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Abstract

Each vertex of a graph G = (V, E) dominates every vertex in its
closed neighborhood. Set S C V is a dominating set if each vertex
in V is dominated by at least one vertex of S and is an efficient
dominating setif each vertex in V is dominated by exactly one vertex
of S. The domination excess de(G) is the smallest number of times
that the vertices of G are dominated more than once by a minimum
dominating set. We study graphs having efficient dominating sets.
In particular, we characterize such coronas and caterpillars as well
as the graphs G for which both G and G have efficient dominating
sets. Then we investigate bounds on the domination excess in graphs
which do not have efficient dominating sets and show that for any
tree T of order n, de(T) < 2n/3 —2.

*Research supported in part by the National Science Foundation under Grant CCR-
9408167

JCMCC 26 (1998), pp. 83-95



1 Introduction

In general, we follow the notation and terminology of [15]. Let G = (V, E)
be a graph with |V| = n and |E| = m. For a generic invariant u(G), let
# = p(G) and T = u(G). Each vertex v € V dominates every vertex in its
closed neighborhood N[v]. Set S C V is a dominating set if each vertex in
V is dominated by some vertex of S. In an independent dominating set, no
two vertices of S are adjacent. The domination number y(G) and indepen-
dent domination number i(G) are the smallest orders of a dominating set
and an independent dominating set, respectively. If S C V' is a minimum
cardinality dominating set, then we say that S is a 7(G)-set, or briefly a
v-set. For comprehensive works on domination, see [22, 23].

Much attention [1, 18, 19, 28, 29, 30] has been given to graphs satisfying
it = 9. When i = ¥ there exists a minimum dominating set S in which each
vertex of S is dominated exactly once. We are concerned with an even
stricter constraint requiring that each vertex of V be dominated exactly
once. Set S is an efficient dominaling set if each vertex in V is dominated
exactly once by S. In other words, S is a dominating set and the distance
d(u,v) between any pair of vertices v and v in S is at least three (that is,
S is a packing that dominates). For brevity we call a graph G efficient if G
has an efficient dominating set. This concept was first considered by Biggs
[4] who looked at it in terms of perfect 1-error correcting codes. Not every
graph is efficient. Bange, Barkauskas, and Slater [2] introduced a parameter
that measures how close one can come to dominating every vertex given
that no vertex can be dominated more than once. Specifically, the efficient
domination number of G, denoted F(G), equals the maximum number of
vertices one can dominate with each vertex dominated at most once. Let
deg(s) denote the degree of vertex s. Then |N[s]| = 1 + deg(s) and

F(G) = max {)_(1+deg(s)) : u,v € S implies d(u,v) > 3}
SES

is the maximum amount of domination one can do with a packing. Hence
when F(G) = n, G is efficient. Bange et al [2] showed that when F(G) =n
then any packing S that is an efficient dominating set has |S| = 7(G).
They further showed that deciding if F(G) = n is an NP-complete prob-
lem, and they presented a linear time algorithm to determine F(T') for a
tree T. Later, together with Host [3], they studied efficient domination in
grid graphs. Grinstead and Slater [13] presented a linear time “template”
algorithm for several parameters, including F', for series-parallel graphs.
Efficient domination was further investigated by Livingston and Stout [26]
who called it “perfect domination”. They determined the existence of ef-
ficient dominating sets in several families of graphs popular in network
design including trees, meshes, and hypercubes. Wieren, Livingston, and

84



Stout [31] gave an algorithm to construct efficient dominating sets for cube-
connected cycles in the cases for which they exist and to prove non-existence
otherwise.

Obviously, every efficient dominating set is also an independent domi-
nating set. However, not all independent dominating sets are efficient. For
instance, the cycle C4 hasy = i = 2 and two vertices are dominated twice by
any minimum dominating set. We define the domination ezcess de(G) to be
the minimum taken over all minimum dominating sets S = {v1,v2, ..., vy}
of S°I_, |N[vi]| — n. That is, the domination excess is the smallest num-
ber of times that the vertices of G are dominated more than once by any
minimum dominating set. Then de(G) = 0 if and only if G is efficient. For
example, the cycles Cy,Cs,Cs have de = 2,1,0, respectively, and the join
P4 + P, has de = 4 achieved by a y-set formed from any two vertices of
degree five. Hence the domination excess number is another measure of
how close a given graph is to having an efficient dominating set.

In Grinstead and Slater [12, 13] the influence of a vertex set S is defined
by I(S) = ¥,cs5(1 + deg(s)). Thus F(G) equals the maximum influence
of a packing. Rather than having each vertex dominated at most once, if
we require that each vertex be dominated at least once then the redun-
dance R(G) defined in {12, 13] and also studied by Johnson and Slater
[24]) is the minimum influence of a dominating set. Namely, R(G) =
min {3,.s(1+ deg(s)) : S is a dominating set}. Note that F(G) < n <
R(G), and F(G) = n if and only if R(G) = n. As shown in some following
examples, the packing that achieves F(G) might not be a maximum cardi-
nality packing, and the dominating set that achieves R(G) might not be a
minimum cardinality dominating set. Smart and Slater [27] have the fol-
lowing families of parameters under study. For ¥(G) < k < n, let R(G; k)
be the minimum influence of a dominating set of order at most k. Let p(G)
denote the maximum order of a packing and for 1 < k < p(G), let F(G; k)
denote the maximum influence of a packing of order at least k. We observe
that the domination excess satisfies de(G) = R(G;7) — n.

In Section 2, we study efficient graphs, i.e., graphs G having de(G) = 0.
Then in Section 3, we turn our attention to graphs which are not efficient
and investigate bounds on the domination excess of these graphs.

2 Graphs With Efficient Dominating Sets

Of course, graph G is efficient if and only if each of its components is. Hence
we need to consider only connected graphs. Many interesting families of
graphs are efficient, for example, the complete graph K,, the path P,
and for n = 0 (mod 3), the cycle C,,. We begin with two fundamental
observations from [2].
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Observation 1 Graph G is efficient if and only if some subcollection of
the closed neighborhoods {N[vi], N[vo], ... ,N[v,]} partitions V.

Observation 1 characterizes efficient graphs. On the other hand, Bange,
Barkauskas, and Slater [2] show that there is no forbidden subgraph char-
acterization for such graphs. The next observation from [2] establishes that
any efficient dominating set is a2 minimum dominating set.

Observation 2 If G is efficieni, then all efficient dominating sets of G
have the same cardinality 4.

We now make additional observations which also follow directly from the
definition of an efficient dominating set. We first mention that if y = 1, then
G is efficient. We write diam(G) for the diameter of G. A comprehensive
survey of distance in graphs is given in [6].

Observation 3 If G is efficient, then diam(G) > 3 or y(G) = 1.

Our first theorem establishes an upper bound on the size of a graph
having an efficient dominating set.

Theorem 1 If G is efficient, then

mSn—‘y+(n;7)

and this bound is sharp.

Proof. If G has an efficient dominating set S, then there is no edge with
both its vertices in S. Further, each vertex in V' —S has exactly one neighbor
in S. This accounts for n — 4 edges. The maximum number of edges in the

induced subgraph < V — S > is ( n ; 7 ) Complete graphs achieve the
upper bound. O

Recall that 6 and A are the minimum and maximum degrees of G,
respectively.
Theorem 2 If G is efficient, then

n n
< .
A+1S7S 5
Proof. The lower bound is well known [25]. Let S = {v;,vs,...,v,} be an
efficient dominating set for G. Then S partitions V into N([v;] U N[vs] U
. UN[v,]. Since deg(v;) > 6 and N(v;)NS = @ for all v; € S, we have
[V—-S|>6y. Hencen—y > 8yson> (6§ +1)y. O
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Corollary 2.1 If an efficient graph G is r-regular, then y = n/(r + 1).

Obviously, not all regular graphs are efficient, e.g., K, , has de = 2 for
r > 2. We note that an r-regular graph G is efficient if and only if (r+ 1)|n
and ¥ = n/(r + 1). Moreover, if a regular graph is efficient, then all its
minimum dominating sets are efficient. A theorem due to Livingston and
Stout [26] characterizes the efficient hypercubes.

Theorem 3 ([26]) The hypercube Qy is efficient if and only if (h + 1)]2%.

We mentioned above that the cycle C, is efficient if and only if n =
0 (mod 3). We now consider other families of efficient graphs. Let V(G) =
{v1,v2,... ,v}. The corona G o H, introduced by Frucht and Harary [9],
is the graph formed by one copy of G and n copies H; to H, of H in which
each v; € V(G) is joined to every vertex in the copy H;.

Theorem 4 The corona GoH is efficient if and only if G is K,, ory(H) =
1.

Proof. Obviously, V(G) dominates G o H so ¥(G o H) < n. Further, each
H; must be dominated by either v; € V(G) or a dominating set of H;.
Hence v(G o H) = n.

If G is K,, then V(G) is an efficient dominating set for Go H. If
v(H) = 1, then the union of the dominating sets of the copies of H is an
efficient dominating set for Go H.

Conversely, let the corona G o H have an efficient dominating set S. If
S = V(G), then V(G) is an independent set and G is K,,. Thus assume
that at least one vertex in S is in H;. Then v; € S since S is an efficient
dominating set. Further if another vertex of H; is in S, then S would
excessively dominate v;. Thus y(H) =1. O

A caterpillar, introduced by Harary and Schwenk [21], is a tree T which
contains a path u;,us,...,u;, called its spine, such that each vertex of T
is either on the spine or adjacent to a vertex on the spine. A sequence of
non-negative integers (11,12, ...,%x) where t; is the number of endvertices
adjacent to u; for k& > 2 is associated with T". Both this sequence and its
reverse sequence define T. The code of the caterpillar is the larger of these
two sequences, as in Hage and Harary [14]. Although Bange, Barkauskas,
and Slater [2] gave a recursive characterization of efficient trees, we give an
alternative simple characterization for caterpillars in terms of their codes.

Theorem 5 A nontrivial caterpillar G is efficient if and only if ils code
can be obtained recursively from codes T),T,..., Ty = T for Ty = (1) or
Ty = (r,0) forr > 1 and Tjyy formed by concatenating one of the following
two sequences lo code T;:
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s1 =(0,t,0) fort>0
§2 = (1)
If the final code T = (t1,t3,...,tk) hasty =0, then T = (81,12, ..., tk—1+1).

Proof. It is an easy exercise to see that a code formed by concatenating the
above sequences yields an efficient caterpillar. We construct a caterpillar
G with an efficient dominating set S. Note that if ¢; > 2, then u; is in
any minimum dominating set. Also, for ¢; = 1, either u; or its neighboring
endvertex must be in any minimum dominating set. By definition ¢} > 1.
Hence either u; € S or t; = 1 and u; is dominated by the endvertex
adjacent to it. If u; € S, then u; is dominated by u; and u; ¢ S implying
that ¢ = 0. Thus the initial code 7} is either (1) or (t;,0) for {; > 1. In
either case, the last vertex on the spine of T}, say u;, is dominated by S but
is not in S. If the final code T is not yet constructed, then the next vertex
u;41 is not in S since S is an efficient dominating set. Hence ¢;;; =0 or 1.
Case 1. t;41 = 0. Then u;42 € S to dominate u;4; implying that ¢;42 > 0.
Furthermore, if the spine is longer than ¢ + 2, then u;43 is dominated by
u;42 and u;43 € S. Thus ¢;43 = 0. Here we have concatenated the sequence
51 to the code.
Case 2. t;y1 = 1. Since uj+; &€ S, its adjacent endvertex must be in S.
Here we have concatenated the sequence sz to the code.

Either the caterpillar is constructed or in both cases, the last vertex
on the spine of G is not in S but is dominated by S. We have the same
situation as before and proceed recursively. O

We now consider the graphs for which both G and G are efficient, i.e.,

graphs for which de = de = 0. Obviously, the trivial graph K; has this
property. We use the following result from [5] and [17].

Theorem 6 ([5, 17]) If ¥ > 3, then diam(G) < 2.

If graph G has no isolates, then 7 > 2. Three corollaries follow directly
from Theorem 6 and the definition of efficient domination.

Corollary 6.1 If an efficient graph G has no isolated vertices, then 7 = 2.

A pair of adjacent vertices which dominates G is called a dominating
edge.

Corollary 6.2 If G is efficient and ¥ > 2, then G has a dominating edge.

Corollary 6.3 If neither G nor G has isolates and both are efficient, then
diam(G) = diam(G) =3 and y =5 = 2.
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The converse to Corollary 6.3 is not true as can be seen by the self-
complementary graph G obtained from the path Py = z,y, 2z, w and a self-
complementary graph H by joining each of y and z to every vertex H. A
graph constructed in this manner has diam = 3 and v = 2, but is not
efficient.

Next we give a characterization of the graphs with no isolates for which
de = de = 0. The basic forms of these graphs are displayed schematically
in Figure 1.

Theorem 7 Let G and G have no isolates. Then both G and G are efficient
if and only if G has an induced Py = < u,z,y,v > and each vertez in
V —{u,z,y,v} has ezactly one neighbor in each of {u,v} and {z,y}.

Proof. Let both G and G be efficient with no isolates. From Corollary
6.3, y =7 = 2 and diam(G) = diam(G) = 3. Let {u,v} be an efficient
dominating set for G. Since diam(G) = 3 and the distance between u
and v is at least three, d(u,v) = 3. Further two vertices in an efficient
dominating set for G, say z and y, are the vertices of a dominating edge
in G. As u and v do not have a common neighbor, neither u nor v can
be a vertex of a dominating edge of G. Since N[u] N N[v] = @, without
loss of generality, the dominating edge zy must have z € N(u) and y €
N(v). Hence G has an induced Py = < u,z,y,v >. Since {u,v} is an
efficient dominating set for G, {N[u], N[v]} partitions V. Moreover, since
{z,y} is an efficient dominating set for G, {N[z], N[y]} partitions V in G
implying that {N(x), N(y)} partitions V in G. Thus, these are the graphs
described in the theorem for which V — {u,z,y,v} induces an arbitrary
subgraph. Observe that if G is a graph described in the theorem, then so
is G. Conversely, it is easy to see that such a graph is efficient. O

We note that no cycle has this property and the only such tree is P;.

u z y v u z y v u z y v

Figure 1: Schemas of the graphs G having de(G) = de(G) = 0.

3 Domination Excess

Since almost all graphs have diameter two [6, 20], it follows that almost no
graphs are efficient, that is, almost all graphs G have de(G) > 1. First, we
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give a lower bound on the domination excess of graphs with diameter two.

Theorem 8 If diam(G) = 2, then

Proof. Let S be a minimum dominating set of G and diam(G) = 2. For
each pair of vertices u,v in S, either u is adjacent to v or u and v have a

7

2 pairs of vertices in S, at

common neighbor. Thus for each of the
least one vertex is excessively dominated. O

If de = 1, then G has a dominating set S and vertices u,v € S such
that S — {u,v} is a packing and d(u,v) = 2. For example, cycles with
n = 1(mod3) have de = 1. Obviously, if de < 1, then v = i. But graphs
with ¥ = ¢ may not have de < 1, for instance, the complete bipartite graph
Ko fort > 2has y =i = 2 and de = 2. Observe that if ¥ = i, then
de<(n—7v)(v-1).

In general de can become much larger than n. For example, the corona
K,o K, has n=3p, v = p, and de = p(p - 1). We conclude this paper
by deriving an upper bound on R(T,¥(T)) for a tree T, and hence an
upper bound on domination excess in trees. Goddard, Oellermann, Slater,
and Swart [11] gave upper and lower bounds, respectively, for R(T") and
efficiency F(T) for a tree T.

Theorem 9 ([11]) If T is a nontrivial tree of ordern, then R(T) < 3n/2—1
and F(T) > \/8(n + 2)—4. For a caterpillar C with k vertices on its spine,

F(C) > (n+ 2k +2)/3.

For efficiency, the tree T in Figure 2 on n = 2k2+4k vertices achieves the
lower bound of F(T) = 4k = /8(2k% + 4k + 2)—4 = \/8(n + 2) -4, but if
one must use a maximum packing then F(T,p(T)) = F(T,k+1) = 2k +2.
For the caterpillar Cy ; with code (k, k) and k > 2 we have F(Cry) = k+2,
whereas F(Cx ), P(C(x,k))) is constant for all k, namely F(C r),2) = 4.

For redundance, the upper bound is achieved by the caterpillar of Figure
3 with code (2, 3,3, cery 3, 3, 2) for which n = 4k — 2 and R(C(z,s_s',__73'3'2)) =
6k—4 = 3(4k—2)/2—1. For this caterpillar we also have R(C(2,33,...,3,3,2),7)
= 6k—4. However, there are trees with R(T,9(T)) > 3n/2—1. For example,
let T# be any tree on k vertices and T' = T#o0K,. For T we have n = 3k and
¥(T) = k. The unique y(T)-set is V(T#), and R(T, k) = 5k—2 = 5n/3 - 2.
Note that if T# is the path P. then we have a caterpillar C on n = 3k
vertices with R(C,4(C)) = 5n/3 — 2.

Theorem 10 If T is a tree of order n > 3, then R(T,y(T)) < 5n/3 — 2.
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2 2% 1,2 2% 1,2 2k
1 Y 2 Uy Uy Uy U}

v U2 U3k-1t

Figure 2: Tree T with n = 2k? + 4k and F(T) = \/8(n - 2) — 4.

Proof. As noted, the upper bound is achieved, for example, by T# o K for
any tree T#. We will show that 5n/3—2 is an upper bound on R(T,¥(T)) by
induction on n. First, if T is a star Kj n—) then ¥(T) =1 and R(T,1) = n.
Actually, if we assume n > 4 and vertex z is adjacent to three endvertices,
wy, wy, w3, then z is in every v(T")-set and every (T — ws)-set. It follows
inductively that R(T,v(T)) = R(T—ws,y(T~ws))+1 < 5(n—1)/3-2+1 =
5n/3—-2-5/3+1< 5n/3 — 2, and the result holds for T

If T is not a star, let v be a vertex in V(T') of eccentricity e(v) > 3 and
root T at v. Let z € V(T') satisfy d(v,z) = e(v) — 2. Then each descendant
of z is either an endvertex or all of its neighbors except for z are endvertices.
As noted, we can assume no vertex has three or more endvertices in its
neighborhood. Assume N(z) = {z’,u1,u2, ..., u;,v1,v2,...,0j, W1, ..., Wi }
where z is a descendent of z/, deg(u;) = 3 for 1 < t < i, deg(v;) = 2 for
1<t<janddeg(w)=1for1<t<k(and k€ {0,1,2}). Also, because
d(v,z) = e(v)—2 we have i+j > 1. Let Uy = {uy, ..., u;, uf, ..., uj, uf, ..., uf
and Uz = {v1,...,v,v},...,v}} as in Figure 4.
Case 1. Assume k = 2. Let T* = T—U, —Us, then 4(T*) = 4(T)—i—j and
z is in every 7(T')-set and in every y(T")-set. It follows that R(T,v(T)) =
R(T*,v(T*))+5i+3j <5(n—3i—2j)/3—2+5i+3j =5n/3-2-35/3<
5n/3 — 2, and the theorem holds for T by induction.

ANDNDNADN

Figure 3: R(C(z_s,a,s,...a,z)) =3n/2-1.
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Figure 4: Vertex z of height 2.

Case 2. Assume i > 2. Let T* = T — {u;, u}, u}'}, then y(T*) = 4(T) - 1.
Let S* be a y(T*)-set with R(T*,y(T*)) = I(S*). Let S = 5" U {u;}. If
z ¢ S* then I(S) = I(S*) + 4, and if z € S then I(S) = I(S*) + 5. Thus
R(T,¥(T)) < I(S) < R(T*,¥(T*)) +5 < 5(n—3)/3—2+5 = 5n/3 ~ 2 by
induction.

Case 3. Assume j > 2. Let T* = T — {vj,v}}. Then y(T") = (T) - 1.
Let S* be a v(T*)-set with R(T*,y(T*)) = I(S*) and let S = S* U {v}}.
Ifz ¢S then I(S) = I(S*) + 2, and if ¢ € S* then I(S) = I($*) + 3.
Inductively R(T,v(T)) < I(S) £ R(T*,7(T*))+3<5(n—2)/3-2+3 =
5n/3 —7/3 < 5n/3 — 2.

Case 4. Assume i = j = 1. This case is similar to Case 3.

Case 5. The remaining situations have i+ j=1and 0 < k < 1.

Case 5a. Assume i =1and j =k =0, and let 7* = T — {z,u1, u}, uf},
so that y(T*) = 7(T) — 1. As above, let S* be an R(T*,y(T™"))-set and S =
S*U {u,}. It follows inductively that R(T,¥(T)) < I(S) < R(T*,v(T"))+
5<5(n—4)/3—2+5<5n/3 2.

Case 5b. Assume i = k= 1and j = 0, and let T* = T — {u;, u},u}}, so
that y(T*) = ¥(T) — 1. Let S* be an R(T™,y(T*))-set and S = S* U {u1}.
It follows inductively that R(T,y(T)) < I(S) < R(T*,7(T*)) +5 < 5(n —
3)/3—-245=5n/3—2.

Case 5c. Assume j =k =1and i =0, and let T* = T — {v;,v7}. Let
S* be an R(T*,v(T*))- set and S = S*U {v}}. A similar argument shows
that R(T,v(T)) < I(S) < R(T*,v(T*))+3 < 5(n—2)/3-2+3 < 5n/3-2.

Case 5d. Finally, assume j = 1 and i = k = 0, and let T* = T —
{z,v;,v}}, so that ¥(T*) = v(T) — 1. Let S* be an R(T"*,v(T"))-set and
S = 8*U {v}. We have that R(T,v(T)) < R(T*,y(T*)) +4 < 5(n —
3)/3 — 2 + 4 < 5n/3 — 2 inductively. O
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Corollary 10.1 IfT is a nontrivial tree of order n, then de(T) < 2n/3-2.
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