A Note on 1 - Tough Hamiltonian Graphs

Rao Li

Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152

ABSTRACT. Let G be a 1 – tough graph of order n. If $|N(S)| \ge (n+|S|-1)/3$ for every non – empty subset S of vertex set V(G) of G, then G is hamiltonian.

The terminology and notation used in this note are standard and we consider only simple graphs.

Theorem 1 Let G be a 1 – tough graph of order n. If $|N(S)| \ge (n+|S|-1)/3$ for every non – empty subset S of vertex set V(G) of G, then G is hamiltonian.

In order to prove Theorem 1, we will use the following results as our Lemmas.

Lemma 1 [1] Let G be a 1 – tough graph of order n such that $\delta \geq n/3$. If G is nonhamiltonian and C is a longest cycle in G, then every component of G-C is an isolated vertex.

Lemma 2 [2] (the Hopping Lemma). Let $a_1, a_2, \ldots, a_m, a_1$ be the vertices in order round a cycle C in a graph G, where the suffices of a_i are reduced modulo m. Suppose that G contains no cycle of length m+1, and no cycle C_1 of length m such thah $G-C_1$ has fewer components than G-C. Suppose that a is an isolated vertex of G-C. Let $Y_0 := \emptyset$ and, for $j \ge 1$, define

$$X_j := N(Y_{j-1} \cup \{a\}),$$
 $Y_j := \{a_i \in C : a_{i-1} \in X_j \text{ and } a_{i+1} \in X_j\}.$

Then, for all $j \geq 1$, $X_j \subseteq C$, and X_j does not contain two consecutive vertices of C.

JCMCC 26 (1998), pp. 129-130

Lemma 3 [2] Let C be a cycle of length m. Let X be a set of vertices of C that contains no two consecutive vertices of C. Let Y be the set of vertices of C whose two neighbors round C are both in X. Then $|Y| \ge 3 |X| - m$.

Proof of Theorem 1: Suppose G is a graph satisfying the conditions in Theorem 1 and it is nonhamiltonian. Let C be a longest cycle in G and no cycle C_1 of length |C| such that $G - C_1$ has fewer components than G - C. We first note that $\delta \geq n/3$. So by Lemma 1, each component of G - C is an isolated vertex. Let a be one of the components of G - C. Let $Y_0 := \emptyset$ and, for $j \geq 1$, define

$$X_j := N(Y_{j-1} \cup \{a\}),$$

$$Y_j := \{a_i \in C : a_{i-1} \in X_j \text{ and } a_{i+1} \in X_j\}.$$

By Lemmas 2 and 3, $|Y_j| \ge 3 |X_j| - |C| (j = 1, 2, ...)$. By the hypothesis, $|X_j| \ge (n + |Y_{j-1}|)/3$, (j = 1, 2, ...). So we have

$$|Y_j| \ge n + |Y_{j-1}| - |C| \ge |Y_{j-1}| + 1, (j = 1, 2, ...).$$

Therefore we have $|Y_j| \ge j$, (j = 0, 1, ...). Hence $|Y_{n+1}| \ge n+1$, a contradiction. So we complete proof of Theorem 1.

References

- [1] A. Bigalke and H.A. Jung, Über Hamiltonsche Kreise und unabhängige Ecken in Graphen, *Monatsh. Math.* 88 (1979), 195–210.
- [2] D.R. Woodall, The binding number of a graph and its Anderson number, J. Combinatorial Theory (B) 15 (1973), 225-255.
- [3] D.R. Woodall, A sufficient condition for hamiltonian circuits, J. Combinatorial Theory (B) 25 (1978) 184-186.