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ABSTRACT. Let G = (V,E) be a graph. A vertex u strongly
dominates a vertex v if uv € E and degu > degv. A set
S C V is a strong dominating set of G if every vertexin V — S
is strongly dominated by at least one vertex of S. The mini-
mum cardinality among all strong dominating sets of G is called
the strong domination number of G and is denoted by v,:(G).
This parameter was introduced by Sampathkumar and Pushpa
Latha in [4). In this paper, we investigate sharp upper bounds
on the strong domination number for a tree and a connected
graph. We show that for any tree T of order p > 2 that is dif-
ferent from the tree obtained from a star K 3 by subdividing
each edge once, ¥,:(T") < (4p — 1)/7 and this bound is sharp.
For any connected graph G of order p > 3, it is shown that
7:(G) < 2(p — 1)/3 and this bound is sharp. We show that
the decision problem corresponding to the computation of 7.¢
is N P-complete, even for bipartite or chordal graphs.
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1 Introduction

Let G = (V, E) be a graph with vertex set V and edge set E, andlet v € V.
The neighborhood of v, denoted by N(v), is defined as the set of vertices
adjacent to v, i.e., N(v) = {u € V|uv € E}. For S C V, the neighborhood
of S, denoted by N(S), is defined by N(S) = UyesN(v), and the closed
neighbourhood N[S] of S is the set N[S] = N(S)U S. For other graph
theory terminology we follow [1].

A set D C V is a dominating set of G if every vertex in V — D is adjacent
to at least one vertex of D. The minimum cardinality among all dominating
sets of G is called the domination number of G and is denoted by v(G). The
domination number has received considerable attention in the literature.

A vertex u strongly dominates a vertex v if uv € E and degu > degv. A
set S C V is a strong dominating set of G if every vertex in V — S is strongly
dominated by at least one vertex of S. The minimum cardinality among all
strong dominating sets of G is called the strong domination numberof G and
is denoted by 4,:(G). This parameter was introduced by Sampathkumar
and Pushpa Latha in [4], who also introduced a similar parameter called the
weak domination number of a graph which was studied further by Hattingh
and Laskar [2].

We define the strong neighborhood N,(v) of v in G to be the set N,(v) =
{u|u € N(v) and degu > degv}. If S is a strong dominating set of G and
v € S, then the set of all vertices w of V — S for which N,(w)N S = {v}
is called the set of private strong neighbors of v and is denoted by PN, (v).
We will need the following property of minimal strong dominating sets, first
observed in [4].

Proposition 1 Let S be a strong dominating set of a graph G = (V, E).
Then S is a minimal strong dominating set of G if and only if eachv € S
has at least one of the following two properties:

P;: There exists a vertez w € V — S such that w € PN,(v).
Py: N,('v) NS =20. 0

The paper is organized as follows. In Section 2, we investigate sharp
upper bounds on the strong domination number for a tree and a connected
graph. In Section 3, we show that the decision problem corresponding to the
computation of 4, is N P-complete, even for bipartite or chordal graphs.

2 Upper bounds on ~,;

In this section, we investigate upper bounds on the strong domination num-
ber of a connected graph. It is well-known (see Ore [3]) that for a connected
graph G of order p, v(G) < p/2. The following lemma shows, however,
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that the strong domination number of a connected graph of order p may
exceed p/2.

Lemma 1 Let G = (V, E) is a connected graph of order p, and let W be
the set of all vertices v of G satisfying N,(v) = @; that is, W = {v €
V |degv > degu for all u € N(v)}. Then,

(@) < 2L P+ IWI

Proof. Among all minimum strong dominating sets of G, let S be chosen
to maximize the sum of the degrees of the vertices in S. Let A be the
set of all vertices of S that have property P;; that is, A consists of all
vertices v of S satisfying PN,(v) # 0. Now let A’ = U,caPN,(v). We
note that |A’| > |A|. Further, we define B = {v € S — A| N,(v) = 0} and
C = S — (AU B). By Proposition 1, each vertex of C has property P;. Let
C'=V —(SU A’). We show that |[C’| > |C|.

We show first that each vertex of C is strongly dominated by some vertex
of C'. Let v € C. Then there must exist a vertex w € V — S such that
w strongly dominates ». If w € A’, then w € PN,(a) for some vertex a in
A and so degw > degv. We now consider the set S’ = (S — {v}) U {w}.
Since v does not have property Pj, every vertex of V — S that is strongly
dominated by v is also strongly dominated by some vertex of S—{v}. Hence
S’ is a strong dominating set of G. Since «,:(G) = |S|, S’ is a minimum
such set. However, the sum of the degrees of the vertices in S’ exceeds that
of S. This contradicts our choice of S. Hence w & A’; sow € C'.

We now show that |C’| > |C|. Since each vertex of C is strongly domi-
nated by some vertex of C’, the set (S —C)UC" is a strong dominating set
of G. However, since S is a minimum strong dominating set of G, it follows
that |C| < |C’]. Hence |A|+|C| < |A'|+|C'| = |V — S| = p—76:(G). Thus,
since B C W, we have v,(G) = |A|+ |B| +|C| < |[W]|+p — 75:(G). Hence,
Yst(G) < (p + |[W])/2, as asserted. o

An immediate corollary now follows.

Corollary 1 Let G = (V, E) is a connected graph of order p. If N,(v) # ]
for allv € V, then v,:(G) < p/2.

Using Lemma 1, we may establish a sharp upper bound on the strong
domination number of a tree. Let T* be the tree obtained from a star K, 3
by subdividing each edge once. (The tree T* is shown in Figure 1. The
darkened vertices form a minimum strong dominating set of T*.) Then T*
is a tree of order p = 7 with . (T*) =4 = 4p/7.
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Figure 1: A tree T* of order p with v,:(T*) = 4p/7.

Theorem 1 For any tree T of order p > 2 that is different from the tree
T* of Figure 1,
49p-1

Vst (T) S 7 ’

and this bound is sharp.

Proof. We proceed by induction on the number m of vertices in the tree
whose strong neighborhoods are empty. The base case when m = 0 follows
from Corollary 1. So, assume that for all trees T” of order p’ > 2 different
from the tree T* and with less than m > 1 vertices whose strong neighbor-
hoods are empty that v,:(7") < (4p’ — 1)/7. Let T = (V, E) be a tree of
order p with m vertices whose strong neighborhoods are empty. Let W be
the set of all vertices v of T satisfying N,(v) =0, so |W| =m > 1. Then
W is an independent set. Since each vertex in N(W) is strongly dominated
by some vertex of W, V — N(W) is a strong dominating set of T. Hence,
we have the following lemma.

Lemma 2 7,(T) <p— [N(W).

If W has a vertex of degree 2, then T is a star K; 2 and 7,(T) =1 <
(4p — 1)/7. So we may assume in what follows that each vertex of W has
degree at least 3. Let S be the set of vertices of W of degree exactly 3, and
let R = W — S. Then each vertex of R has degree at least 4.

Lemma 3 |[N(R)| > 3|R| + 1.

Proof. Let H = (RU N(R)) be the subgraph induced by RUN(R). Then

H is a forest with |E(H)| > 4|R|. Therefore |V(H)| > 4|R|+ 1, and hence

IN(R)| > 3|R| +1. O
From Lemmas 1 and 2, it is easy to obtain

Lemma 4 If [N(W)| 2 3|W|+ 1, then 7,(T) < (4p — 1)/7.
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Lemma 5 If each vertez of W has degree at least 4, then 7,¢(T) < (4p —
1)/7.

Proof. If each vertex of W has degree at least 4, then S =0 and W = R.
The result now follows from Lemmas 3 and 4. o

Lemma 8 If S contains a verter u at distance 2 from some other verter w
of W, then v,e(T) < (4p — 2)/7.

Proof. Let u,v,w be the u-w path in T. Then degv = 2. Let T" be the
tree obtained from T — {u, v} by joining w with an edge to each of the two
neighbors of » in T different from v. Then the degree of w in 7" is one
more than its degree in T', while the degrees of the remaining vertices of
T’ are equal to their degrees in T'. It follows that W — {u} is the set of
vertices of T’ whose strong neighborhoods are empty. Thus, 7" is a tree
of order p’ = p — 2 > 5 with m — 1 vertices whose strong neighborhoods
are empty. Furthermore, since 7" contains a vertex, namely w, of degree at
least 4, T" is different from the tree T* of Figure 1. Hence, by induction,
Yat(T") < (4p'—1)/7 = (4p—9)/7. Let D' be a minimum strong dominating
set of 7. Then D’ U {u} is a strong dominating set of T of cardinality at
most (4p — 2)/7. (u]

In what follows we may assume that S # @ and that every vertex of S is
at distance at least 3 from every other vertex of W, for otherwise ~y,:(T’) <
(4p—1)/7 by Lemmas 5 and 6. Hence |N(S)| = 3|S| and N(S)NN(R) = 9.
Thus |[N(W)| = [N(S)| + IN(R)|.

Lemma 7 If R#0, then v,(T) < (4p — 1)/7.

Proof. By Lemma 3, |[N(R)| > 3|R| + 1. Hence, [N(W)| = |N(S)| +
IN(R)| > 3IS| + 3[R+ 1 = 3|W|+ 1. Thus, by Lemma 4, 7(T) <
(dp — 1)/7. o

Lemma 8 If W =S, then v,:(T) < 4p/7.

Proof. Since W = S, [N(W)| = 3|W|. Therefore, by Lemmas 1 and 2 we
obtain the desired result. o

In what follows we may assume that W = S, for otherwise ~,,(T) <
(4p — 1)/7 by Lemma 7. Thus, by Lemma 8, we know that Ys¢(T) < 4p/7.
It remains for us to show that if v,¢(T) = 4p/7, then T must be the tree T*
of Figure 1. Suppose, then, that ~,¢(T) = 4p/7. Then all the inequalities
in Lemmas 1 and 2 must be equalities. Hence v,(T) = (p + |W|)/2 and
Yst(T) = p — 3|W|. Thus, p = 7|W]| and V — N(W) is a minimum strong
dominating set of T. Let X =V —N[W)]. Then |X| = 3|W|. However, since
each vertex of N(W) has degree at most 2, each vertex of N(W) is adjacent
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to at most one vertex of X. Consequently, each vertex of N(W) has degree
exactly two and is adjacent to a vertex of W and to a vertex of X, while
each vertex of X is adjacent to a unique vertex of N(W). Furthermore, we
note that X is an independent set, for if z,y € X with zy € E(T), then
WU (X — {z}) or WU (X — {y}) would be a strong dominating set of T,
contradicting the fact that W U X is a minimum strong dominating set of
T. It follows, therefore, that if v,:(T") = 4p/7, then T must be the tree T*
of Figure 1.

That the upper bound in the statement of the theorem is sharp, may be
seen as follows. Let F; be the tree obtained from a star K 4 by subdividing
each edge once, and, for k > 2, let Fy, ..., Fi, be k — 1 disjoint copies
of the tree T* shown in Figure 1. For i = 1,2,...,k, let v; denote the
central vertex of F;, and let w; be a vertex adjacent to v; in F;. Let
W = {v;,vs,...,v}. For k > 2, let Ti be the tree obtained from the
disjoint union U¥_, F; of Fy, F, ..., Fj by the addition of the edges w;vi41
for i =1,...,k—1. (The tree Ty is shown in Figure 2. The darkened
vertices form a minimum strong dominating set of 74.) Then T} is a tree
of order p = Tk + 2 with 7,(T) = |W|+ |[N(W)| =4k+1=(4p—1)/7. O

m V2 v3 Va

Figure 2: The tree Ty of order p with ,(T) = (4dp — 1)/7.

Using Lemma 1, we may also establish a sharp upper bound on the strong
domination number of a connected graph.

Theorem 2 For any connected graph G of order p > 3,

2
75t(G) < §(P -1),
and this bound is sharp.

Proof. If p = 3, then 5 (T) =1 < 2(p—1)/3. So we may assume in what
follows that p > 4. Let W be the set of all vertices v of G satisfying N,(v) =
@. Then W is an independent set, and V — N(W) is a strong dominating
set of G, s0 7,¢(G) < p — |[N(W)|. Since p > 4, each vertex of W has
degree at least 3. Let W = {w,,... ,wx}, so |W|=k. If IN(W)| > k+2,
then 7,:(G) < p — |[N(W)| < p—k —2. Thus, [W| =k <p —7:(G) — 2.
Hence, by Lemma 1, 1¢(G) < (p + [W)/2 < (2p — 7a(G) — 2)/2; or,
equivalently, v,:(G) < 2(p — 1)/3. Hence in what follows we may assume
that |[N(W)| < k + 1. Before proceeding further, we prove the following
claim.
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Claim 1 W can be matched to a subset of N(W).

Proof. Let H be the subgraph of G with vertex set WUN (W) and edge set
all edges of G incident with vertices of W. Since W is an independent set,
H is bipartite. We show that |[N(S)| > |S| for every nonempty subset S of
W. We proceed by induction on the cardinality || of the sets S. The base
case when | S| = 1 is trivial since each vertex of W has degree at least 3. So,
assume that |N(S)| > | S| for every subset S of W with 1 < |S| <t < |W].
Let T be a subset of W with [T| = t. Let TV C T with |T| = ¢t — 1.
Without loss of generality, we may assume T = {wy,..., wy—1}. Let H' be
the graph obtained from H be deleting the vertices in W —7”. Then H' is a
bipartite graph with partite sets T’ and N(W). By induction, |[N(S)| > |S|
for every nonempty subset S of T/. Hence it follows from a well known
theorem attributed to Konig and Hall that 7” can be matched to a subset
of N(W) in H'. Let M = {wyvy,... »We—1v;—1} denote such a matching
of T' to a subset {vy,...,v¢—1} of N(W). Then degv; < degw; — 1 for
each i = 1,...,t — 1. A simple counting argument on the edges joining
T and N(T") shows that |[N(T")| 2 t. Thus [N(T)| > |N(T")| > t = |T).
Hence, by the principle of mathematical induction, |N(S)| > |S| for every
nonempty subset S of W. The desired result now follows. ]

By Claim 1, there exists a matching M = {wrvy,... ,wivr} of W to
a subset {vy,...,u} of N(W). By our definition of W, we know that
degv; < degw; — 1 for each i = 1,... ,k. A simple counting argument
on the edges joining W and N(W) shows that |[N(W)| > k + 1. Thus
IN(W)|=Fk+1.

Claim 2 G = Kk,k+l-

Proof. Let vgy; denote the vertex of N(W) that is not incident with an
edge of M. Let qy denote the number of edges joining W and N(W).
Then

k k+1 k
D _degwi =qw < degv; <Y (degw; — 1) + deg ey

i=1 i=1 =1

k
= Zdﬂywi — k +deg i,

i=1

so deguvky1 > k. Without loss of generality, we may assume that Vk41
is adjacent to w;. Hence k + 1 > degw; > deg Yk+1 2 k. Consequently,
degw) = k+1 and deg v, = k. We show next that deg w; = k+1 for every
t=2,...,k. Let H be the subgraph of G with vertex set W U N(W) and
edge set all edges of G incident with vertices of W, and let H' = H — Vkt1.
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Then H’ is a bipartite graph with partite sets W and N(W) — {vg41}.
Then

k k k
Z(degw.- -1)<gq(H) < Zdeg'v.- < Z(degwg -1).
i=1 i=1 i=1

Hence we must have equality throughout. In particular, g(H’) = E.’;l degv;,
and so every vertex v; is adjacent in G only to vertices of W. Furthermore,
degv; = degw; — 1 for every i = 1,2,... ,k. Consequently, degv; = k
and v; is adjacent to every vertex of W. Hence for every i = 2,... ,k,
k41 > degw; > degv, = k and therefore degw; = k + 1. Thus every ver-
tex of W is adjacent to every vertex of N(W). It follows that G = K x41. O

By Claim 2, G = K x+1 and so v5(G) = |W| = k < 2(p —1)/3. This
establishes that 2(p — 1)/3 is an upper bound on v,:(G).

That this upper bound is sharp, may be seen by taking a complete bi-
partite graph Kj k42 and adding an adjacent end-vertex to each vertex of
the partite set of cardinality k + 2, i.e., for each vertex v in the partite set
of cardinality k+2 we add a new vertex v’ and the edge vv’. Let G denote
the resulting graph. Then G is a connected graph of order p = 3k + 4 with
7,;(G)=2(k+1)=2(p—1)/3 0o

3 Complexity and algorithmic results

In this section we show that the decision problem
STRONG DOMINATING SET (SDS)

INSTANCE: A graph G = (V, E) and a positive integer k < |V|.

QUESTION: Is there a strong dominating set of cardinality at most k?
is N P-complete, even when restricted to bipartite and chordal graphs, by
describing polynomial transformations from the following well-known N P-
complete problem:
EXACT COVER BY 3-SETS (X3C)

INSTANCE: A finite set X with [X| = 3¢ and a collection C of 3-
element subsets of X.

QUESTION: Does C contain an exact cover for X, that is, a subcollec-

tion C’ C C such that every element of X occurs in exactly one member of
c.

Theorem 3 SDS is NP-complete, even for bipartite graphs.
Proof. It is clear that SDS is in NP. To show that SDS is an NP-
complete problem, we will establish a polynomial transformation from X3C.

Let X = {z1,...,Z34} and C = {C},...,Cn} be an arbitrary instance of
XscC.
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We will construct a bipartite graph G and a positive integer k such that
this instance of X3C will have an exact three cover if and only if G has a
strong dominating set of cardinality at most k.

The graph G is constructed as follows. Corresponding to each variable
z; € X, we associate the single vertex named z;. Corresponding to each
set Cj, we associate the graph F; which is obtained from the disjoint union
of K2 m and Ky m43 by joining a vertex c; of degree m in the K3, with
the central vertex w; of the Kjm+3. Let w} be the vertex of degree m
at distance 2 from c; in F;. The construction of the bipartite graph G
is completed by adding the edges {z:c;|z; € C;}. It is easy to see that
the construction of the graph G can be accomplished in polynomial time.
Let X = {z1,...,23,}, C = {e1,...,cm}, and set k = 2m + gq. We show
that C has an exact 3-cover if and only if G has a strong dominating set of
cardinality at most k.

Suppose C’ is an exact 3-cover for X. Then |C’'| = q. If m > 2, let
S = UL {wj;,wj} U{c;|C; € C'} and if m = 1, let S consists of ¢; and
its two neighbors in F;. Then S is a strong dominating set of cardinality
k = 2m + q. Suppose, conversely, that S is a strong dominating set of G of
cardinality at most k. Note that |(V(F;) —{¢;})nS|>2forj=1,...,m.
Let 8’ =SN(XUC). Then |§'| < k- 2_’,.":1 I((V(F;) - {})n S| <
k —2m = q. We show now that S’ C C. Suppose |[SN X| = z. Then
ISNC| <L |8 - SN X| < g—=z, so that [IN[SNC]N X| < 3(g —z). It then
follows that | X — (SN X) - (N[SNCINX)| > 39—z — (3¢ — 3z) = 2z.
If z > 0, then z; & N[S] for some ¢ =1,...,3q, which contradicts the fact
that S is also a dominating set of G. This implies that S’ C C and &'
strongly dominates X. Let C’ = {C;|c; € S}. Then |[C'| = |S’| < q and,
since S’ strongly dominates X, C’ must be a cover for X. However every
cover of X has cardinality at least g. Consequently, |C’| = q and €’ is an
exact 3-cover for X. O

Theorem 4 SDS is NP-complete, even for chordal graphs.

Proof. It is clear that SDS is in NP. To show that SDS is an NP-
complete problem, we will establish a polynomial transformation from X3C.
Let X = {z1,...,73,} and C = {C},...,Cm} be an arbitrary instance of
X3cC.

We will construct a chordal graph G and a positive integer k such that
this instance of X3C will have an exact three cover if and only if G has a
strong dominating set of cardinality at most k.

The graph G is constructed as follows. Corresponding to each variable
z; € X associate the single vertex z;. Corresponding to each set C; as-
sociate the single vertex c¢;. The construction of the chordal graph G is
completed by adding the edges {z:c;|z: € C;} and edges so that the c;’s
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induce a clique; that is, ({c1,...,cm}) = K. It is easy to see that the
construction of the graph G can be accomplished in polynomial time. Let
X ={z1,...,234}, C = {c1,...,m}, and set k = q. We show that C has
an exact 3-cover if and only if G has a strong dominating set of cardinality
at most k.

Suppose C’ is an exact 3-cover for X. Then |C’'| = g, and {¢;|C; € C'} is
a strong dominating set of cardinality k = q. Suppose, conversely, that S
is a strong dominating set of G of cardinality at most k = q. We show that
S C C. Suppose |[SNX|=z. Then |SNC| < |S|-|SNX| < ¢—z, so that
IN[SNCINX| < 3(g—=z). It then follows that | X —(SNX)—(N[SNC]NX)| >
3¢ —z — (8¢ —3z) = 2z. If £ > 0, then z; & N|[S] for some i = 1,...,3q,
which contradicts the fact that S is also a dominating set of G. This implies
that S C C. Let ¢’ = {Cj|c; € S}. Then |C’'| = |S| < ¢ and, since S is
a strongly dominating set of G, C’ must be a cover for X. However every
cover of X has cardinality at least g. Consequently, |C’| = q and C’ is an
exact 3-cover for X. (]

A linear algorithm for computing ~,:(T) for a tree T is readily obtained
by constructing a dynamic style algorithm using the methodology of Wimer
(see [5]). We omit the details of the algorithm since a similar algorithm is
presented in [2] and can easily be adapted to compute the value of (T
for any tree T'.
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