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ABSTRACT. In this paper, we introduce generalized hooked, ex-
tended, and near-Skolem sequences and determine necessary
conditions for their existence, the minimum number of hooks
and their permissible locations. We also produce computational
results for small orders in each case.

1 Imtroduction

While studying Steiner Triple Systems, Skolem (1957) asked whether it
was possible to partition the set {1,2,...,2n} into n pairs (ar,by), such
that b, — ar = r, where r = 1,2,...,n [26]. He showed that such a
partition exists if and only if n = 0 or 1 (mod 4). Nickerson [11] was first
to write the system in the form of a sequence. For example, if n = 5 the
sequence 3,5,2,3,2,4,5,1,1,4 is equivalent to the partition of the numbers
1,...10 into the pairs (8,9), (3, 5), (1,4), (6, 10), (2, 7); this sequence is now
known as a Skolem sequence of order 5. When n = 2,3 (mod 4), Skolem
considered distributing the numbers 1,2,...,2n —1,2n+ 1, into n disjoint
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pairs (ar, b,),r = 1,2,...n, such that b, — a, = r. O’Keefe [13] showed
that such a partition exists; the solution written in the form of Nickerson’s
notation requires leaving a space (or zero) for the missing integer, called a
hook. For example, 3,1,1,3,2,0,2, is a hood Skolem sequence of order 3,
and is equivalent to distributing the numbers 1,2,3,4,5,7, into the pairs
(2,3),(5,7),(1,4).

Rosa (1966) [15] modified the notion of Skolem sequences by adding an
extra hook in the middle. Another modification of Skolem sequences was
introduced by Abrham and Kotzig [1]: in an eztended Skolem sequence the
zero (or hook) may occur anywhere in the sequence. They showed that
such sequences exist for all n. However, the existence problem for extended
Skolem sequences with a prescribed position of the zero (subject to a parity
condition) remains open.

Stanton and Goulden (1981) [27] introduced, in effect, Near-Skolemn se-
quences for the purpose of constructing cyclic Steiner triple systems. They
asked for a set of n — 1 pairs P(1,n)/m with each of the integers of
{1,2,...,2n—2} appearing exactly once and each of the integers of {1,...,
m—1,m+1,...,n} occurring as a difference exactly once. For example,
the pairs (3,4),(6,8),(1,5),(2,7) form a P(1,5)/3, or the 3-near-Skolem
sequence of order 5:4,5,1,1,4, 2,5, 2.

In [23, 24], it was shown that the necessary and sufficient conditions for
the existence of near- and hooked near-Skolem sequences are:

For the near-Skolem sequences:
(1) if m = 0,1 (mod 4), then m must be odd;
(2) if n =2, 3 (mod 4), then m must be even.

Langford (1957) [7] noticed that his son, while playing with coloured
blocks, placed them in one pile so that between the red pair there was one
block, between the blue two, and between the yellow three. He expressed
the case of three colours (n = 3) as 3,1,2,1,3,2. This is now known as a
special case of a Lengford sequence. Adding one to each term and appending
a pair of 1’s results in a Skolem sequence of order n + 1. Thus an (n, d)-
Langford sequence (Ly, Ly, ... ,Lan—24) is a sequence in which each of the
integers k € {d,d+1,... ,d+n—1} is repeated exactly twice and whenever
L; = Lj = k then j — i = k. The works of Priday, Davies, Bermond,
Brouwer, Germa, and Simpson [13,4, 3,25], proved that the necessary and
sufficient conditions for the existence of Langford sequences and hooked
Langford sequences are:

For Langford sequences:
(1) n>2d-1;
(2) if n=0,1 (mod 4), then d must be odd;
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(3) if n =2, 3 (mod 4), then d must be even.
For hooked Langford sequences:

(1) n(n-2d+1)+22>0;

(2) if n =2, 3 (mod 4), then d must be odd;
(3) if n=1,2 (mod 4), then d must be even.

Gillespie and Utz (1966) [6] were first to introduce the notion of a gen-
eralized perfect s-Langford sequence of order n, as a sequence of sn terms
in which each of the integers 1,2,...,n occurs exactly s-times, and be-
tween any two consecutive occurrences of the integer i, there are i entries,
1 € i € n. They showed that there is no generalized perfect 3-sequence
for n = 2,3,4,5,6. Levine (1968) [8, 9] showed that if s = 3 then a neces-
sary condition for the existence of a perfect 3-sequence is that n must be
= —1,0 or 1 (mod 9). He conjectured that such a condition is sufficient
for the existence of the perfect 3-Langford sequence with » > 8. Levine
also generalized this necessary condition for the case of perfect s-sequence,
s = pt where p is a prime, to ben = —~1,0,1,..., or p—2 (mod p?). Roselle
and Thomasson [18] generalized this necessary condition to s = p°t where p
is a prime and e is any positive integer, to ben = -1,0,1,..., or p—2 (mod
p°t1). Roselle [17] also introduced the generalized Skolem (s,n) sequence
which is a generalized s-Langford that starts from the integer 0 rather than
1. For example,

0,0,0,1,9,1,6,1,8,2,5,7,2,6,9,2,5,8,4,7,6,3,5,4,9,3,8,7,4,3

is a Skolem (3, 9)-sequence.

Henceforth we will use the Nickerson-Simpson notation for writing se-
quences. Thus the above sequence is written as

1,1,1,2,10,2,7,2,9,3,6,8,3,7,10,3,6,9,5,8,7,4,6,5,10,4,9,8, 5,4,

and is a Skolem (3, 10)-sequence.

Motivated by the analogy with the case of s =2, in this paper we intro-
duce the generalized hooked, extended and near-Skolem sequences (s > 2)
and determine necessary conditions for their existence, the minimum num-
ber of hooks and their permissible locations (when s = p°t where p is a
prime and e is any positive integer). We also produce computational re-
sults for small orders in each case.
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2 Necessary Conditions For The Existence of Generalized Se-
quences

In this section, we generalize the theorem of Roselle and Thomasson [18]
and deduce from it several corollaries.

Formally, a Skolem sequence of order n is a sequence S = (s3, 82, ... , 825)
of 2n integers satisfying the following conditions:

1. For every k € {1,2,...,n} there exist exactly two elements s;, s;, in
S, such that s; =s; = k.

2. Ifs;=s8;=kthenj—i=k.
A hooked Skolem sequence of order n is a sequence HS = (sy, s2,. .. ,
8on+1) of 2n + 1 integers satisfying conditions 1 and 2 and

3. 82, =0.

An ertended Skolem sequence of order n is a sequence ES = (s, s2,
.« s82n41) of 2n + 1 integers satisfying conditions 1 and 2 and 3.
There is exactlyone 8; =0(1<i<2n+1

The necessary condition for the location of the subscript i of the 0 element
in the extended Skolem sequence was determined by Abrham and Kotzig
[1] to be = 4(n +1)(3n + 2) (mod 2).

A near-Skolem sequence of order n and defect m,n > m, is a sequence
NS = (81, 82,...,82n—2) of 2n — 2 integers satisfying the following condi-
tions:

1. For every k € {1,2,...,m —1,m +1,...,n} there are exactly two
elements s;, 35, in NS, such that s; = s; = k.

2. If 8 =8j =k withi < j, then j —i =k.

A hooked near-Skolem sequence of order n and defect m is a sequence
HNS = (s1,82,... ,82n—1) of 2n — 1 integers s; € {1,2,...,m -
1,m +1,...,n} satisfying conditions 1 and 2 and the condition:

3. 89p—2=0.

For example, there exist near-Skolem sequences of order 7 and defects 6,
4, and 2:

7,1,1,2,5,24,7,3,54,3
1,1,6,3,7,5,3,2,6,2,5,7
1,1,5,6,7,3,4,5,3,6,4,7

and there exist hooked near-Skolem sequences of order 7 and defects 7, 5,
3, and 1:
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1,1,3,4,5,3,6,4,2,5,2,0,6
2,3,2,6,3,7,4,1,1,6,4,0,7
2,5,2,4,6,7,5:4,1,1,6,0,7
2,5,2,6,4,7,5,3,4,6,3,0,7.

A generalized Skolem sequence of order n and multiplicity s is a sequence
GS = (ai,di,... ,al,),i € {1, ..s}, of ns integers from {1,2,... ,n} satis-
fying the following conditions:

1. For every k € {1,2,... ,n} and every i € {1, ..s} there exist exactly s
2lements in GS, {ai;,al,,... ,a},} such that a}; = afp =... =a}, =
2. If @}, = ?i(u+l) then jut1y —Ju=k,(1<u<s-1).

A generalized extended Skolem sequence of order n and multiplicity s
is a sequence GES = (ai,a},... ,a},.4),i € {1,..5}, of ns integers from
{1,2,...,n},d > 1, satisfying the following conditions:

1. For every k € {1,2,... 3n} and every i € {1,..s} there exist exactly
s elements in GES, {a};,a}s, ... ,03,} such that a}; = @}y = ... =
at =k

'j8

2. If a;u = ;(u+1) then j(‘ll-l-l) —ju = k, (1 S u S 8§ - 1).

3. There are exactly d zeros in the sequence (where d is the minimum
number of zeros that can exist in the sequence).

For example, the sequence 1,1,1,6,2,0,2,5,2,6,4,0,5, 3,4,6,3,5,4,3,is a
generalized extended Skolem sequence of order 6, s =3 and d = 2.

A generalized near-Skolem sequence of order n, multiplicity s, and defect
m is a sequence GN S = (ai, a},..., a‘&n_l)s),i € {1,..s}, of (n—1)s integers
from {1,2,..,m —1,m + 1..,n} satisfying the following conditions:

1. For every k € {1,2,.m —1,m +1,.,n} and every i € {1,..s} there
exist exactly s elements in GNS, {a};,aly, ... ,a},} such that a}; =
a_';-2=...=a_';-,=k.

2. Ifaf, = a§(u+1) then jiuyy) —Ju =k, (1<u<s—1).

The generalized extended near-Skolem sequence is defined in a manner
similar to that of the generalized extended Skolem sequence. For example,
the sequence 7,8,9,5,1,1,1,7,5,8,6,9,3,5,7,3,6,8,3,2,9,2,6,2 is a gen-
eralized near-Skolem sequence of order 9, multiplicity 3, and defect 4 (the
smallest that can be found), and the sequence 4,1,1,1,4,5,6,2,4,2,5,2,6,0,
0,5,0,0,6 is a generalized extended near-Skolem sequence with n = 6,m =
3and s=3.

The following theorem extends Theorem 1 in [18].
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Theorem 1 Let s = p°t, where p is the smallest prime factor in s and e,t
are any postlive integers.

(i) If a generalized Skolem sequence of order n and multiplicity s exisis,
then n must satisfy one of the congruences

n=0,1,...,p — 1(mod p°*1). (2.1)

(ii) A necessary condition for a generalized extended Skolem sequence of
order n to exist is that n satisfy one of the congruences

n=kpkp+1,...,(k+1)p—1(mod p**!) where 1<k <p-1.
In case (#i), a lower bound of number of zeros is given by (p—k)(s—1).

Proof: First we consider the case where e = 1. Let A = (a1, 0a2,-.. ,0ns+d)
be the generalized sequence.

(i) Inthis case A is a generalized Skolem sequence, i.e. a perfect sequence,
and hence d = 0. With s = pt, arrange the terms of A in an nt x p
array B = (b; ;) according to the rule b; j = a(;—1)p+j Where1 < j <p
and 1 < i < nt. We note that, if 1 < b < n and b # 0 (mod p), then b
appears exactly ¢ times in every column in the array B. Hence, every
column of B contains the same number of elements b # 0 (mod p).
On the other hand, if 1 < b < n and b = 0 (mod p), then b appears all
s = pt times in the same column in the array. Denoting by [n/p], the
largest integer < n/p, this means that the number [n/p] of elements
= 0 (mod p) must be a multiple of p in the case of a perfect sequence,
which implies n satisfies one of the congruency classes in (2.1).

(ii) If the number [n/p] is not a multiple of p, i.e., if [n/p] is congruent
(mod p) to k,1 < k < p—1, then the array B must have p—k columns
each containing s zeros. Since the zeros in B translate into hooks in
the sequence A, we see that the special case when these columns oc-
cupy the positions k+1, ... ,p and the entries b,¢ k1, bnt k12, - - - s Ontp
are all zeros, then these last p — k zeros lie outside the sequence A.
Hence, we obtain at least (p —k)(s—1) hooks, 1 < k < p—1 (see Fig.
1). This completes the proof for the case e = 1.

For the case when e > 1 we consider the ntp®~! x p array B = (b; ;) as
in (i), i.e., we arrange the terms of A according to the rule b; ; = a;—1)p+;
where 1 <j <pand1<i<nips L.

If 1 <b< nand b# 0 (mod p) then the number (i — 1)p + j will force b
to be distributed equally among the residue classes of p, i.e. b will appear
in every column exactly tp®~! times. If b = 0 (mod p) then b will appear all
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p°t times in a single column. Thus, to have a perfect sequence, [n/p] must
be a multiple of p. Note that this process depends on whether (b,p) = 1
and not on whether (b,p°%) = 1.

In case [r/p] is not a multiple of p, the array B will have p — k columns
each containing p®t zeros. Consequently the lower bound is attained when
the entries bnep(c—1),k+1) bntp(e—1),k+2s - - - » Dntp(e—1),p are all zeros. These
zeros will all lie outside the sequence; hence, we attain the lower bound
(p — k)(s — 1) of zeros (see the example below for s = 4). This completes

the proof. o
( bi1  bi2 w bix O v 0 . b1y \
bz,l b-2,2 .. bz')g bz,k+1 .. 0 .. bz,p
0 e e .. O
0
\ bnt,l bnt.2 bnt,k * ¥ o .. ¥ )
Figure 1

(Zeros are scattered between columns k + 1 and p and the last row all
bat,k+1-.. ,bnep are zeros.)

The following example shows the smallest n for s = 4 where the lower
bound on the number of zeros is attained and is the minimum: A =
(1,1, 1,1,5,11, 2,0, 2, 5, 2, 10, 2, 0, 5, 9, 11, 6, 4, 5, 8, 10, 4, 4, 10,
7,93,6,8,3,11,7, 3,10, 9, 3, 8 0, 7). The corresponding array B is

11522 225 114 849 48 473811 39 87\
1111051009 65106 7116 10963 7103 0 *
We observe that the generalized hooked Skolem sequence is a special case
of the generalized extended Skolem sequence. In the generalized hooked
Skolem sequence, the minimum number of zeros that can exist in the ex-
tended sequence will occupy the bottom right corner of the array B as in
Fig 2.
For example, the sequence 1,1,1,2,6,2,3,2,5,3,6,4,3,5,0,4,6,0,5,4 is
a generalized hooked Skolem sequence of order 6 with s = 3 and d = 2 and

119



the corresponding array B is:

Ok O W W=
BTN =
¥ OO B TN =

(Note that the last zero lies outside the sequence represented by an aser-
ick.) d extended sequence with the same parameters given above, has the
following array B:

O TN D
WL WUt
* U ONO -

In fact, the argument used in the proof of Theorem 1 will also determine
the locations of the zeros in the generalized hooked or extended Skolem
sequence from the corresponding locations of the zeros in the array B. In
the following two corollaries s, p, ¢, and e are the same as in the statement
of Theorem 1.

Corollary 2 If a generalized extended Skolem sequence A = (ay,as,...,
@ns+d) of order n and multiplicily s = tp°® erists with the number of zeros
(p — k)(s — 1), then for the congruences

n=kpkp+1,...,(k+1)p—1(mod p°*),1<k<p-1,
these zeros can only occur in the locations a;,i=k+1,.p— 1,0 (mod p).
If the sequence A is hooked, the minimum number of zeros will occupy

the right most possible places in the sequence, i.e., in the bottom right
corner in the array (see Fig. 2).
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(bl,l 61‘2 bl'k bl,k+1 bl'p\

b2.1 b2.2 b2,lc b2,k+l bg'p
bnt_a_l'] .o cee bn‘—g—l'k 0 . 0
0 .. 0
0 w 0
\bﬂt.l bnt,2 - bntk * O }
Figure 2

(All zeros are in the right lower corner and the last line of zeros lie outside
the sequence (indicated by astericks).)

Similar results can be obtained for the generalized near-, hooked near-,
and generalized near-Skolem sequences.

Corollary 3 Let s =p°t. Then

(i) If a generalized near-Skolem sequence of order n, defect m and mul-
tiplicity s ezists, then n and m must satisfy the congruences
n = 0,1,...,p—1(mod p**?)
m # 0(mod p).
If m =0 (mod p) then the sequence is hooked and a lower bound for
the number of hooks is (p — k)(s — 1).

(ii) If a generalized hooked or extended near-Skolem sequence of order n
and defect m exists, then n and m satisfy the congruences
n = kpkp+1,...,(k+1)p—1(mod p*t'),1 <k <p-1,
m # O(mod p),
in which case a lower bound for the number of zeros is (p—k)(s—1).

If m =0 (mod p), then this lower bound on the number of zeros is
(p—k+1)(s-1).

Proof: We apply the same matrix argument to the generalized extended
near- and near-Skolem sequences. If m # 0 (mod p), then every column
in the matrix will be missing m exactly ¢ times. Thus, every column will
maintain equal length.

If m = 0 (mod p) then one more column will have at least (s — 1) zeros,
and this will increase the number of zeros by s — 1.

It is also an easy corollary to determine the possible locations of zeros
for the generalized extended and hooked near-Skolem sequences.
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3 Computational Results

In this section, we exhibit computational results for some small orders of
the generalized extended, hooked, extended near-, hooked near- and near-
Skolem sequences. These results were obtained by an exhaustive computer
search, and with a few small exceptions where the sequences degenerate the
results are in agreement with the necessary conditions proved. Note that
the sequence and its reverse are considered the same.

To obtain the computational results which follow we generalized Marsh’s
algorithm [10] for constructing Skolem sequences by an exhaustive search.

1. Let M be the set {1,2,...,sn};
2. Select m; € M;
3. Fori=1tomn,do

Compute m; + i,m; + 2i,... ,m; + st.
If (all m; +ji,1 < j < s, are in M),
Then

M =M - {m;+jill <j <s}.

Else,

No sequence exists;

4. Repeat 2 and 3 until M is exhausted.

3.1 Generalized Hooked Skolem Sequences s =3 and n < 8

Lemma 4 There does not exist a generalized hooked Skolem sequence for
n<5and s=3.

Lemma 5 For n = 6,7, and 8, s = 3 there exist ezactly two generalized
hooked Skolem sequences.

n | Sequences
6[1]11126232536435046054
41114562425263053063

7111162723263573465047054
41114567425262753063073

8141114282427536835736058076
571115827252638734630480614

Table 1
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Generalized Extended Skolem Sequences 1 <n<8,8s=3

We note that unlike the generalized hooked sequences the generalized ex-
tended exist for all small orders.

Lemma 6 For n=3,4,5,6,7,8, there are ezactly 2,7,18,9,17, 38, respec-
tively, generalized extended Skolem sequences with 8 = 3.

Here we give an example for each case. The full details will be supplied
in a technical report which can be obtained by writing to us.

n | Sequence
311112023203003

411112024203403043
5|11112024253403543005
61]11126232536435046054

7111127242064753463573065

8]11124272486047536835736058

Table 2

3.2 Generalized Near-Skolem Sequences s =3 and n < 8

Lemma 7 The numbers of generalized near-Skolem or extended near-Skolem
for orders n,2 < n <9, and all possible defects m are:
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20202

2023203003

1113003003

2024203403043
1113403043004
1112420240004
2024253403543005
1113453043504005
5111450242524
5111053003523202
26232536435046054
11156034536435046
1116202526405046054
111620252630530635
111262023463043064
27242064753463573065
11136734536475046057
1116272026457046504705
11167025262753063573
67111262724063473043
1112723203573405047054
24272486047536835736058
11138036734586475046857
1112428246704586075006857
11186272026857036538735
11182427246834736038076
1112723283573405847054008
11128242564085463053863
2529245864759468370369387
1117936835736958476540984
11128292056784596475846097
789511175869357368329262
971116837936438746924282
81119742824279458037539035
111962825264958463543983
1112923263753964570465947

Table 4
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4 Conclusions and Open Problems

Initial computational results suggest that the necessary conditions for the
existence of the generalized Skolem, extended, hooked and near-Skolem se-
quences are sufficient. Thus it is easy to conjecture that all these sequences
exist for n > constant. However, the constructive techniques that were
used to prove the sufficiency for s = 2 seem to be difficult to implement for
s> 2. Levine (1968) [8] made a similar conjecture for the perfect Langford
sequences with s = 3. This conjecture still open.

We hope that some applications for the generalized Skolem, extended,
hooked, and near-Skolem sequences will be discovered in the areas of de-
signs, codes, and graph factorizations.
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