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Abstract

Let H be a graph. An H-colouring of a graph G is an edge-preserving
mapping of the vertices of G to the vertices of H. We consider the
Extendable H-colouring Problem, that is, the problem of deciding
whether a partial H-colouring of some finite subset of the vertices
of G can be extended to an H-colouring of G. We show that, for a
class of finitely described infinite graphs, Extendable H. -colouring is
undecidable for all finite non-bipartite graphs H, and also for some
finite bipartite graphs H. Similar results are established when H is
a finite reflexive graph.

1 Introduction

Let N € Z*, and G be a graph with vertex set V(G) = {:;9;’ P x,y €
Z,k = 1,2,...,N}, and suppose that whenever vg;)vg,)y, is an edge of G,
then |z — 2’| < 1and |y—y'| < 1. The graph G is called doubly periodic (or
DP) if the adjacency of v;(p’;) and vg,), depends only on |z — 2|, |y — ¥/, k
and {. Doubly periodic graphs are clearly finitary objects. The subgraphs
induced by {v,(p';,) 1k =1,2,...,N} for fixed z and y are called cells. If Cay
and Cgrys are distinct cells, and |z — z'| < 1 and ly — ¥’'| <1, then we say
Czy and Ciry are neighbouring cells.

In [5], S. Burr studied the following problem concerning extending par-
tial n-colourings of infinite graphs.
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Extendable n-colouring (n > 3 fixed)

INSTANCE: A graph G and an n-colouring c of some finite
subset of V(G).

QUESTION: Can ¢ be extended to an n-colouring of G?

Burr proved that for any fixed integer n > 3 Extendable n-colouring is
undecidable over the class of doubly periodic infinite graphs. We establish
a generalization of this result.

Let G and H be graphs. A homomorphism of G to H is a function
f : V(G) — V(H) such that f(z)f(y) is an edge of H whenever zy is an
edge of G. That is, a homomorphism is a mapping of the vertices of G
to the vertices of H that preserves edges. Often we write G — H when
there is a homomorphism of G to H. Since an n-colouring of a graph G is
a homomorphism of G to K,,, the term H-colouring has been employed to
describe a homomorphism of G to H. If the vertices of H are regarded as
colours, then an H-colouring of G is an assignment of these colours to the
vertices of G so that adjacent vertices in G are assigned adjacent colours
in H.

In the case when H = K,, the following problem is Extendable n-
colouring.

Extendable H-colouring (H fixed)

INSTANCE: A graph G and an H-colouring ¢ of (the sub-
graph induced by) some finite subset of V(G).
QUESTION: Can c be extended to an H-colouring of G7

We consider here only the case where H is a fixed finite graph.

Suppose H is a subgraph of G. A retraction of G to H is a homomor-
phism r of G to H such that »(h) = h for all vertices h of H. If there exists
a retraction of G to H, then H is called a retract of G. The H-retract
problem is formally defined below.

H-retract
INSTANCE: A graph G for which H is a labelled subgraph.
QUESTION: Is there a retraction of G to H?

Let X and Y be disjoint graphs, and A = (a;1,a2,...,a;) and B =
(by,b2, ..., bx) be finite sequences of vertices of X and Y, respectively
(repetitions allowed). We write X, - Yp to denote the graph formed from
X UY, by identifying a; and b; for i = 1,2,...,k.

We now reformulate Extendable H-colouring as a problem involving re-
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traction of a graph to a labelled copy of H. Let H be a fixed finite graph
with vertex set V(H) = {hy,hs,...,hn}. Suppose an instance of Extend-
able H-colouring (a graph G and an H colouring ¢ : U — {hy, ks, ... vha},
for some finite subset U/ = {uj,us,...,u;} of V(G)) is given. Let A =
(u1,ua,...,ur), B = (c(u1),e(ua),...,c(w)), and G' = G4 - Hg. Any ex-
tension of ¢ to an H-colouring of G defines a retraction of G’ to this copy of
H and, conversely, any retraction of G’ to this copy of H yields an extension
of ¢ to an H-colouring of G.

Let G be a graph. For a subset X of V(G), we denote by G[X] the
subgraph of G induced by X.

A graph G is called almost doubly periodic (or ADP) if there exists a dou-
bly periodic infinite graph F with cells Fyy = F[{v$}),v$2), . .. N (v €
Z), such that G' can be obtained from F by selecting a proper subset

T C{1,2,...,N} and, for each t € T, identifying all vertices of F belong-

ing to the set {vﬁ,',) :x,y € Z}. See Figure 1 for a schematic representation
of such a graph. We will say that G arises from F and T.

Identified vertices
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Figure 1. An ADP graph.

A graph (' is called nearly almost doubly periodic (or NADP) if there
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exists a nonempty almost doubly periodic graph G and a (possibly empty)
finite graph S such that G’ = G4 - Sp for some finite sequences A and B.
If G is doubly periodic we call G’ a nearly doubly periodic (or NDP) graph.

It follows from the earlier remarks on equivalence of H-retract and Ex-
tendable H-colouring that the usefulness of NADP graphs lies in modelling
finite partial H-colourings of ADP graphs. In view of the above construc-
tion and definitions, Burr’s result asserts that for every integer n > 3,
K,-retract is undecidable over the class of NDP graphs. We establish un-
decidability of Extendable H-colouring, over the class of ADP graphs, for
any finite non-bipartite graph H and for many finite bipartite graphs H.
This is accomplished by proving undecidability of H-retract over the class
of NADP graphs.

2 Non-Bipartite Colour Graphs

It is shown in [8] that H-colouring is NP-complete whenever H is non-
bipartite, and is polynomial if H is bipartite. The complexity of H-colouring
for infinite graphs H is examined in [3, 11]. In this section we generalize
the results in [5, 8] to show that Extendable H-colouring of ADP graphs is
undecidable whenever H is non-bipartite. We first discuss a special class
of graphs which simplifies our considerations on the structure of H.

If there is no retraction from a graph H to a proper subgraph, H is
called a core. It is known that every finite graph H contains a unique (up
to isomorphism) subgraph C which both is a core and the image of some
retraction r : H — C [6, 13]. This subgraph C is called the core of H [8, 9].
Much less is known about cores in infinite graphs; these are investigated in
[4). If H is a finite graph with core H’, then G — H if and only G — H'.
This follows since H — H'’ (the retraction), and H’ — H (the inclusion).
Therefore, it suffices to consider H-colouring problems when H is a core.
While, in general, this comment applies neither to Extendable H-colouring
problems nor to problems involving retractions, we do have the following.

LEMMA 2.1 Suppose H is a retract of the finite graph H’. If H-retract
is undecidable, then so is H'-retract.

Proof. We show that if H'-retract is decidable, then so is H-retract. Let
an instance of H-retract, a graph G for which H is a labelled subgraph,
be given. Let V(H) = {v;,vs,...,v,} and A = (v1,v2,...,v5). Let G' =
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G4 - H);. We claim that there is a retraction of G to H if and only if there
is a retracton of G’ to H’. A retraction of G to H can be extended to a
retraction of G’ to H’ by mapping all vertices of H' — H to themselves. On
the other hand, suppose 7, is a retraction of G’ to H’. Let ry be a retraction
of H to H. Then ry o7y is a retraction of G to H. This completes the
proof. O

COROLLARY 2.2 Suppose H is a retract of the finite graph H'. If
Extendable- H-colouring is undecidable, then so is Extendable- H'-colouring.

For non-bipartite graphs H, the converse is a consequense of the follow-
ing theorem.

THEOREM 2.3 For any finite non-bipartite graph H, Extendable H-
colouring of ADP graphs is undecidable.

Proof. By Corollary 2.2, it suffices to prove the result when H is a core.

We transform the problem to one involving retraction (and ultimately
H-colouring, since H is a core) of a NADP graph to a labelled copy of
H. Let Y be an ADP graph, and let ¢ : U’ — V(H) be an H-colouing of
the subgraph induced by some finite subset U’ = {u;,u,...,ur} of V(Y).
Let Let U = (uy,ua,...,ug), and L = (c(u1),c(us),...,c(ur)). Define the
NADP graph G by G = Yy - H.. The problem is equivalent to deciding if
H is a retract of G. Since H is a core this, in turn, is equivalent to deciding
if G is H-colourable.

Suppose, by way of contradiction to the main theorem, that there exists
a finite non-bipartite graph H such that H-colouring is decidable for all
NADP graphs G. Among all such counterexamples, let H be one with the
smallest possible number of vertices and, among all counterexamples with
this number of vertices, one with the largest possible number of edges. By
Burr’s theorem, H is not complete. The exact same argument as in [8] to
deny the existence of a smallest counterexample - repeatedly applying the
three transformations described below - works here; all we need to do is
show that each transformed instance is still a NADP graph.

In order that we may define new cells in a transformed doubly periodic
infinite graph, we classify the bordering cells of a given cell into two types,
as follows.
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Let Czy be an arbitrary cell in a doubly periodic infinite graph G. Then
the cells Cpryr, with (2/,y') € {(z, y+1), (z+1,y+1), (2+1,y), (z+1,y-1)},
are called A-cells (with respect to Cyy); the cells Cpryr, with (2',y) €
{(x=1,y+1),(z-1,y),(z—1,y—1),(z,y — 1)}, are called B-cells (with
respect to Cry.)

An important observation is that if Cyry is an A-cell with respect to
vy then Cyry is a B-cell with respect to Cyryr.

A. The Indicator Construction

Let I be a fixed finite graph, and let ¢ and j be distinct vertices of [
such that some automorphism of I maps ¢ to j and j to i. The indicator
construclion with respect to the indicator (I,%,j) transforms a graph H
into the graph Hx* defined to have the same vertex set as H and to have
as the edge set all pairs hh' for which there is a homomorphism of I to H
taking i to h and j to h’. Because of the assumption on I, the edges of Hx*
are undirected.

Let H be a fixed finite graph, (I,%,j) be an indicator, and H* be the
result of applying the indicator construction with respect to (I,4,7) to H.
In [8] it is proved that a graph G is Hx-colourable if and only if the graph
*G obtained from X by replacing each edge uv’ € E(X) with a disjoint
copy of I, and identifying v with ¢ and v’ with j is H-colourable. The same
argument works when G is infinite. Further, we have:

LEMMA 2.4 If G is a NADP graph, then so is *G.

Proof. Let G be NADP with cells C;y, (z,y € Z). As required in the
definition of NADP graphs, let G = Y4 - Sg, where Y is an ADP graph,
and S is a finite graph.

We note that *G = (xY4) - (*Sg) for the same sequences A and B as
above. Thus, it suffices to show that *Y is ADP. Suppose Y arises from
the DP graph F and set T. Consider #F', and let *F;, be the family of
graphs obtained from the cells Fy, (of F) upon replacement of each edge
vv' € E(Fyy) with a copy of I, and identifying v with ¢ and v’ with j. Now,
the only edges in *F which are not wholly contained in some *F;, are the
edges belonging to copies of I which replaced edges between neighbouring
cells of F. Because of the symmetry of I we can assume, without loss of
generality, that when a copy of I replaces an edge uv, with u € V(Fzy) and
v in an A-cell, that 7 is identified with v and j is identified with v. By the
definition of A- and B-cells, it follows that if I replaces an edge st joining
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Fry to a B-cell, with s € V(Fy) and t in a B-cell, that j is identified with
s and 7 is identified with .

Consider the subgraphs Dyy = *F [V (xFyy) J(UV(I - i)], where the
union is over all copies of I — i joining *F;, to a B-cell. These will be
the cells in *F. It follows from the fact that F is doubly periodic and
the construction of *F* that the subgraphs D, are all isomorphic. Since
the only edges between cells D,, are edges contained in a copy of I which
replaced edges joining neighbouring cells, it follows that vertices in D, are
adjacent in *F" only to vertices in the same cell, or in neighbouring cells.
If an edge uu’ joins two neighbouring cells D,, and D, then (say) u
is identified with i in a copy of I and ' € Ny(i). The definition of Dy,
guarantees that adjacency of two vertices neighbouring cells depends on
neither z nor y, but only on the relative position of the neighbouring cells.
Hence *F is doubly periodic with cells D,,. Now, every cell D,, contains
the vertices {v{Y) : 1 € T}. Identifying all vertices in {v,(,ly) :z,y € Z} for
each t € T yields *Y. Therefore, *Y is ADP. O

B. The Sub-indicator Construction

Let J be a fixed finite graph, with specified (distinct) vertices j and
ki,kz, ..., ki. The sub-indicaior construction with respect to the sub-
indicator (J,j, ky,ka, ..., k;) transforms a finite core H, with specified
(distinct) vertices hy, hs ..., hy, into its subgraph H~ induced by the vertex
set V™ defined as follows: Let A = (k1,ka,..., k), B = (h1,hz...,h), and
W = Js-Hp. A vertex v of H belongs to V™ if and only if there is a
retraction of W to H in which j maps to v.

Let (J,4,k1,ka,..., k) be a fixed sub-indicator, and let H be a finite
non-bipartite core with specified (distinct) vertices hy,ha,...,h;. In [8]
it is proved that a graph G is H-colourable if and only if the graph ~G
obtained from G, H, and |V(G)| copies of J by identifying each vertex v
of G with j in the vth copy of J, and identifying, for all copies of J, the
vertices ky, ka,..., k, with hy,..., ks, respectively, is H-colourable. The
same argument works when G is infinite. Further, we have:

LEMMA 2.5 If G is NADP, then so is "G.

Proof. Suppose A = (ay,az,...,at), B=(b1,bs,...,b),and G = Y, -Sp.
Supose V(H) = {hy,hs,...,hy}, and set A’ = {a1,as,...,ax,hy, by, ..., hy)
and B’ = {by,ba,...,b, k1, ho,...,hp). Then, it is not hard to check that
"G=("Ya'): ("Sp'). Thus, it suffices to show that Y is ADP. Suppose
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Y arises from the DP graph F and set X. Let M = (ky,ko,... k),
P = (hy,ha...,ht), and J' = Jy - Hp. Let C;y be the graph obtained
from F,y and |V (Fy)| copies of J' by identifying each vertex v of Fgy with
vertex j in the vth copy of J’. Let C be the doubly periodic graph with
cells Cry and the same edges between neighbouring cells as in F'. Then 7Y
is obtained from C by identifying corresponding vertices of H belonging to
copies of J over all cells Cy. Thus “Y is ADP. O

C. The Edge-sub-indicator Construction

Let J be a fixed graph with a specified edge jj’, and specified vertices
ki, ka,. ..k, such that some automorphism of J fixes kq, ks, ..., k:, while
exchanging the vertices j and j'. The edge-sub-indicator construction with
respect to the edge sub-indicator (J,jj', k1,ks,... k) transforms a finite
core H, with specified vertices ki, ..., k;, into its subgraph H" induced by
the edges hh' of H which are images of the edge jj' under retractions of
W (defined as in B above) to H. Note that because of our assumption on
J, the edges of H~ are undirected.

Let (J,jj', k1, k2, - . ., ki) be a fixed edge-sub-indicator. Let H be a finite
non-bipartite core with specified vertices hy, ks, ..., h;. In [8] it is proved
that a graph G is H "-colourable if and only if the graph "G obtained from
G, H, and |E(G)| copies of J by identifying each edge uv of G with jj’ in the
uvth copy of J, and identifying, for all copies of J, the vertices kq,k2,..., k:
with hy,...,h:, respectively, is H-colourable. The same argument works
when G is infinite. Further, we have:

LEMMA 2.6 If G is NADP, then so is "G.

Proof. Suppose G = S4 - Yg. Then, using the notation of the previous
proof, "G =("Sas)- ("Ygs). Thus, it suffices to show that "Y is ADP.
Suppose Y arises from the DP graph F and set T'.

For fixed £ and y, let £4 = {uju),...,u,u.} be the set of all edges
joining F, to an A-cell.

Let M = (kl,kg,...,kt), P = (hl,hz...,ht), and J' = JM . HP. Let
T,y be the graph obtained from F;, and |E(Fyy)| + |E4l| copies of J' by
performing the following three steps: (i) identify each edge uv of Fr, with
j#' in the uvth copy of J'; (ii) identify the vertex u, where uv joins Fyy to
an A-cell and u € V(Fyy), with vertex j in the uvth copy of J/, and (iii)
identifying corresponding vertices in all copies of H in J'. Let T be the
doubly periodic graph with cells T, obtained by identifying each vertex j’
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with the corresponding vertex v in (ii) above. Then ~Y is obtained from
T by identifying corresponding vertices belonging to all copies of H (in J')
over all cells T;,. Thus “Y is ADP. O

To recap: Suppose G is some NADP instance of H-colouring, where H
is non-bipartite. Then the graphs *G, "G, and "G are also NADP. Further,
the same argument as in [8] (or see [11]) establishes that for graphs G and
H,

(1) there exists a homomorphism G — H* if and only if there exists
a homomorphism *G — H,
(2) there exists a homomorphism G — H ™ if and only if there exists
a homomorphism "G — H,
(3) there exists a homomorphism G — H" if and only if there exists
a homomorphism "G — H.

One then follows the exact same steps an in Hell and Nesetfil’s proof,
repeatedly applying these transformations and establishes the non-existence
of a minimum counterexample. @

3 Bipartite Colour Graphs

We now show that for some bipartite graphs H, Extendable H-colouring
is undecidable over the class of ADP graphs. In particular, we show that
for n > 3, Extendable Cap-colouring is undecidable. Undecidability of a
larger class of Extendable H-colouring problems then follows from Corollary
2.2. When the input graphs are finite, the same constructions yield NP-
completeness.

THEOREM 3.1 Extendable Czp-colouring of ADP graphs is undecidable
for n > 3.

Proof. Once again, we model an extendable H-colouring problem for ADP
graphs by an H-retraction problem for NADP graphs. First we construct
a gadget - the graph Ry, eventually described below - that will be used to
replace edges. It is based on the graph Xs,, which we describe first.

The graph Xs,,(n > 3) is constructed from the 2n-cycles Cgi) =

vgk), vik), ceey vgﬁ)_l,v‘(,k) for k=1,2,...,n, and the vertex b, by adding the

edges v{"v**V for k=1,2,...,n—1and 1=0,1,...,2n — 1 (in addition
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to those on the 2n-cycles), and also a path of length n — 2 from ¢ = v£,"+l)

to b (this requires the addition of n — 3 new vertices, excluding b). Let
a= v((]"“). See Figure 2 for the graph Xg.

7
Silgiis

4

Figure 2. The graph Xg.

Let S = {v((,l),vgl), . .,vg,)_z}, and define the inner cycle of X2, to be
O Y S B O
0 V1 Va1V
We claim: (i) Any retraction of X, to the inner cycle maps a and b 1o
distinct vertices in S, and (i) If u and v are distinct elemenis of S, then
there is a relaction of Xo, to the inner cycle mapping a o u and b to v.
That is, a pre-colouring of a and b by distinct elements of S can be ezxtended
to a retraction of Xo, to the inner cycle. Suppose r is a retraction of X,
to its inner cycle. Since X5, is connected and bipartite, for every vertex z,
the image r(z) belongs to the same partite set as z. Thus, r(a),r(b) € S.
Further, it is easily verified that the cycle Cg:) must map under r to CS,) by
either a left or a right rotation. Applying the same argument repeatedly, it
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follows that a and ¢ must map to antipodal vertices of ng,). Further, any
such pair of vertices, where a is in S, is possible. (For example, any set of

rotations that includes exactly two left rotations will map a to v,(,l) 4-) Since

the path from ¢ to b is less than half the length of the inner cycle CZn , it
is not possible that »(b) = r(a). However, it is clearly possible for b to map
to any other element of S.

Let F and F’ be two disjoint copies of Xs,. For notational simplicity
we use the same vertex names as for Xa, (but the reader is reminded that F

and F’ actually have disjoint vertex sets). Let P = (v(l),vil), . ,v.(,:l)_l,a b)
and @ = (v,(,l‘zl, 511_22, N a), where subscripts in @ are modulo 2n.

Let Rop = Fp - FQ. We adopt the convention that the identified vertices
retain the labels from list P. This should not cause confusion since there
is an automorphism of Ra, that exchanges the two vertices resulting from
identifying a in F (resp. F') and b in F’ (resp. F). Note that Ra, also has
properties (i) and (ii) from above.

Let G be an NADP graph. Construct the graph G’ by replacing every
edge uu’ of G by a copy of Ry,, identifying u with @ and v’ with b, and
then identifying corresponding vertices belonging to the 2n-cycles C(l)
each copy of Ra,. Note that G’ is bipartite.

We' claim that the graph G’ is NADP. To see this we describe an alter-
nate method of consrtucting G’. Suppose G = (G2)a - Wpg, where Ga is
ADP. Then G, arises from a DP graph G, and set T}. Following the steps
in the proof of Lemma 2.4, with I = Ra,, we see that *G; is DP. Let C;
denote the set of indices of vertices belonging to inner 2n-cycles (in any one
cell of ¥*G1), and set T{ = 71 UC,. Identifying, for all ¢ € T7, the vertices in
each cell of *G; indexed by ¢ yields an ADP graph H;. Let W’ be the graph
obtained by replacing every edge uu’ of W by a copy of Ry, identifying u
with a and «’ with b, and then identifying corresponding vertices belonging
to the 2n-cycles ng,’ in each copy of Ra,. Note that V(G2) C V(H,) and
V(W) C V(W’). Let A’ and B’ denote, respectively, the lists obtained
from A and B by adding the vertices of the inner 2n-cycles (made from
identifying vertices, as described above), in the same order, on the end of
the list. Then G’ = (H,)ar - Wp,, and so G’ is NADP.

Since the vertices of G are identified with a and b in copies of Ry,, (i) and
(ii) above assert that a retraction of G’ to C2, models an n-colouring of G,
the colours 1,2, ..., n being associated with the vertices v(l) vgl) e vgi)_.,,

respectively. Conversely, for any n-colouring of G, (ii) 1mphes that there
exists a retraction of G’ to C(l) which maps each vertex of G (in G’) to the

107



vertex of Cg,ll) corresponding to its colour. Hence, G — K, if and only if
there is a retraction of 'G to C{.).

Now, suppose G is NADP with some finite subset of its vertices being
pre-K,-coloured with the colours 1,...,n. Construct 'G, maintaining the
same pre-K,-colouring, and also put colours 1,...,7 on the vertices of
the identified 2n-cycle Cz(_,:,) as shown in Figure 2. As before, the pre-K,-
colouring of G is extendable if and only if the constructed C2,-pre-colouring
of 'G is extendable. Since Extendable n-colouring (n > 3) is undecidable
[5], so is Extendable Cap-colouring. This proves Theorem 3.1. O

We are now in a position to define an entire family of bipartite graphs
H for which extendable H-colouring is undecidable.

COROLLARY 3.2 If H is a finite bipartite graph that admits a retrac-
tion to a cycle of length at least six, then extendable H-colouring is unde-
cidable.

It remains to charactarize the complexity of extendable H-colouring
when H is a forest or when the only cycle to which H retracts is C4. In
a personal communication, Bruce Bauslaugh of the University of Calgary
reports that he has proved that Extendable Kj-colouring is decidable for
doubly periodic graphs.

4 Reflexive Colour Graphs

We now turn our attention to those graphs H which are reflezive; that is,
graphs which have a loop at every vertex. Homomorphisms to reflexive
graphs are examined in [10]. If H is reflexive and G — H, then adjacent
vertices of G can map to the same vertex of H. In this section, C, denotes
the reflexive cycle on n vertices. It will be shown that, for the class of
NADP graphs, extendable Cy,-colouring is undecidable for n > 4. We will
use a similar construction as in the previous section.

THEOREM 4.1 Extendable C,,-colouring of ADP graphs is undecidable
for n > 4.

Proof. As before, consider the C,-retract problem for NADP graphs. Since
the proof is very similar to the one given in the previous section, we sim-
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ply describe the graphs that replace edges, and omit the remaining details.
Construct the graph X}, as follows.

Case 1: n is even.

Suppose n = 2m,m € Z. Consider m + 1 n-cycles Cf,k) = v((,k),vg

S, ,(,L)l, (L) for k = 1,2,...,m + 1, and the vertex b, joined with

edges v,(k) ,(H'l), ,(k)v,(“l'l), and v(k)v,(fjl) for k = 1,2,...,mand | =

0,1,...,n — 1, where the subscripts are taken modulo n. Let a = vgm“)

and ¢ = v,(nm"'l), and add a path of length m — 1 from ¢ to b. Finally, place
a loop at every vertex, thus forming a reflexive graph. The resulting graph

is X;,. See Figure 3a for the graph Xj. (Loops are omitted in the figures.)

k)

a a

c c
o) b
(a) (b)

Figure 3. The graphs X} and X{.
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Case 2: n is odd.

Suppose n = 2m+1, m € Z. Consider m n-cycles c¥ = v((,k),vgk), .. ,vfl“l,

(k) for k = 1,2,...,m, and the vertex b, joined with edges v,(k) fk"'l),

v(L)dH{l), and v(k)vﬁjl) fork=12,...m—1land!{=0,1,...,n -1,
(m)

where the subscrlpts are taken modulo n. Let @ = vy’ and join the vertex

¢ to v&7) and vm+1, add a path of length m — 1 from ¢ to b. Again, place
a loop at every vertex, thus forming a reflexive graph. The resulting graph

is X!. See Figure 3b for the graph X§.

The graphs which replace edges are made, as in the proof of the previous
theorem, using two copies of X;,. O

COROLLARY 4.2 If H is a reflexive graph of which, for some n > 4, C,
is a retract, then extendable H-colouring of NADP graphs is undecidable.

We are now left with examining the decidability of Extendable H-
colouring when H contains no cycle (other than loops) or when the only
cycle which is a retract of H is C3. We show that a subclass of these re-
maining graphs H are such that Extendable H-colouring of NDP graphs is
decidable. Our proof uses of the following theorem of Hell.

THEOREM 4.3 [7] Let F be an infinite graph and H a finite labelled
subgraph of H. If H is a retract of every finite subgraph of F which
contains H, then H is a retract of F.

If G is a graph with vertices u and v, let dg(u,v) be the length of a
shortest path from u to v, whenever such a path exists and define dg(u,v)
to be infinite otherwise. We say that a subgraph H of G is isometric if
dg(u,v) = dg(u,v) for all u,v € V(H). See [12] for further discussion
on isometric subgraphs. In [10] and [1], absolute retracts are defined. For
our purposes, we call a finite graph H an absolute retract if it is a retract
of every graph of which it is an isometric subgraph. For example, each
reflexive complete graph is an absolute retract. Several other, inequivalent,
definitions have also been used [2, 10]. Using Theorem 4.3, we can establish
the following:

COROLLARY 4.4 If a graph H is an absolute retract, then extendable
H-colouring of DP graphs is decidable.
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Proof. Once again, the interplay between retractions and extending partial
colourings allows us to formulate the result in terms of retractions to NDP
graphs. Let F' be an DP graph, B = {b1,bs,...,b;x} C V(F) and suppose
c: ¥ — V(H) is a pre-H-colouring. Let A = (¢(by),c(b2),...,c(br)) and
B = (by,bs,...,b). Consider the NDP graph G = H, - Fg. Suppose F has
cells Fpy = F[{va(,ly),vg(c?g,...,vg)}] (z,y € Z). Let D be the finite sub-
graph of G induced by V(H), and all vertices at distance at most diam(H)
from some vertex of H

Since all vertices of G have finite degree, it is easy to find D. Note that
if H is an isometric subgraph of D, then it is also an isometric subgraph
in any graph containing D as an induced subgraph. Thus, we need only
establish whether H is an isometric subgraph of D, then the results follows
from Theorem 4.3. This is easy to do, since D is a finite graph. O

The above argument fails for ADP graphs, since these may have vertices
of infinite degree.
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