP93] re-
ports ©(n?) covers in ©(nlogn) time by making use of an appropriate
encoding of the output. As we shall see, in the particular case z = Fy, the
covers of C(Fy) can actually be reported in time ©(fx) provided a certain
encoding of the output is acceptable to the user.

2 Characterizing The Covers
Our results are based on two fundamental lemmas already proved in [IMS95]:
Lemma 2.1. For any integer k > 2, let

Pk = Fk_sz...s v F1. (2.1)
Then F;, = Pi6y, where 6 = ab if k is even, and §; = ba otherwise.

Proof: Easily proved by induction: see Proposition 1 of [L81] and Lemma
2.8 of [IMS95]. o

In order to state the second lemma, we introduce the idea of a “rotation”
of a given string z of length n: for every integer j € 0.n — 1,

Rj(z) = z[j + 1..n]z[1..5]
is called the jt! rotation of z. Since z[1..0] = ¢, we observe that Ry(z) =z

and hence that C(z) = C(R;(z)) for every value of j; thus R;(z) is a cover
of C(z).

229

Lemma 2.2. For every integer k > 2, F, # R;(F}) for any integer j €
1.fx—1.

Proof: This lemma is just a special case of the fact that = is periodic if
and only if there exists j > 0 such that £ = Rj(x). See Lemma 2.6 of
[IMS95]. (]

A third technical lemma also turns out to be useful.

Lemma 2.3. For every integer k > 5, Fx_2 covers F) with exactly 3
occurrences: as a prefix of F, as a suffix of Fy, and at position fr_s + 1.
These are the only occurrences of Fj_g in Fj.

Proof: One can see that
Frp=Fy1Firg2=Fr oF,_oFx _5F;_4 .

Thus three occurrences of Fi_5 actually cover F (see Figure 1(a)). That
there are no other occurrences of Fy_s in Fj follows from the observa-
tion that any other occurrence of Fi_» would necessarily equal a rotation
R;(Fx—2), 7 > 0, in contradiction to Lemma 2.2. Observe that in C(Fj),
the first occurrence of Fi_o and the second occurrence of Fj_s are preceded
by 8% = 6x_2, while the third occurrence of Fj_5 is preceded by 6x_;. See

also Theorem 2.2 of [IMS95]. o
Ea R
F,
s '
(a) ®)

Figure 1. The circle represents the cyclic string C(Fy).

A circular string C(z) gives rise to n possible representations: z[i..n]
z[1..i — 1] for i € 1..n (see [IS92]). Here we use the conventions that the
first position of C(z) is the one at which a (randomly chosen) occurrence
of z starts and that the positions in C(z) increase clockwise. Note that in
general the string z may be a prefix of more than one representation (see

230

[1S92)). It is also convenient to use s(*),h = 1,2... ., to denote the hth
occurrence of a substring s in C(z). For example, we know from Lemma 2.3
that F(z_)2 occurs at position 1 of C(Fy), F,Sz_)z occurs at position fi—2+1,
and Ffi)z occurs at position fr_1 + 1 (see Figure 1(a)).

In establishing our results, we employ the following strategy:

e Making use of Lemmas 2.1, 2.2, and 2.3, we first show that every
cover u of C(Fy) is necessarily a substring of Py as defined in (2.1).

o We then show that a string » of length less than fi is a cover of
C(Fy) if and only if it is a cover of C(Fj41); thus, for each value of
k, we need concern ourselves only with those proper covers of length
at least f.

¢ Finally, we characterize the covers of C(F}) of length at least fx_;.

This latter result then enables us easily to count all the proper covers of
C(Fy).

Lemma 2.4. Every proper cover of C(F}) is a substring of P.

Proof: The lemma is trivially true for k¥ < 3 and true by inspection for
k = 4. We suppose then that k¥ > 5 and further that u is a proper cover
of C(Fy), but not a substring of P. Hence |u| > fi/2. Since u is not
a substring of Py, one occurrence of u in C(F}), say u*, must contain a
nonempty prefix of Fj as a suffix (see Figure 1(b)). (We exclude the case
u = Fi[l.. f = 1] = Fi[2..fi], clearly an impossibility.) Let j be the starting
position of u*.

(a) Case of u* containing no occurrence of Fi_» (see Figure 2(a)). Since
Fy, = Fy_oF_3F;._, it follows that

u=u" = Fr_a[j — fr—1..fe—2] Fe—2[1..1],
for some integer ¢ € 1.. fx—_2 — 1. But since Fx = Fx_oFx_oFy.5Fy_4,
we see that therefore u must be a substring of F,f_z, hence of Py, a
contradiction.
(b) Case of u* starting at position fx_1 + 1 (see Figure 2(b)). In this

case ©* contains an occurrence of Fy_; and u* = Fy_ou/, where v’ is
a nonempty prefix of Fi. But

Fi = Fy_1Fi—92 = Pr_16k—1Fx_2,

231

by Lemma 2.1, and so Fx_oFx = Pi6k—1 Fx—2. Hence u* is a prefix
of Py6i_y and since, as above, u # Fi[l..fx — 1], we arrive again at
the contradiction that u is a substring of P.

F E
L] L% £, ~ By L
'N
£, L9
@

» © ©

Figure 2.
The circle represents C(F}), the internal arc represents u*.

(c) Case of u* starting at position j € fx—2+1..fx—1—1 (see Figure 2(c)).
Then we have u* = ' Fi,_su” for some nonempty v’ and v” = Fi[l..i]
for some integer ¢ € 2..f;_; — |u’| — 2. Observe by Lemma 2.1 that «’
has suffix a if k is even, suffix b otherwise. But this case is impossible,
since any other occurrence of u, say i, must take the form (see Lemma
2.3)

a=uFMu" h=1,2

where, again by Lemma 2.1, u’ has suffix b if k is even, suffix a
otherwise.

(d) Case of u* starting at position j > fr—; + 1 (see Figure 3(d)). Then

we have

uwt = Fk_z‘u”
for strings u’ # € and «”. But then another occurrence of w must be
(see Lemma 2.3)

a=u O,
which is necessarily a substring of Py or whose final term u” contains
61 in the same position that »” contains §x_;. Thus this case also is

impossible, and so we conclude that if u is a proper cover of C(Fy),
it must also be a substring of Pj. |

The proof of our first main lemma was lengthy, but it will simplify the
proof of the remaining results:

Lemma 2.5. A proper substring u of Fy. is a cover of C(Fy) if and only if
it is a cover of C(Fy41).

232

~, LY
™ ARy
", o
. ~
i3
]
'
.
:
N
] [A
J
S “
o ’Al

(0] [© w

Figure 3.
The circles of (a), (b) and (c) represent the string C(F2).
The circle of (d) represents the string C(Fi41).

Proof: We consider the string C(FZ) and in particular the occurrences of
P at positions 1 and fi41 + 1 of C(FZ) (see Figure 3(a)) :

Pe = FZ[1..fx — 2);
P = F{[frr1 + 1 far] FE[L.-frm1 — 2). (2:2)

Suppose first that » is a cover of C(Fy), hence also a cover of C(F2).
Note that C(Fi11) and C(F2) = C(Fi41Fi_2) differ only by the suffix Fi_»
(compare Figure 3(a) and 3(d)); thus it will suffice to show the following:

(a) If u occurs at position j € 1..fk+1 in C(F2) (see Figure 3(b)), then
u also occurs at the same position in C(Fj,.;). This is trivially true
for the occurrences that terminate within Fi.,. This is also true for
the occurrences that terminate beyond Fj.; (see Figure 3(b)); this
follows from the facts that u is shorter than P; (Lemma 2.4), and
that Py (and thus v/, the suffix of u beyond Fj) occurs at positions
1 and f k+1 +1.

(b) If u occurs at position j € fi4+1..2fk in C(F?) (see Figure 3(c)), then
u also occurs at position § — fi4+1 in C(Fi41); this follows from the
fact that P, occurs at positions 1 and fi+1 + 1 in C(F2) (see Figure

3(c)).
A straightforward reversal of the above argument shows also that it is
sufficient. O

‘We can now complete the picture by characterizing the covers of Fj, which
are not proper covers of Fj_i:

Theorem 2.1. Let u be a cover of Fj, such that fi—1 < |u| £ fx. Thenu
is one of the following:

(a) Rj(Fx), for every integer j =0,1,..., fk—1;

233

(b) Rj(Fk[1..fk—1+h]), for every integer h =0,1,..., fxr_2 —2 and every
integer j=0,1,... ,fx_2—h—2.

Proof: Note first that (a) is immediate: it merely asserts that every rota-
tion of Fj is a cover of C(F%). To prove (b), we consider the string C(F?)
and in particular the occurrences of P;. at positions 1, fx—1+1, and fi +1
(see Figure 4).

Figure 4. The circle represents the string C(FZ).

One can easily see that every string Py[1..7] is a cover of C(F;) for every
integer ¢ € {fk_1,..., fc —2}. Indeed, it is further clear that every substring
of P of length i is in fact a cover of C(Fy): these are exactly the strings
specified in (b). u}

This result, together with Lemma 2.5, may be used to count the proper
covers of C(F;). We see from Theorem 2.1(a) that the proper covers of
lengths |u| = fi —2, fx —3,..., ft—1 may be counted as

=
1424+ fr2—-1= o)

Letting v denote the number of proper covers of Fi, Lemma 2.5 then
provides the recurrence relation

vk = k-1 + (f "2‘2) (2.3)

234

with initial condition v3 = 0. Solving (2.3) then yields the result that
Vi € 9(f; ,3):

Theorem 2.2. For every integer k > 4, the number of proper covers of
C(Fy) is given by

Vg = fk(fk—S = 1)/2 + [(k - 1) mod 2].

Finally, we observe that the proper covers of C(Fj) can easily be reported
in ©(fx) time by a simple encoding of the output. For example, to specify
all the covers described in Theorem 2.1(b), it suffices to give for each length

‘ i = fx—1 + h the number of rotations of Py[1..7] that are to be counted as
covers. In fact, if it is acceptable to specify only the range of i together
with the corresponding range of j, then only a constant number of outputs

! are required for each value of k, and so a total of only ©(log fix) outputs

are necessary.
Acknowledgements. The work of the first author was supported in part
by SERC grants GR/F 00898 and GR/J 17844, NATO Grant No. CRG
900293, ESPRIT BRA Grant No. 7131 for ALCOM II, and MRC Grant
No. G 9115730. The work of the third author was supported in part by
Grant No. A8180 of the Natural Sciences & Engineering Research Council
of Canada and by Grant No. GO-12778 of the Medical Research Council of
Canada.

References

[AP83] Alberto Apostolico & F.P. Preparata, Optimal off-line detection
of repetitions in a string, T'CS 22 (1983), 297-315.

[B86] J. Berstel, Fibonacci words — a survey, Book of L, Springer-
Verlag (1986), 13-27.

[C81] M. Crochemore, An optimal algorithm for computing the repe-
titions in a word, Inf. Process. Lett. 12-5 (1981), 244-250.

[CS95] L.J. Cummings & W.F. Smyth, Weak repetitions in strings, J.
Combinatorial Math. & Combinatorial Computing, to appear.

[IMP93] Costas S. Iliopoulos, Dennis Moore & Kunsoco Park, Covering a
string, Proc. Fourth Annual Symposium on Combinatorial Pat-
tern Matching (1993), 54-62.

[IMPS96] Costas S. Iliopoulos, Dennis Moore, Kunsoo Park & W.F. Smyth,
work in progress.

[IMS95] Costas S. Iliopoulos, Dennis Mcore & W.F. Smyth, A character-
ization of the squares in a Fibonacci string, TCS, to appear.

235

[IS92] Costas S. Iliopoulos, & W.F. Smyth, An optimal parallel algo-
rithm for computing the canonical form of a circular string, TCS
92 (1992), 87-105.

[L81] Aldo de Luca, A combinatorial property of the Fibonacci words,
Inf. Process. Lett. 12-4 (1981), 193-195.

[ML84] M.G. Main & R.J. Lorentz, An O(nlogn) algorithm for finding
all repetitions in a string, J. Algs. 5 (1984), 422—432.

[MS94] Dennis Moore & W.F. Smyth, An optimal algorithm to compute
all the covers of a string, Inf. Process. Lett. 50-5 (1994), 239-246.

[MS95] Dennis Moore & W.F. Smyth, Correction to: an optimal algo-
rithm to compute all the covers of a tring, Inf. Process. Lett. 54
(1995), 101-103.

236

