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ABSTRACT. A function f: V — R is defined to be an R-domin-
ating function of graph G = (V, E) if the sum of the function
values over any closed neighbourhood is at least 1. That is, for
every v € V, f(N(v)U {v}) > 1. The R-domination number
R(G) of G is defined to be the infimum of f(V) taken over all
R-dominating functions f of G. In this paper, we investigate
necessary and sufficient conditions for ®(G) = ¥(G) where
v¥(G) is the standard domination number.

1 Introduction

All our graphs are finite and without loops or multiple edges. A block of
a graph is a maximal nontrivial connected subgraph of the graph with no
cut-vertices. A complete block graph is a connected graph in which every
block is complete. A trivial block is isomorphic to K». If each block is a
trivial block, then the complete block graph is a tree. A vertex that belongs
to exactly one block we will call a special vertex. Two blocks are said to be
adjacent if they have a common cut-vertex. A graph is chordalif it contains
no cycle of length greater than three as an induced subgraph. A sirongly
chordal graph is a chordal graph that contains no induced trampoline, where
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a trampoline consists of a 2n-cycle vy, vs, ..., ¥2,,%1 in which the vertices
vy; of even subscript form a complete graph on n > 2 vertices.

For a graph G = (V| E) with vertex set V' and edge set E, the open
neighbourhood of v € V is N(v) = {u € V | uv € E} and the closed
neighbourhood of v is N[v] = {v} U N(v). For a set S of vertices, we define
the open neighbourhood N(S) = J,¢s N(v), and the closed neighbourhood
N[S] = N(S)US. A dominating set S C V for a graph G = (V,E)
is such that each v € V is either in S or adjacent with a vertex of S.
(That is, N[S] = V.) The domination number of G, v(G), equals the
minimum cardinality of a dominating set. The domination number has
received considerable attention in the literature. Haynes, Hedetniemi, and
Slater [15] have written a book on domination theory.

For a real-valued function f: V' — R the weightof f isw(f) = 3 ,cy f(v),
and for S C V we define f(S) = }_,cs f(v), so w(f) = f(V). For a ver-
tex v in V, we denote f(N[v]) by f[v] for notational convenience. Let
f:V — {0,1} be a function which assigns to each vertex of a graph an
element of the set {0,1}. We say f is a dominating function if for every
v € V, f[v] = 1. Then the domination number of a graph G can be defined
as y(G) = min{w(f) | f is a dominating function on G}.

Several authors have suggested changing the allowable weights. Well-
known is fractional domination where the weights are allowed to be in the
range [0,1]. Reporting on results in [17], at the Eighteenth Southeastern
International Conference on Combinatorics, Graph Theory and Computing
S.T. Hedetniemi formally defined fractional domination as follows. For a
graph G = (V, E), a function f: V — [0,1] is called a fractional dominating
Junction of G if f[v] > 1 for each v € V. The fractional domination number
of G is given by v,(G) = min{w(f) | f is a fractional dominating function
for G}. For r-regular graphs on n vertices the fractional domination number
is n/(r +1), which is attained by placing weights 1/(r 4+ 1) on each vertex.
This fractional version of domination has been studied in [4, 5, 10, 11, 12,
14, 17] and elsewhere.

Recently, the idea of allowing negative weights was put forward. This
resulted in minus domination, where f has codomain {—1,0,1}, and signed
domination, where f has codomain {—1,1}. A minus dominating function
is defined in [7] as a function f: V — {-1,0,1} such that f[v] > 1 for
all v € V. The minus domination number for a graph G is v~ (G) =
min{w(f) | f is a minus dominating function on G}. A signed dominating
function is defined in [9] as a function f: V — {-1,1} such that for every
v € V, f[v] = 1. The signed domination number for a graph G is 7,(G) =
min{w(f) | f is a signed dominating function on G}. These parameters
are similar in many ways to ordinary domination, but also have different
properties. Minus and signed domination have been studied in [6, 7, 8, 9,
16, 18, 19, 20] and elsewhere.
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Bange et al. (1] introduced the generalization to P-domination for an
arbitrary subset P of the reals R. A function f: V — P is a P-dominating
function if the sum of its function values over every closed neighbourhood is
at least 1. That is, for every v € V, f[v] > 1. The P-domination number of
a graph G, denoted yp(G), is defined to be the infimum of w(f) taken over
all P-dominating functions f. Of course this might be —co. For example,
if P =Z and « is a positive integer, then for the tree T shown in Figure 1,
vp(T) <4 — 2a. As we can make o as large as we like, it is evident that
7p(T) = —c0.

a @

l—a l1—-a l—-« l—-«o

Figure 1. A tree T with v3 = —coc.

When P = {0,1} we obtain the standard domination number. When
P =[0,1], {-1,0,1} or {—1,1} we obtain the fractional, minus or signed
domination numbers, respectively. When P = R, we obtain the real
domination number yg(G). A trivial observation is that if P C T, then
¥p(G) 2 vr(G). In particular, 7(G) 2 =(G).

2 Real domination

Let P be a subset of the reals R. We say a function f: V — P is an
efficient P-dominating function if for every vertex v it holds that f[v] = 1.
A function is nonnegative if all the function values are nonnegative. We
denote a function which is both nonnegative and efficient P-dominating as
an N EPD-function. For example, if G is a regular graph of degree r, then
the function f that assigns to each vertex the value 1/(r+1) is an NEPD-
function for G. If G is a complete bipartite graph of order at least 3 with
one partite set £ of cardinality £ and the other R of cardinality r, then
the function f that assigns to each vertex of £ the value (r — 1)/(ir — 1)
and to each vertex of R the value (I — 1)/(lr — 1) is an N EPD-function
for G. Goddard and Henning [13] showed that the property of possessing
a N ERD-function is the key to the real domination number of a graph.

Theorem A. (Goddard, Henning) For any graph G,

w(f) if G has a NERD-function f,
—o0o  otherwise.

1&(G) = {

If f is an NEPD-function of G, then w(f) > yp(G) > w&(G) = w(f).
Hence we have the following corollary of Theorem A.
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Corollary 1. For any subset P of R, if a graph G has an N EP D-function
f, then ¥p(G) = w(G) = w(f).

When P = {0,1} an efficient P-dominating function of a graph G is the
characteristic function of a so-called efficient dominating set D of G: |[N[v]n
D| = 1 for every v € V. (Equivalently, D dominates G and u,v € D
implies d(u,v) > 3.) Efficient dominating sets were introduced by Bange,
Barkauskas, and Slater [2, 3]. As a special case of Corollary 1, we have the
following result.

Corollary 2. Ifa graph G has an efficient dominating set D, then v&(G) =
v(G)-

3 NERD-functions and efficient dominating sets

If a graph G has an efficient dominating set D, then G has a NERD-
function (simply take the characteristic function of D). However, the con-
verse is not true. Many graphs that do not have efficient dominating sets
will have a N ERD-function. For example, the graph G shown in Figure 2
has a NERD-function as illustrated, but does not have an efficient domi-
nating set. Hence, the existence of a N ERD-function does not necessarily
imply that G has an efficient dominating set.

1 1
5 5
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Figure 2. A NERD-function of a graph G.

Goddard and Henning [13] proved the following result.

Theorem B. (Goddard, Henning) For any tree T, T has a N ERD-function
if and only if it has an efficient dominating set.

We extend Theorem B to complete block graphs. We shall need the
following lemmas:

Lemma 1. Let f be a NERD-function of a complete block graph or a
unicyclic graph G = (V,E). If N[u] C N[v] for some vertices u and v of
G, then every vertex at distance 2 from u of G has weight 0 under f.

Proof: Suppose G is a complete block graph. Then the subgraph induced
by N|u] is complete. Thus N[u] C N[z} for every vertex z adjacent with
u. Let w be an arbitrary vertex at distance 2 from u in G, and let u, z,
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w be a u — w path. Then, since f is a nonnegative function, 1 = f[z] >
flu]+ f(w) =1+ f(w), so f(w) < 0. Thus, f(w) =0.

If G is a unicyclic graph, then u has degree 1 or 2. If u has degree 2, then
the subgraph induced by N [u] is complete and the result follows as before. If
u is a leaf, then let S = N[v]-N[u]. Then1 = fv] = f[u]+f(S) = 1+ f(S),
so f(S) =0. But f is a nonnegative function, so f(w)=0forallwe S.O

Lemma 2. If a complete block graph has a N ERD-function, then it has
an efficient dominating set.

Proof: We prove that if a complete block graph G = (V, E) has a NERD-
function f, then it has an efficient dominating set S such that S C {v €
V' | f(v) > 0}. We proceed by induction on the number m of blocks in the
complete block graph. The base case when the complete block graph has
one block is trivial. So, assume for all complete block graphs G’ = (V/, E)
with less than m blocks that if G’ has a NERD-function f, then it has
an efficient dominating set S’ such that §’ C {v € V' | f(v) > 0}. Let
G = (V, E) be a complete block graph with m blocks with diameter d that
has a NERD-function f.

If d = 2, then G consists of m end-blocks and a single cut-vertex » that
belongs to every block. By Lemma 1, all vertices other than the central
vertex have weight 0, and thus the central vertex v has weight 1. Letting
S = {v} we have an efficient dominating set S satisfying S C {v € V |
f(v) > 0}.

If d = 3, then G has at least two cut-vertices and contains m — 1 end-
blocks and one other block that is adjacent with all the other blocks. It
follows from Lemma 1 that every vertex of this central block has weight
0. Hence the sum of the weights of all the special vertices in each end-
block is 1 (so each end-block contains a special vertex of positive weight).
We know then from Lemma 1 that no two end-blocks can be adjacent.
Hence every cut-vertex belongs to exactly two blocks, namely to an end-
block and to the central block, so any two special vertices from distinct
end-blocks are at distance 3 apart. Letting S consist of a special vertex of
positive weight from each end-block, we have an efficient dominating set S
satisfying S C {v € V| f(v) > 0}.

For d > 4, let u and v be two vertices of G at distance d apart, and
consider a u — v path u = vg,v1,%2,...,%4 = v in G of length d. For
i=1,2,...,d, let B; be the block containing the edge v;_;v;. The removal
of the edges vow for all vertices w € B3 — {v2} yields two complete block
graphs Gy (containing u) and G,. By Lemma 1, f(w) = 0 for all w €
V(B2) — {v1}. In particular, f(v2) = 0. So the restriction of f to G,
is a NERD-function of G,. Hence, by induction, there exists an efficient
dominating set S, of G, such that S, C {w € V | f(w) > 0}. It remains
to extend S, to the desired dominating set of G.
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If w5 has a neighbour z in G, with weight 1 under f, then every other
neighbour of vy, including those vertices in B3 — {v2}, has weight 0 under
f. So no vertex of B3 — {v2} is in S,. Let B; be the block containing the
edge vox. Then by Lemma 1, every vertex of B, different from z and v3 is
a special vertex. Since v, belongs to at least three blocks, then by Lemma
1 each neighbour of v, that does not belong to B, or Bs belongs to exactly
two blocks, namely an end-block and a block containing v,. Furthermore,
the sum of the weights of the special vertices in each end-block of G, not
containing « is 1 under f, so each such end-block has a special vertex of
positive weight. Let S, consist of a special vertex of positive weight from
each end-block of G, that does not contain z. Then § = S, U S, U {z} is
an efficient dominating set of G satisfying S C {w € V| f(w) > 0}.

Suppose every neighbour of vz in G, has weight less than 1 under f. If
v, is contained in a block B, in G, the sum of the weights of whose vertices
is 1 under f, then every neighbour of vo, not in B,, has weight 0 under f.
In particular, the vertices in B3 — {v2} have weight 0 under f. So no vertex
of B3 — {v2} is in S,. By Lemma 1, every vertex of B; different from v,
is a special vertex. Hence B; is different from the block Bz, so vz belongs
to at least three blocks. By Lemma 1 each neighbour of v, that does not
belong to B, or B3 belongs to exactly two blocks, namely an end-block and
a block containing v;. Let Sy, consist of a special vertex of positive weight
from each end-block of G,,. Then S = S, U S, is an efficient dominating
set of G satisfying S C {we V| f(w) > 0}.

Suppose the sum of the weights of the vertices in every block that contains
vy in Gy, is less than 1 under f. If v is contained in a nontrivial block B
in Gy, then, by Lemma 1, each vertex of B, different from v, has weight
0 under f and belongs to exactly two blocks, namely an end-block and a
block containing v2. The sum of the weights of the special vertices in each
such end-block of G, is 1 under f, so each such end-block has a special
vertex of positive weight. If vo is contained in a trivial block B; in G4,
then the vertex, z say, adjacent with v in B, belongs to exactly two blocks,
namely an end-block and the trivial block B, containing v. The sum of the
weights of the special vertices in the end-block containing z is 1- f(z) > 0,
so this end-block must contain a special vertex of positive weight under f.
Hence every end-block in G, contains a special vertex of positive weight
under f.

If S, contains a vertex w € Bz — {v2}, then let S be S, together with a
special vertex of positive weight from each end-block of G,,. If S, contains
no vertex w € B3 — {v;}, then since v3 is dominated by S,, one of its
neighbours in G, that does not belong to B3 must have positive weight
under f and hence the sum of the weights of the vertices in B3 — {v2} must
be less than 1. From this it follows that at least one neighbour z of v2 in G,
has positive weight under f. So let S be S, U {z} together with a special
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vertex of positive weight from each end-block of Gy that does not contain
z. In both cases we produce an efficient dominating set S of G satisfying
SC{weV| f(w) >0} O

If a graph has an efficient dominating set, then it has a N ERD-function.
Hence for a complete block graph we have the following:

Theorem 1. For any complete block graph G, G has a N ERD-function if
and only if it has an efficient dominating set.

For what other classes of graphs does the existence of a N ERD-function
imply the existence of an efficient dominating set? As pointed out in Section
2, every regular graph has a NERD-function. However, for every integer
r 2> 2, there exist regular graphs G of degree r that do not possess efficient
dominating sets. For example, if r = 2, then let G = C,, where n % 0 (mod
3), while for » > 3, let G = K,_; x K. The bipartite graph G shown
in Figure 2 or 3(i) has a NERD-function as illustrated, but no efficient
dominating set. The unicyclic graph G shown in Figure 3(i) has a NERD-
function as illustrated, but does not possess an efficient dominating set. The
graph H shown in Figure 3(ii) is both chordal and outerplanar in which
every bounded region is a triangle. Although H has a N ERD-function as
illustrated, it has no efficient dominating set. Hence we have the following
result.

Theorem 2. If a graph is bipartite, chordal, unicyclic, regular, or outer-
planar in which every bounded region is a triangle, then the existence of
a NERD-function does not necessarily imply the existence of an efficient
dominating set.

1 1 1 1
2 2 2 2
0 0
0
(Z) A unicyclic graph G. (%) A chordal graph H.

Figure 8. NERD-functions of the graphs G and H.

Next we consider the family & of unicyclic graphs with the property that
the vertices of the cycle dominate all other vertices. Equivalently, if G € U,
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then every vertex of G either lies on the cycle or is adjacent with a vertex of
the cycle. We characterize those graphs G from U for which the following
two conditions are equivalent:

(1) G has a N ERD-function;

(2) G has a efficient dominating set.

Every regular graph has a N ERD-function, so if G is a cycle, then it
satisfies condition (1). A cycle has an efficient dominating set if and only
if its length is a multiple of 3. Therefore, if G = C,,, then the conditions
(1) and (2) are equivalent if and only if » = 0 (mod 3). Hence in what
follows we restrict our attention to those graphs of &/ that are not cycles.
We will refer to the edges that do not belong to the cycle as legs. Two legs
are adjacent if they are incident with a common vertex. Two nonadjacent
legs are called consecutive legs if they are joined by a path every internal
vertex of which has degree 2. The following two lemmas will be useful.

Lemma 3. If G € U has a NERD-function f which assigns weight 1 to
some vertex v of G, then f has codomain {0, 1}.

Proof: Suppose, to the contrary, that there is a vertex of G whose weight
under f is strictly between 0 and 1. Among all such vertices, let u be
one whose distance from v is minimum. Notice that d(u,v) > 3. Let
v = v, vy,...,%d—1,%4 = u be a shortest u — v path. Since flva—1] =1,
we must have f(v4—1) < 1 and f(v4—2) < 1. Hence, by our choice of u,
we have f(vg—1) = f(va—2) = 0. By assumption f(u) < 1, so vg—; must
be adjacent with some vertex z, different from u, whose weight under f
is strictly between 0 and 1. Therefore, at least one of » and z is an end-
vertex and either fu] <1 or f[z] < 1. This contradicts that fact that f is
a NERD-function of G. o

Lemma 4. If G € U has a NERD-function f, then f has codomain
[0,1) if and only if G satisfies the following three conditions: (i) G has
maximum degree 3, (ii) if G has exactly one leg, then the length of the
cycle is congruent to 2 (mod 3), and (iii) if G has at least two legs, then
any path that joins two consecutive legs, the internal vertices of which have
degree 2, has length congruent to 2 (mod 3).

Proof: To prove the sufficiency, suppose G has the structure as described
in the lemma. Then a NERD-function f of G with codomain [0,1) can
be defined as follows: let f(v) = 0 if v is a vertex of degree 2 whose
distance from a closest vertex of degree 3 is congruent to 1 (mod 3), and
let f(v) = 1/2 otherwise.

Next we prove the necessity. Suppose that G has a NERD-function f
with codomain [0, 1). First we show that G has at most one leg attached to
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every vertex of the cycle. If this is not the case, then there are end-vertices
u and v that are adjacent with a common vertex z on the cycle. By Lemma
1, every vertex at distance 2 from u (respectively, v) has weight 0 under
f. Therefore, every neighbour of z has weight 0 under f. Consequently
f(z) = 1, contrary to our assumption that no vertex of G has weight 1
under f. Hence G has maximum degree 3.

If G has exactly one leg u1v; with u; on the cycle, then let ug, us, ..., ug,u1
be the cycle. If f(v1) =0, then f(u1) = 1, a contradiction. Hence f(v;) = &
where 0 < a@ < 1. The weights of the vertices along P are now deter-
mined, namely, f(u1) = 1 — a, f(u2) = 0, f(u3) = a f(‘lL4) =1-a,
f(us) = 0, f(ue) = a,..., flua-2) = a, f(va-1) = 1 -a, f(ua) = 0.
Hence 1 = flug] = 2(1 — a), so a = 1/2, and the length d of the cycle
satisfies d = 2 (mod 3).

If G has at least two legs, then consider two consecutive legs ujv; and
ugvg along the cycle with u; and ug on the cycle. Let P: uy = z9, z1,...,
ZTq4-1,T4 = U be a u; — uy path every internal vertex of which has degree
2. If f(v1) =0, then f(u;) =1, a contradiction. Hence f(v;) = o where
0 < @ < 1. The weights of the vertices along P are now determined,
namely, f(zO) =1-a, f(z1) =0, f(:!.‘g) =o f($3) =1-a, f(x4) =0,
flzs) =ay..., f(za-2) =1—a, f(x4-1) =0, f(z4) = «. Hence the length
d of P satisfies d =2 (mod 3). o

Some immediate corollaries of Lemma 4 now follow.

Corollary 3. Let f be a NERD-function of G € U with codomain [0,1).
Then the weights assigned under f are 0, a, or 1 — a where 0 < o < 1.

Corollary 4. Let f be a NERD-function of G € U with codomain [0,1).
If ujv; and ugvy are consecutive legs along the cycle with u; and uy on
the cycle, then f(v1) = a and f(vy) =1—a where 0 <a < 1.

Theorem 3. Let G = (V, E) be a graph from U that is not a cycle. Then
G has a N ERD-function if and only if G has an effcient dominating set,
unless G satisfies the following three conditions: (i) G has maximum degree
3, (ii) if G has exactly one leg, then the length of the cycle is congruent to
2 (mod 3), and (iii) if G has at least two legs, then it has an odd number
of legs and any path that joins two consecutive legs, the internal vertices
of which have degree 2, has length congruent to 2 (mod 3).

Proof: If G has an efficient dominating set, then it has a N ERD-function.
For the converse, let f be a NERD-function of G. If f assigns weight 1 to
some vertex of G, then, by Lemma 3, f has codomain {0,1} and the set
{v € V| f(v) = 1} is an efficient dominating set of G. So we may assume
that f has codomain [0,1). By Lemma 4, G has maximum degree 3.

If G has exactly one leg, then it follows from the proof of Lemma 4 that
the length of the cycle is congruent to 2 (mod 3). Such a graph G has
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no efficient dominating set. On the other hand, if G has at least two legs,
then, by Lemma 4, no two legs are adjacent and a path that joins two
consecutive legs, the internal vertices of which have degree 2, has length
congruent to 2 (mod 3). Let uovo, u1%1,...,Um-1Ym—1 be the legs of G
in clockwise ordering, with end-vertices vo,%1,...,%m—1, and let S be an
efficient dominating set of G. Exactly one of u; and v; belongs to S. If
u; € S, then v;_1,v;41 € S while if »; € S, then u;_;,u;;1 € S (where
addition is taken modulo m). Hence the number m of legs must be even.
Thus if m is odd, then G has no efficient dominating set. If m is even,
then let S; (S2) denote the set of vertices u; with ¢ odd (respectively,
even) and vertices v; with j even (respectively, odd). Then the set S;
(respectively, S2) together with all vertices on the cycle whose distance
from S, (respectively, S2) is a multiple of 3 forms an efficient dominating
set of G. ]

4 Graphs for which 7 = v is equivalent to the existence of an
efficient dominating set

Due to Corollary 2, we need only consider those graphs for which yg = v
implies the existence of an efficient dominating set. As an immediate con-
sequence of Theorem A, Corollary 2, and Theorem 1 we have the following
result.

Corollary 5. For any complete block graph G, y&(G) = «(G) if and only
if G has an efficient dominating set.

We show next that for the class of regular graphs G, 1&(G) = ¥(G)
implies that G has an efficient dominating set.
Lemma 5. If G is a regular graph of degree r satisfying y&(G) = v(G),
then G has an efficient dominating set.

Proof: Let G = (V, E) have order n. Then 4(G) = &(G) = n/(r + 1),
so n = (r + 1)k for some positive integer k. Thus, v(G) = k. Hence there
exists a minimum dominating set D = {v1,va, ..., vx} of G of cardinality k.
Each vertex of D can dominate at most r vertices not in D, so n —v(G) =
|V = D| < r|D| = ry(G). Thus, ¥(G) 2 n/(r + 1) with equality if and only
if |V — D| = r|D|; that is, if and only if D is an efficient dominating set of
G. Since ¥(G) = n/(r + 1), the result now follows. O

As a consequence of Corollary 2 and Lemmas 5, we have the following
result.

Corollary 6. For any regular graph G, 1&(G) = v(G) if and only if G has
an efficient dominating set.

However, in general a graph G satisfying v&(G) = 7(G) does not neces-
sarily possess an efficient dominating set. For example, the graph G shown
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in Figure 3(i), which is bipartite, unicyclic, and a cactus, has a NERD-
function f as illustrated, and so yg(G) = w(f) = 3. Furthermore, it is
evident that v(G) = 3. However, the graph G does not possess an efficient
dominating set. The graph H shown in Figure 3(ii), which is both chordal
and outerplanar in which every bounded region is a triangle, has a NERD-
function f as illustrated, and so yr(H) = w(f) = 3. Furthermore, it is
evident that y(H) = 3. However, the graph H does not possess an efficient
dominating set. Hence we have the following result.

Theorem 4. If a graph G is bipartite, chordal, a cactus, unicyclic, or
outerplanar in which every bounded region is a triangle, then y&(G) = v(G)
does not necessarily imply that G has an efficient dominating set.

We close this section with the following. Is it true that if G is a strongly
chordal graph, then yg(G) = v(G) implies that G has an efficient dominat-
ing set?

5 Graphs for which g = v is equivalent to the existence of a
NERD-function

If G is a graph for which 4z (G) = ¥(G), then G has a N ERD-function. This
follows since if G has no N ERD-function, then, by Theorem A, y&(G) =
—o0. Hence in this section we consider graphs for the existence of a NERD-
function implies yg = vy. As an immediate consequence of Corollary 5 and
Theorem 1 we have the following result.

Corollary 7. For any complete block graph G, v&(G) = v(G) if and only
if G has a NERD- function.

Suppose that a strongly chordal graph G = (V, E) has a N ERD-function
f. Since Farber [10] showed that for strongly chordal graphs their fractional
domination number is equal to their domination number, it follows that
w(f) 2 74(G) = 7(G) 2 w(G) = w(f). Thus we must have equality
throughout. In particular, yg(G) = ¥(G). Hence we have the following
result.

Corollary 8. For any strongly chordal graph G, y&(G) = v(G) if and only
if G has a N ERD-function.

We conjecture that Corollary 8 can be extended to the family of all
chordal graphs. Corollaries 7 and 8 may be restated as follows:

Corollary 9. For any complete block graph or strongly chordal graph G,

G) if G has a NERD-function,
w(G) = {"" ) :
—0c0  otherwise.

However it is not true in general that if a graph G has a N ERD-function,
then y&(G) = v(G). We know that every regular graph of order n and of
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degree r satisfies yr(G) = n/(r + 1). However, for every integer r > 2,
there exist regular graphs G of degree r for which 4(G) # n/(r +1). For
example, if r = 2, then let G = C,, where n = 0 (mod 3), while for r > 3, let
G = K,_; x K3. The bipartite graph G shown in Figure 2 has a NERD-
function f as illustrated, so 1&(G) = w(f) = 11/5 < 3 = 4(G). The
unicyclic graph G shown in Figure 4 has a N ERD-function f as illustrated,
so 1&(G) = w(f) = 7/3 while v(G) = 3. Hence we have the following result.

Theorem 5. If a bipartite, unicyclic or regular graph G has a NERD-
function, then it is not necessarily true that y&(G) = v(G).

Q
ol

1
3

Figure 4. A unicycle graph G with 1&(G) < 7(G).

As a consequence of Corollary 3 and Theorem 3, we have the following
result.

Corollary 10. If G € U is not a cycle, then y&(G) = v(G) if and only if
G has a N ERD-function.

Theorem 6. If a unicyclic graph G has a N ERD-function f which assigns
weight 1 to some vertex v of the cycle, then y&(G) = v(G).

Proof: Let u be a neighbour of » on the cycle, and let w be the neighbour of
u on the cycle different from ». Then f(u) = f(w) = 0. Let e = uw. Then
f is a NERD-function of the tree G — e, so by Corollary 7, yx(G —e) =

7(G — ¢). Hence 7(G) < 7(G — €) = (G — ) = w(f) = =(G) < ¥(C).
Thus we must have equality throughout. In particular, v&(G) = v(G). O

6 Summary

Let F denote a family of graphs, and let P; and P, denote the following
two properties of the family F.

Py For every G € F, '&(G) = 4(G) implies that G has an efficient
dominating set;

P, For every G € F, the existence of a NERD-function for G implies
that & (G) = v(G).
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The following table summarizes our results.

Family complete strongly
of block unicyclic | bipartite | regular | chordal | chordal
graphs graphs graphs graphs | graphs | graphs | graphs
Property P, yes no no yes no ?
Property P2 yes no no no 7 yes

We close with the following question which we have yet to settle: does
P, imply P;?
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