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ABSTRACT. It is shown that the determinant of the variable
adjacency matrix, and hence the determinant of the adjacency
matrix of a graph, are circuit polynomials. From this, it is
deduced that determinants of symmetric matrices are indeed
circuit polynomials of associated graphs. The results are then
extended to general matrices.

1 Introduction

The graphs considered here are all finite, Let G be such a graph. A circuit
or cycle cover of G, is a spanning subgraph of G, whose components are
all cycles. We take a cycle with one node to be a component node (and
sometimes a loop). A cycle with two nodes is an edge. These cycles are
called trivial. Cycles with more than two nodes are called proper. With
each cycle a in G let us associate an indeterminate or weight w, and with
each cycle cover S in G, the weight

w(S) = H'w,,,

where the product is taken over all the components of S. Then the circuit

polynomial of G is
C(G;w) = Y_w(8),

where w is a vector of the weights assigned to the cycles, and the summation
is taken over all the cycle covers in G. We refer the reader to Farrell [3] for
the basic results on circuit polynomials.

Let G be a graph without multiple edges, but possibly with loops. Let
the node set of G be {vy,vs,...,7p} and let the edges of G be labelled
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Z),Z2,...,Tq. Then the variable adjacency matrix of G, denoted by
A(G;z), is the p x p symmetric matrix defined by A(G;z) = (a;;), where

)= if v; and v; are joined by the edge labelled zj
7710  otherwise

If z = (z,z,z,...), then A(G;z) will be called the simple variable
adjacency matrix of G. Notice that if we put z; = 1, for all k, then
A(G; z) becomes the usual adjacency matrix A(G). The matrix A(G;z) is
also defined in Harary [5]. The reader may also wish to consult Clarke [2]
for another application of A(G;z).

First of all, we will establish a relation between C(G;w) and A(G;z).
From this, we will deduce the determinant of a symmetric matrix as the
circuit polynomial of an associated graph. The result will then be extended
to general matrices.

We will assume that the graph G contains p nodes and ¢ edges, unless
otherwise specified. We will normally assign a weight w, to a cycle with n
nodes. Therefore w will be of the form (w;, ws,ws,... ,Wp). This form of
w will be assumed, unless otherwise specified. The cycle with r nodes will
be denoted by Z,. We denote the determinant of the matrix M by |M|.

2 The Determinants of the Simple Variable Adjacency Matrix

First of all, we define a circuital graph to be a graph with components
that are either proper cycles or edges. Let G be a loopless graph with node
set {v1,2,...,vp} and with its q edges labelled zx (k=1,2,...,q). Let §
be a circuital subgraph of G such that the edges zi, are in proper cycles
and the edges z,, are components. We define the function o by

o(S;2) = (-1)°2° [ [ =s [ ] =2, )

where e is the number of even cycles and ¢ is the number of proper cycles
in S. For a non-circuital graph G, we define o(G; ) as 0, and for the null
graph 0, we define o(@;z) as 1. Both the circuital graph and the function
o were defined by Harary (See [5]). The following lemma is taken from [5].

Lemma 1. Let S; (1,2,...,m), be spanning circuital subgraphs of G and
let A(G;z) be the variable adjacency matrix of G, then

|AG;Z)| =) o(S5;2).

i=1
This lemma together with Equation (1) yields
|A(G;2)| = 3 (-1)2° [ [ =w [] ;- )
S;
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Let us put z = (z,z, z, ..., z). Then we get the determinant
1AG;z)| =S (-1 [[=]]=> (3)
Si

where the first product is taken over all the proper cycles and the second,
over all the isolated edges in S;. Let nx be the number of cycles in S; with
k nodes. Let a be the number of even proper cycles and b the number of
odd proper cycles. Then ¢ = a + b. Equation (3) yields

IA(G;2)| = T (-1)"2(1)°2°2* [] (@) (@2 1yrav=s a2y
k=2

Si
= Z(_xZ)m_ H (222k)n2k H (2z2k—1)n,,,_, @)
S;

k=2 k=2

Now, every circuital subgraph of G (including the empty graph) can
be uniquely extended to a circuit cover of G by adding isolated nodes.
Conversely every cover of G can be uniquely reduced to a circuital subgraph
of G by removing its isolated nodes. Hence the circuital subgraphs of G
are equinumerous with the circuits covers of G. We can therefore extend
the summation in Equation (4) to all the circuital subgraphs of G (instead
of only the spanning ones) and therefore to all the circuit covers of G, if we
associate 0 with isolated nodes. Thus we have the following theorem.

Theorem 1. Let G be a loopless graph with variable adjacency matrix
A(G;z). Then
|A(G;z)| = C(G; (0, _x2’ 233: "'234) )

i.e. the determinant of the simple variable adjacency matrix of G obtained
from C(G;w) by putting

w) = 0,wy = —z2 and wy = (~1)"12z", forr > 2.

By putting z = 1 in the above theorem, we obtain the following results
for the determinant of the adjacency matrix of a graph.

Corollary 1.1.
|A(G)| = C(G;(0,-1,2,-2,2,-2,...)).

This corollary is also given in Farrell and Grell [4]. In [4] it was de-
rived from a result which established a connection between C(G;w) and a
polynomial due to Clarke (See[2]).

We can extend our results to graphs which contain loops. In this applic-
tion, we take a loop to be a cycle with one node in a “circuital graph”. We
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can extend the definition of A(G;z), by putting a;; = z;, if there is a loop
at node v;. However, in order to maintain consistency in assigning weights,
we will have to assume that there is a loop on every node of G. Lemma 1
then becomes

m
|AG;z,2)| =) o(Si; 2, 2).
=1

Theorem 1 and Corollary 1.1 lead to the following results.
Theorem 2. Let G be a graph with loops at each node. Then

|A(G; z, )| = C(G; (2, -2, 223, —214, .. ).

Corollary 2.1.
|A(G)| =C(G;1,-1,2-2,2,...)).

3 Determinants of Symmetric Matrices

Let M = (m;;) be a p x p symmetric matrix, defined by

.

zorQ forizj
,,,,.,.={ or i 5.
) z or i = j

Let us associate with M, a graph G s defined as follows. Label the nodes
of Gm as v; (1 =1,2,...,p). Nodes v; and v; are joined by an edge if and
only if m;;. Put a loop at each node of Gps. Then clearly

M = A(Gu;z, 2),
where edge v;v; is labelled z and each loop is labelled 2. Hence from
Theorem 2, we get the following result.
Theorem 3. Let M = (my; be a p x p symmetric matrix defined by
mi; =z, or 0, for ¢ # j and my; = z. Then

M| = C(Gu; (2, —22, 223, —224, .. .).

Theorem 3 shows that the determinants of certain restricted kinds of
symmetric matrices can be obtained from the circuit polynomial of an as-
sociated graph.

In order to obtain a connection with the determinants of general sym-
metric matrices we must keep our analysis as general as possible. Equation

142



(2) may be written as

14(G;) = 3% [Tew [-0222 [T (@wo)] [2 [T Cw)]

—ZH(-%)H< 2H%)H(2szj),

S; j=1

where g¢; is the number of component edges in S; and a and b are the
numbers of even and odd proper cycles respectively, in S;. The third and
fifth products are taken over the even and odd cycles respectively; i.e. e
and o; are even and odd numbers respectively. This is a general form of
Equation(4).

Following a similar extension which lead to Theorem 2 we can add to
each node v; a loop labelled 2;. The effect of this will be to put a; = z; in
the variable adjacency matrix. Thus we will have

Pi
|A(G,_, z H Z; H(—'x?cj) H(_2 szi) H(ZH zkj)

S J=1 Zc; j=1 Zo,

where p; is the number of loops in S;. Here we allow loops to be components
of circuital subgraphs. Our discussions lead to the following theorem, which
is a generalization of Theorems 1 and 2.

Theorem 4.

|A(G; z,2)| = C(G; ),
where the weights are assigned as follows. A loop at node v; labelled z; will
have a weight wy, = 2. For the edge e; labelled zi;, we; = —z .- The
r-cycle Z, containing edges labelled zy,, zk,,. ..,z , Will receive weight

w(Z,) = (—1)"+12sz‘, forr > 2.
i=1

Theorem 4 provides us with the necessary tools for attacking the general
symmetric matrix. Let M = (m, ;) be a symmetric matrix of order p. Let
us associate with M, the graph Gy, defined as follows: G will have p
nodes labelled »; (i =1,2,...,p) with a loop at each node. Nodes v»; and
v; will be joined by an edge if and only if m;; # 0. Finally, label the edge
v;v; with my; and the loop at v;, with my;. Then we get M = A(Gur;m),
where m= (mu, my2,... ).

The following theorem is immediate.

Theorem 5. Let M = (m;;) be a p X p symmetric matrix. Then

IM| = C(Gm,z), where wy, = mi;, Wy, = —(m?;) and

w(Z,) = (-1)"H12[T;_, mi,j., for r > 2, and the product is taken over all
the edges in Z,.
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4 Determinants of General Matrices

It is not difficult to see that in order to extend our results to general p x p
matrices, the graph G must be directed (and will be denoted by Gyy).
Since a;; is not necessarily equal to aj, different weights must be assigned
to the edges v;v; and vjv;. Notice that if a;; = aji, then the two directed
edges joining nodes v; and v; can be replaced by a single undirected edge. If
this is true for all the edges in the directed graph Gas, then we can use the
undirected graph Gs. However, corresponding to each proper cycle Z, in
G there will be two proper directed cycles Z, in Gps. We can compensate
for this by multiplying the weight assigned to Z, by 2. Corresponding to
each loop in G will be one loop in G . Therefore the weights of all lcops
will be equal. Corresponding to each edge component in G there will
be one directed 2-cycle in Gas with the square of the welght of an edge.

Therefore edge components in G should be weighted —22, where zj is
the label on the directed edges in G . Hence the assignment of weights to
the covers of G will be identical with the assignment defined in Theorem
5.

The more general form of Theorem 5 can now be easily extrapolated
from the above discussion. In the following result, Gps is the directed
graph constructed as follows. Gy has p nodes labelled v; (i = 1,2,...,p).
Nodes v; and v; are joined by an edge v;v; if and only if my; # 0. ThlS
edge will then be labelled mij. G will have a directed loop at each node
v;, with a label my;.

Theorem 6. Let M = (mg,) be a p x p matrix. Then |M| = C(Gp;w),
where wyi = my;, and Z, = (=1)" ' [[,_, mi, ., for r > 1,where the
product is taken over all the edges in the directed cycle Z,.

A formal preof of Theorem 6 can be established by (i) extending the
definitions of A(G;z) and the function o to include directed graphs (ii)
establishing the directed graph version of Lemma 1 and then (iii) following
a proof similar to that of Theorem 1.

The following corollary is immediate for the theorem.

Corollary 6.1. Let the weight w;; = m;; be associated with the edge (i, 5)
of the digraph Gps. Then,

IM| =) (-1)“Pu(F),

where the sum is taken over all the cycle covers F and u(F) is the number
of even cycles in F'.

This corollary is a well known result given in Berman and Fryer [1] (The-
orem 3.8).
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5 Some Remarks

We can use the ideas developed above, in order to establish some familiar
properties of determinants. For example,

Property 1.

Let D = diag (d1,dz,...,dp). Then |D| =dy, dy,...,dp.

Property 2.

Let B be the matrix obtained from A by multiplying row ¢ by a scalar k.
Then |B| = k|A|.

Other properties of determinants of matrices can be established by using
circuit polynomials. It will be worthwhile to investigate which operations
on Gy leave C(Gum;w) invariant. Such operations when transformed to
A(Gu;z) will also leave |A(Gys; z)| invariant.

The results given here can be regarded, in some ways, to be a contin-
uation of the ideas developed in [4]. One of the specific comments in [4]
(immediately after Corollary 1.1) was the following ; “We suspect that
determinants of general matrices could be evaluated by suitable weighted
circuit polynomials.” In this paper we have shown that our suspicion was
correct.

The establishment of a connection between the circuit polynomial and de-
terminants of matrices is an important one, if only because of the marriage
of Graph Theory and Linear Algebra. Some other interesting applications
of Combinatorics to Linear Algebra can be found in Stanton and White [6]
and Zeilberger [7].
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