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ABSTRACT. In this paper we look at triangle free graphs with
maximum degree three. By an inequality proved by K. Fraugh-
naugh® in 1990, the number of vertices v, edges e, and inde-
pendence i of such a graph satisfy e > 13v/2 — 14i. We prove
that there is a unique non-cubic, connected graph for which
this inequality is sharp. For the cubic case, we describe a com-
puter algorithm which established that two such extremal cubic
graphs exist with v = 14, and none for v = 28 or 42. We give a
complete list of cubic, and provide some new examples of non-
cubic, triangle free graphs with v < 36 and independence ratio
i/v less than 3/8.

1 Introduction

Let G be the set of connected triangle free graphs with maximum degree
3. In 1990, Fraughnaugh (7] established an inequality for the number of
vertices v, edges e, and independence i for a graph G in G, and also showed
conditions for the extremal graphs in G. Namely, she proved:

Theorem 1. (Fraughnaugh)
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(1) e > 13v/2 - 141; and
(2) If e = 13v/2 — 144, then every vertex has valence at least two. If
there is a vertex with valence exactly 2, then G contains a four-cycle.

We will refer to (1) as the FJ inequality, and graphs satisfying (2) as
the edge-critical graphs. Our goal in this paper is to find all edge-critical
graphs. We will prove
Theorem 2. There are exactly 3 edge-critical graphs.

These are the two edge-critical cubic graphs L and P(7) depicted in
figure 1 and the unique non-cubic edge-critical graph H depicted in figure 2.

Figure 1. The graphs L and P(7)

Figure 2. The H-Graph

For the non-cubic case we will in fact show the stronger result, that H is
the unique edge-critical graph in G with girth 4. This result, together with
Theorem 1 implies the non-cubic case in Theorem 2.

For the cubic case we have e = 3v/2, which implies that for an edge-
critical graph, » must be divisible by 14. Two graphs on 14 vertices sat-
isfying this condition are the graphs L (cf. [8]) and P(7) (cf. [4]), see
figure 1.

At the Southeastern Conference in Boca Raton in 1990 William Waller
announced that there is no edge-critical cubic graph on 28 vertices. His
proof was computer assisted and based on a large number of lemmas used
to reduce the number of cases that had to be considered (personal commu-
nication).
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With a computer search we confirmed that L and P(7) are the only two
edge-critical graphs on 14 vertices and that there are no such graphs on 28
vertices. We establish the result that there are no edge-critical graphs on
42 vertices.

After our work was finished, S. Locke and K. Fraughnaugh (cf. [5])
proved that every triangle free cubic graph with v vertices contains an
independent set with at least (11v — 4)/30 vertices. This implies that for
v > 14 no edge-critical cubic graphs exist and therefore the first part of
Theorem 2.

The FJ inequality implies that the independence ratio ¢/v of graphs in
G is at least 5/14, which was first proved by Staton [13]. There are several
conjectures about this independence ratio, let us mention

Conjecture 1: (Locke [8]) There are only finitely many cubic 3-connected
graphs in G with an independence ratio less than 3/8; and
Conjecture 2: (Albertson, Bollobés, Tucker [1]) Every cubic planar graph
in G has an independence ratio of at least 3/8.

Our computer search established these conjectures for graphs of order
v < 38. In particular we find that, with the exception of the graphs L
and the generalized Petersen graphs P(7) and P(11) (see figures 1 and
4), all such graphs with independence ratio less than 3/8 contain a bridge
connected component isomorphic to the graphs F, F1, or F2 which are
given in figures 5 and 6. We thereby state

Conjecture 3: There are exactly six 2-connected graphs in G with inde-
pendence ratio less than 3/8, namely L, P(7), P(11), F, F1, and F2.

This conjecture implies Conjectures 1 and 2.

2 The underlying ideas of our methods

Though the theoretical proof of Theorem 2 and the computer search for the
cubic case are different in nature and were first developed independently
by the two authors, they both are based on similar methods that we will
now describe.

Let S = Sy e,i, be the set of all graphs in G that have v vertices, e edges,
independence number at most i, and girth g. S, ;g4 denotes the sets
where the girth is at least g.

To prove Theorem 2, we will assume that v, e, and ¢ satisfy e = 13v/2 —
144, and that g = 4. We will prove that S = {H},ifv=8,e=10,i=3,
and g = 4, and S = @ otherwise. For the cubic case, we will of course assume
that e = 3v/2, but — in order to develop a more general program ~ we let
v, 1, and g be arbitrary (g > 4). We construct all members of Sy ¢ i,g+ for
all even v < 42 (except for v = 38) with [(5/14)v]/v < 3/8. In particular
we give an independent proof for S28.42,10,4+ = @ and S42,63 15,44+ = 0.
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Our construction will be based on the following strategy:

Suppose v, ¢, ¢, and g are given. We start with a subgraph that must be
contained in every graph in S. Then we extend this subgraph by adding
edges and vertices in every possible way, so that the girth remains at least
g, and the maximum degree remains at most 3. We also check each time
if the current subgraph can possibly be extended to a member of S. To do
this, we will need to estimate the independence number of graphs which
can result from our subgraph.

Suppose that during the extension process we arrive at a subgraph Gg =
(Vo, Eo) of a hypothetical graph G € S. Let V# C V; be a set of saturated
vertices of Gy, i.e. if Ng(V#) denotes the neighborhood of V# in G and
Ng,(V#) denotes the neighborhood in Gp, then we require Ng(V#) =
Ng,(V#). For I* C V# an independent set define V* := V# U N(I*),
G* = (V*,E*) := (V*) (the graph induced by the vertex set V*), V’ :=
V-V* and G' = (V',E’) := (V'). Numbers v,e,v’,€’, etc. denote the
cardinalities of the corresponding sets.

By the FJ inequality, ' := [13v'/28 —¢’/14] is a lower bound for the size
of a maximal independent set I’ of G’. Since I* U I is an independent set
in G for any I’, i* + 4’ cannot exceed <. If there is a choice for I* for which
i* 41’ > 1, we conclude that Gy cannot be extended to a graph G € S with
V# saturated.

Thus our construction of S will repeatedly use the following routine.

e (Step 1) Fix the next subgraph Gp = (Vp, Ep) and the set of saturated
vertices V# C V.

¢ (Step 2) Choose an independent set I* C V#,
¢ (Step 3) Find G* and G’ as above.

o (Step 4) Find v* and (a lower bound for) é, the number of edges
incident to at least one member of V* (v* =v -1/, é=e—¢').

o (Step 5) Find ¢* and i = [13(v — v%)/28 — (e — €)/14]. * + ¢ > i
yields a contradiction. If a contradiction is not reached, we’ll go back
to (Step 2) (choose a different I*) or (Step 1) (extend the graph
further).

3 A Proposition
In this section G denotes an edge-critical graph of girth 4.
Proposition 1. H is a subgraph of G.

Our proof will follow the algorithmic approach described above: We will
start with a 4-cycle as a subgraph of G, and then show that we must be able
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to extend this graph to H. We will achieve this through a string of lemmas,
and the proof of each lemma will consist of the five steps described above.
In each case, our choice of I* will be such that (I* U N(I*)) = Gp (and
hence we will choose G* := Gy in Step 3). Since G is edge-critical, thus e =
13v/2—14i, we have i’ = [13(v—v*)/28—(e—¢&)/14] = i—|13v*/28—¢&/14].
Hence we can replace Step 5 by

e (Step 5) Compute 7 = |13v*/28 — é/14]. We get a contradiction if
&>
Lemma 1. Each vertex in G has degree 2 or 3.

Proof: Since G is connected with maximum degree 3, all vertices have
degree 1,2 or 3. Suppose now that vertex w has a unique neighbor wyp.

o (Step 1) Go := (w,wo), V# := {w};

e (Step 2) I* := {w};

e (Step 3) G* = Gy;

e (Step 4) v* = 2,é > 2, since G is connected;

e (Step 5) i = 0, a contradiction. u]
Lemma 2. Fach degree 2 vertex in G has a neighbor of degree 2 and a
neighbor of degree 3.

Proof: Suppose that the two neighbors of vertex w are w; and wa.

Casel: w; and ws both have degree 3.
o (Step 1) G := (w, w1, wa), V# = {w};
o (Step 2) I* := {w};
e (Step 3) G* := Gy;
e (Step 4) v* = 3,6 =6;
e (Step 5) 1 =0, a contradiction.

Case2: w; and ws both have degree 2. Let u; and us be the other neigh-
bors of w; and ws, respectively.

Case2a: u; = ug =: u.

o (Step 1) Go := (w, w1, wa,u), V# = {w,w;, wa};
o (Step 2) I* := {wy, w2 };
e (Step 3) G* := Gy;
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e (Step 4) v* =4,é =75, since G is connected,;
e (Step 5) i = 1, a contradiction.
Case2b: u; and us are distinct.
o (Step 1) Go := (w,wy, w2, u1,u2), V¥ 1= {w,w;, wa};
o (Step 2) I* := {wy, w2};
e (Step 3) G* := Go;
o (Step4) v*=5,5<&<8;
o (Step ) i = 1, a contradiction. u]
Lemma 3. In a 4-cycle of G every vertex has degree 3.

Proof: Suppose that the vertices a,b,c,d form a 4-cycle in G (in this
order). By Lemma 2, in a possible counterexample to Lemma 3 (wlog) a
and b have degree 2 and ¢ and d have degree 3. In this case let c; be the
third neighbor of c.

e (Step 1) Go := {(a,b,c,d, c1), V# := {a,b,c};

e (Step 2) I* := {a,c};

e (Step 3) G* := Gy;

o (Step4)v* =5,7<E<LS;

e (Step 5) 2 =1, a contradiction. O
So assume that the vertices a,b,c,d form a 4-cycle in G (in this order)

and these vertices have neighbors ay, by, ¢y, dy (different from a,b, c, d), re-
spectively.

Lemma 4. a, 61, c1, d1 are all distinct.

Proof: Since G is triangle free, by symmetry it is enough to prove that a;
and c; are distinct. Suppose not.

e (Step 1) Go := (a,b,c,d, a1 = c1), V¥# := {a,c};

e (Step 2) I* := {a,c};

o (Step 3) G* := Gy;

e (Step 4) v* = 5,é =9, since a; must have degree 3 (lemma 2);

e (Step 8) i =1, a contradiction. o
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To prove Proposition 1, we need to show that a; is adjacent to ¢; and b,
is adjacent to d;. Suppose that a; and c; are not adjacent.

Lemma 5. a; or c; has degree 2.
Proof: Assume deg(a;) = deg{c;) = 3.
o (Step 1) Go := (a,b,¢,d,a1,¢1), V¥ := {a,c};
e (Step 2) I* := {a,c};
e (Step 3) G* := Go;
o (Step 4) v* =6,&=12;
e (Step 5) i =1, a contradiction. m]

So (wlog) assume that ¢, is of degree 2. Then by Lemma 3, c¢; cannot
be in a 4-cycle, hence it cannot be connected to b; or to d;. Therefore, ¢;
has a neighbor ¢ which is distinct from all previous vertices. By Lemma
2, deg(ca) = 2.

Lemma 6. ¢, is not adjacent to a;.

Proof: Suppose it is. In this case deg(a;1) = 3 by Lemma, 2.
e (Step 1) Go := {(a,b,c,d, a1, 1, ¢2), V¥ := {a,c,c1,c2, };
e (Step 2) I* := {a,c,c2};
e (Step 3) G* := Gy;
o (Step 4) v* =7,é=11,;
e (Step 5) 1 = 2, a contradiction.

Let c3 be the other neighbor of c; (we may have c3 = b; or c3 = dj, but
c3 is distinct from a, b, ¢, d, a1, €1, ¢2). By Lemma 2, c3 has degree 3. (]

We can finish the proof of Proposition 1 now:
e (Step 1) Go := (a,b,¢,d, a1, 1, c2,c3), V¥# := {a,c,c1,c2};
o (Step 2) I* :={a,c,c2};
o (Step 3) G* := Gy;

e (Step 4) v* = 8,12 < é < 14 (The edges adjacent to a,c and c; give
eight; since deg(cz) = 3, two more edges are deleted at cg; and at
least one more at a;, even if ¢; and c3 are adjacent, since then a; has
degree 3. As b; # di, c3 can not be equal to both b; and d;, so at
least one further edge was deleted at b or d);
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e (Step 5) i = 2, a contradiction.

Thus a; is adjacent to c;. Similarly, b, is adjacent to d;, proving Propo-
sition 1. ) O

4 Proof of Theorem 2

By Proposition 1, every edge-critical graph with girth 4 contains H as a
subgraph. To prove Theorem 2, we will show that H cannot be a proper
subgraph.

Suppose that H (with vertices denoted by a,b,¢,d, a1, b1, c1, and d; as
in Section 3) is a proper subgraph of some G € S. Choose G as small
as possh this property. Since G is connected, at least one of the vertices
a1,b1,¢1,d; has degree 3 in G. Wlog assume deg(a;) = 3, then by Lemma
2, deg(cy) = 3. We will try to get a contradiction as before.

e (Step 1) Go := (a,b,¢c,d, a1, 1), V# := {a,c};
o (Step 2) I'* := {a,c};

e (Step 3) G* := Go;

o (Step 4) v* =6,é =11;

e (Step8)1=2.

This is no contradiction yet, since i* is not greater than . We can argue,
however, as follows.

Lemma 7. The connected components of G' = G\ G* are all isomorphic
to H.

Proof: We must have i > i’ + 2, since I* U I’ will be an independent set
in G for any independent set I’ of G’. Therefore
e = e—11 = 13v/2—14i—11 < 13(v/+6)/2—14(i’+2)—11 = 13v'/2—147,
so by the FJ inequality we must have e’ = 13v’/2 — 144’ (and therefore
i = ¢’ + 2). Furthermore, no connected component of G’ can be cubic (G
wouldn’t be connected). By our hypothesis on G, all connected components
of G’ must be isomorphic to H. (]

Now define I** := {b,d, c;}. Though N(I**) is not a subset of V* (hence
I** is not independent from every independent set I’ of G'), we will now
find a maximum independent set I’ of G’ such that there will be no edges
between I’ and I'**. This will yield i > i/ + 3, a contradiction.

Let G’ = kH for some natural number k. (Actually k¥ < 2 can easily be
seen.) This gives i/ = 3k, and we need to find an independent set I’ in G’
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with |I'| = 3k which is disjoint from N(I**). Since |[N(I**)NV’| = 3, in
each component H of G’ we must have
— a degree 2 vertex which is not in N(I**), and

— two degree 3 vertices that are not adjacent to this degree 2 vertex (or
each other).

Take these three vertices in each component to form I’. m]

5 The principle of the computer algorithm

Having completed the non-cubic case, we will now turn to edge-critical
cubic graphs in G. By the previous parts, such graphs must have order »
divisible by 14 and girth g at least 5. We will describe a computer program
that was used to confirm that L and P(7) are the only such graphs for
v = 14, and that there are no such graphs for v=28 or v=42.

Since programs are very sensitive to even small errors, it is necessary to
be able to check the results independently in as many cases as possible.
To be able to do this, we designed the program to work not only for the
cases in question, but to be able to generate all sets S = S, ¢i,g+ With v
even, e = (3/2)v, and g > 4. For v < 20 we constructed all S =S, ¢ ; o+
for all possible values of g and 7 once with the described program and
once filtering complete lists of cubic graphs with up to 20 vertices by an
independent program computing the size of a maximal independent set.
The results were the same.

Although the lists were generated by the computerprogram minibaum
(see [3] or [2]), on which the following algorithm is based, thn be regarded
as independent, as the numbers of graphs in the list were compared with
other results (see {12] and [11]) and the graphs were tested for being non-
isomorphic by using the (independent) computerprogram nauty (see [9] and
[10]).

An important problem is of course to avoid the generation of isomorphic
copies. This problem is solved efficiently in [2]. So the construction principle
and all the routines necessary to avoid the generation of isomorphic copies
are taken from the minibaum program described in that paper. Here we
will not describe how these routines work, but refer the reader to [2].

Our computer algorithm, which we will now discuss, is based again on
the 5-step routine described in section 2.

To construct all G € S = S, 4+ On the vertex set {1,...,»}, we will
start with the initial graph Gp containing only the edges (1, 2), (1, 3), and
(1,4). (So 5,...,v are isolated vertices at the beginning.) During the
construction there is always exactly one nontrivial connected component
Gyp. The vertices in Gy are labelled 1...v9. In the cubic case, vertices are
saturated, iff they have valence 3 in Gy. The unsaturated vertex with the
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smallest label is called the border vertex and is denoted by b(Gy).

e (Step 1) To construct the new Gg out of the old Gy, try to connect
b(Gp) to other unsaturated vertices in every way compatible with the
requirement that the vertices in Gp have consecutive numbers. Of
course only edges where the endpoints have distance at least g — 1
in G may be inserted, in order to get only graphs with the required
minimal girth.

Define V# := {1,...,b(Go) — 1} and proceed to Step 2 whenever

b(Go) is not yet connected to a vertex with a number larger than
b(Gh)-

During the construction process we always eztend Go by connecting its first
unsaturated vertex to other vertices, in such a way that vertices in Vo are con-
secutively numbered (and that the mazimum degree of Go remains 3 and its
girth remains at least g). We proceed to (Step 2) whenever the first unsat-
urated vertez in Go is not yet connected to a verter in V — V#. (This will
first happen when Eo = {(1,2),(1,3),(1,4)}, next (assuming v > 6) when Eop =
{(1,2),(1,3),(1,4),(2,5), (2,6)}, etc.)

¢ (Step2) Construct all possible independent sets I* C V#.

Concerning the implementation it should be noted that after constructing the
independent sets we store them. These sets can be used as parts in independent
sets in all graphs conlaining Go. This means that if e.g. 1000 graphs are evolving
from G, then the computation of all the parts of the independent sets that con-
tain vertices of 1,...,b — 1 is carried out only once instead of 1000 times. This
parallelization of tests in a generation process is similar to a technique used for
the implementation of the isomorphism avoiding routines (see [2]).

o (Step 3) Find G* and G'.

¢ (Step 4) Compute v = v — v* and a bound for ¢ by ¢/ < " :=
[(3v' — D)/2] with D the sum over all valencies of vertices in V’.

e (Step 5) Compute ' = [13v'/28 — €”/14]. As before, if ¢* + i’ > i,
Gp can not lead to a member of S. At this point, one can also
use Theorem 2: If (13v' — 2¢”)/28 is a natural number and g > 5
or v’ is not a multiple of 8 or ¢” # 10v'/8 then one can use i’ =
13(v" — 2¢”)/28 + 1.

As an example, suppose you want to construct Si4,21,5,4+. Figure 3 shows

a stage where Go is spanned by Vo = {1,...,8}, b(Go) = 5. Vertices in I*
are marked by a circle (so i* = 3) and members of N(I*) are surrounded by a
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square. We now have G* = Go (which is not always the case), v' = 6, and
¢ < |(83+6—0)/2] =9, yielding i’ = 3, a contradiction.

9 12
e o
10 13
o O
11 14
o O

Figure 3. An example

A program based on this algorithm and run on a dec5000/240 took about
7.2 minutes to construct Sag 40,10,4+ (as a test) and about 5.2 minutes to
construct S28,42,10,5+-

For the larger cases, some improvements had to be made.

6 The function T

We can improve the algorithm described above if in (Step 4) we consider
the degrees of individual vertices in G’ rather than just the total valence
D. Let us first introduce some notations. The valence vector V(G) of a not
necessarily connected graph G with maximum degree 3 is defined as
V(G) = [zo,x1, T2, 3] With z; the number of vertices of G with degree
3-
Let X = [:Bj]osjss and X'’ = [z’]o<j<3 be vectors in N%. We say that X

dominates X’ (denoted by X > )g ’) if we have

(1) Yoo @i = Tj_o ) s and (i) 5,25 2 Yo, o) form € {1,2,3}.

If X and X’ are valence vectors of graphs G and G’, condition (i) just
says that the graphs have the same number of vertices, while condition (ii)
says that there is a bijection between the vertex sets of G and G’ so that
every vertex w € G is assigned a vertex w’ € G’ with deg(w) > deg(w’).

Now we define T'(X') to be the minimal independence number of all (not
necessarily connected) triangle free graphs whose valence vector is domi-
nated by X. It is easy to see that if X dominates X’ then T'(X) < T(X’).
This is what makes the function T useful for us: We can give a lower bound
on the size of a maximal independent set I’ of any possible G’ by computing
the T value of a valence vector X which dominates the valence vector of
any possible G’.

To calculate the values of the function T, the following lemma is helpful.
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Lemma 8. At least one of the following statements is true for any vector
X =[z;locj<s :

a.) There is a connected graph G with V(G) = X and i(G) = T(X).

b.) T(X) = T(X1)+ T(Xz) for some X1, X2 € N* with X = X; + X, and
at least one element in each of X, and X5 is not zero.

c.) There is some m € {1,2,3} so that T(X) = T'(X’) with X' given by
Tm=2m—1,%,_  =Zm-1+1,and z; =z; for j¢ {m -1

Proof: Let G be a graph with V(G) dominated by X and i(G) = T(X).
If G is not connected, say G = G1 U G with G; a connected component
of G and G2 nonempty, then clearly b.) is fulfilled with X; = V(G,),
X2 = V(G3) since in this case T'(X,) < i(G1) and T(X32) < i(G2). A strict
inequality in either case would give T(X) < T(X;) + T(X2) < #(G,y) +
i(G2) = i(G), a contradiction.

So suppose G is connected and let X” := V(G). If X ” = X then we have
case a.), so suppose there is an index m with z,, # x . Choose m as large
as possible and define X’ by z;, = zm — 1, Zp,_y = Zm-1+1 and 7} = z;
for j & {m —1,m}.

Since z;;, < Zm, we have X > X’ > X” and therefore i(G) = T(X) <
T(X") < T(X") < i(G) with the last inequality given by the fact that G is
one of the graphs evaluated for T(X"). This gives c.). o

If we now had lists of all graphs in G of order up to v/, then we could
determine the minimal value of #(G") for all possible G’ W1th a given valence
vector that has E :—0T; at most v'. This data could then be used to
determine the valu&s of T: Start.lng with the zero vector and proceeding
in an increasing order given by 3> j=0Z; and Z,—o Jj * z; inside the classes
where the first sum is the same, we could easily determine the values of T
by comparing the results we get by testing the 3 cases in the lemma. This
means: Given a vector X, we have to compare all the values obtained in
the following ways:

e Look for connected graphs with X as their valence vector (a.)) and
determine their independence numbers.

o Split the vector as described in b.) and calculate the sum of the
T-values of the two parts.

e Change the vector as described in c.) and look for the T-value of the
modified vector.

Finally take the smallest of the values obtained this way as T'(X). The
recursive order given above guarantees that all the values of T needed in
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this process are already known, since in b.) the first sum is decreased for
both parts that have to be evaluated and in c.) the first sum stays the
same, while the second is decreased. Note also that T'([zo, z1, T2, z3]) =
zo + T'([0, z1, 22, Z3])..

We used the graph generator multigraph to generate such lists. This
graph generator works similar to minibaum and has been tested by com-
paring the output e.g. with the well known generation program MOLGEN
(see e.g. [6]). Of course this was a very time consuming task, so that the
number up to which all the graphs were generated had to be a compromise
between more information on G’ (and hence faster generation of S) and a
reasonable computing time for the lists used to compute T. We decided to
generate these lists for v’ < 20 and use only the information on the total
valency D in case of graphs G’ with more vertices. Since the results of the
computations might be interesting for other applications as well, they are
given in a table at the end of the text.

So we replace Steps 4 and 5 of our algorithm as follows:

e (Step 4) First calculate »'. If v’ is larger than 20, determine an upper
bound for e’ by ¢ < [(3v" — D)/2], else determine a dominating
valence vector X’ by choosing for each vertex in ¥V’ the number of
free valences as an upper bound for the degree in G'.

e (Step 5) Compute #’ as in (step 5) if »' > 20 and by ¥ = T(X’)
otherwise. Again, if i* + ¢ > ¢ then Gy can not lead to a member of
S.

Using these data the generation of S2s 42,105+ took about 3 minutes and
that of S42,63,155+ about 170 hours. In the 42 vertex case the storage
requirement had to be reduced to a value that could not guarantee optimal
running times (see [2] for details).

It might also be of some interest that for both v = 28 and v = 42,
we could always decide that the independent sets would become too large
before completing the graphs. In the 28 vertex case the maximum number
of edges inserted was 38 ( out of 42 ) and in the 42 vertex case it was 54
( out of 63 ).

7 Summary and further results

Because of conjectures 1 and 2 about cubic graphs and other questions
about 2-connected graphs with 8¢ < 3v, all graphs in G with independence
ratio smaller than 3/8 are interesting. In this section we will call these
graphs 3/8-graphs and give complete lists of themn for some vertex numbers
and at least examples for others.
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In order to determine for which vertex numbers such graphs can possibly
exist, the FJ inequality can be used. Up to 42 vertices, the following num-
bers have to be checked: v =11, 14, 19, 22, 25, 27, 28, 30, 33, 35, 36, 38, 39, 41,
and 42. Note that for some numbers cubic and non-cubic 3/8-graphs might
exist.

For the cubic case, v has to be even, so v = 14, 22, 28, 30, 36, 38, and
42. The running time of the program, based on the described algorithm,
does not only depend on the number of vertices, but also on how close the
ratio i/v is to 5/14. Because 38 is relatively large and 14/38 — the minimal
possible independence ratio for this vertex number — is not close encugh
to 5/14, we could not do a complete search for Ssgs7,144. So the pro-
gram was used to construct S14,21,5,4+, 522,33,8,4+, 528,42,10,4+, 530,45,11,4+,
S36,54,13,4+, and Ss2,63,15,4+-

The generated lists seem to relate Conjecture 1 and Conjecture 2 and
motivated us to formulate Conjecture 3: Except the 3 graphs given in figure
1 and figure 4, which are the graphs L, P(7), and P(11) (a generalized
Petersen graph on 22 vertices), they all contain one of the parts given in
figure 5 and figure 6. These subgraphs are nonplanar and must be attached
to the rest by a bridge. The F-graph in figure 5 was known before and used
e.g. by Locke [8] to construct graphs with small independence number. The
graphs in figure 6 did not appear in the literature up to now. So if one of
these subgraphs had to be present in any large graph in G with independence
ratio smaller than 3/8, both conjectures would be true.

Readers interested in the lists can easily construct them: Except for L,
P(7), and P(11), the graphs can all be obtained by using the 4 building
blocks in figure 2, figure 5, and figure 6. Here we will only give the numbers
of graphs:

IS14,21,5,4+4] = 2, |S22,338,44] = 2, |S28,42,10,4+| = 0, |S30,45,11,4+| = 3,
|S36,54,13,4+] = 0, and |S42,63,15,44 | = 0.

It is obvious that there are larger cubic 3/8-graphs that do not only
consist of these building blocks (e.g. a 60 vertex graph built of a 5-cycle
with 5 F-graphs attached). Conjecture 3 is motivated by the expectation
that there is no large graph that does not contain one of these bridge
connected components at all.

Now we will turn to the case of non-cubic graphs. First we will prove

Proposition 2. F is the only graph in G withv =14k -3 andi = 5k -1,
k e N. (Implyingk=1.)

Proof: By Theorem 1, we get e > 21k — 171 Since G has maximum degree
3, this gives e = 21k — 5. Let z be the unique vertex of degree 2, and let y
and z be its two neighbors.

e (Step 1) Define Gy := (z,y, z), V# := {z};
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¢ (Step 2) Choose I* = {z};

e (Step 3) G* :== Gy, G’ =G - G*;

e (Step 4) v* =3, € =6 (both y and 2 have degree 3 in G);
e (Step 5)i*=1,i =5k—-2.

We have not arrived at a contradiction yet, but, just like in the proof of
Theorem 2, we argue as follows. :

Figure 4. P(11): A generalized Petersen graph

Lemma 9. G’ is edge-critical.

Proof: We have v’ =14k —6, ¢’ =21k —11, and ¢ <i—1 =5k —2, hence
by Theorem 1 we get ¢’ = 21k — 11 < 13(v'/2) — 144’ < 21k — 11, proving
our Lemma. o

By Theorem 2, G’ (which has m < 4 connected components, none of
which are cubic) must be the disjoint union of m copies of H, and therefore
has v/ = 8m vertices. This gives 14k — 6 = 8m, and the only solution of
this Diophantine equation withm <4ism =1, k = 1, giving G’ = H.
The symmetries of H then imply that G = F. (]

Thus we have a unique 3/8-graph for v = 11, and none for » = 25,39,
etc. The case v = 19 was decided completely by the computer when doing
the calculations for table 1: the two 3/8-graphs are F'1 and F2 of figure 6.
Examples for 3/8-graphs for 27, 30, 35, and 38 can be assembled from H, F,
F1, and F2, e.g. H+ F1 provides an example for v = 27. We don’t know if
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these constructions provide all examples for 3/8-graphs for the numbers in
question. The remaining numbers will be subject of further investigations.

=y

Figure 5. The F-graph

A C

B D

A C
B D

B D

Figure 6. The graphs F1 and F2 as drawn by TomaZ Pisanski’s
VEGA-program. The graphs are obtained by gluing the graphs on the
right into the graph on the left in the way described by the labels.
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Table 1.
zyz: A means that a connected triangle free graph with valence vector

(z,, z) has an independent set of size at least A
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