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ABSTRACT. We have carried out a large number of computer
searches for the base sequences BS(n + 1,n) as well as for
three important subsets known as Turyn sequences, normal se-
quences, and near-normal sequences. In the Appendix we give
an extensive list of BS(n + 1,n) for n < 32. The existence
question for Turyn sequences in BS(n+ 1,n) was resolved pre-
viously for all n < 41, and we extend this bound to n < 51. We
also show that the sets BS(n+1,n) do not contain any normal
sequences if n = 27 or 28. To each set BS(n 4 1,n) we asso-
ciate a finite graph I', and determine these graphs completely
for n < 27. We show that BS(m,n) =0 ifm > 2n,n > 1,
and m 4+ n is odd, and we also investigate the borderline case
m=2n-1.

Introduction

In this paper we discuss several conjectures of combinatorial nature which
are closely related to the Hadamard matrix conjecture (HMC). Recall that
HMC asserts that for every positive integer n there exists a Hadamard ma-
trix of order 4n. This notoriously difficult combinatorial problem remains
open for more than hundred years, in spite of many hundreds of papers
written on the subject. There is a plethora of partial results that construct
some infinite families of Hadamard matrices or just some particular ones
for special orders 4n (see e.g. the survey papers [5, 25]), but as yet there is
no decisive result.
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A very promising new method has been introduced by R. J. Turyn [27].
This is the method of base sequences which is used in many recent papers,
eg. [4,17, 18,19, 20, 21, 22, 28]. The collection of all base sequences
(A; B;C; D) with A and B of length m, and C and D of length n will be
denoted by BS(m,n) (see Section 3 for precise definition). In applied areas
(such as signal processing, image coding, etc.) base sequences with m =n
are called sets of (four) aperiodic complementary binary sequences (see e.g.
[3, 26]). The most important contribution to the theory of base sequences,
after Turyn’s paper [27], was made by C. H. Yang [28]. Many subsequent
papers are essentially elaborations of his ideas.

One of the main objectives of this paper is to attract the attention of the
readers to the following two intriguing conjectures.

Aperiodic Complementary Quadruples Conjecture (ACQC). The
sets BS(n,n) are non-empty for all n > 0.

Base Sequence Conjecture (BSC). The sets BS(n + 1,n) are non-
empty for alln > 0.

Although these are not new conjectures, I have not seen them stated in
print. We point out that HMC is a consequence of ACQC (see Section 3,
or [25, 28] for more details). It is known (see Section 5) that ACQC'is true
for all n < 100 such that n # 67,73, 79, 83, 89, 97.

It is easy to show that BSC implies ACQC. At the present time it is
known that BSC holds for all n < 32 and for all integers n = 2210°26¢
where a, b, ¢ are arbitrary non-negative integers.

In order to gain some insight into the structure of the sets BS(n + 1, n),
we introduce a graph I',. The vertices of this graph are all partitions
of 2(2n + 1) into four squares. To each (A; B;C;D) € BS(n +1,n) we
can associate a set consisting of one or two vertices of I',. If this set is a
singleton, we introduce a loop at that vertex, and otherwise an edge joining
the two vertices in the set. We postulate that there is at most one loop
at any vertex and at most one edge between any two distinct vertices. We
say that (A; B;C; D) is a witness for the edge of I's that it defines. Some
elementary properties of these graphs are proved in Section 7. We have
determined completely these graphs for n < 27 (see Section 8).

By imposing various symmetry conditions on base sequences, one obtains
three important subsets TU(n), NS(n), and NN(n) of BS(n + 1,n). We
refer to their members as Turyn sequences, normal sequences, and near-
normal sequences, respectively (for the precise definitions see Sections 10,
11, and 12). The normal and near-normal sequences were originally intro-
duced by C. H. Yang [28] in a different (but equivalent) form.

One knows that TU(n) # @ for n < 7 and n = 12 and 14. It appears
that TU(n) = @ for all other values of n. This was confirmed for n < 29 in
[21], and for n < 41 in the very recent paper [6]. Our computations show



that TU(n) = 0 also for 41 < n < 51.

Particular normal and/or near-normal sequences were constructed in [20,
28]. C. H. Yang has stated [28] that he has enumerated all equivalence
" classes of NN(n) for even n < 18. He has also shown (see [20]) that
NN(30) # 0. We have carried out exhaustive computer search for both
NS(n) and NN(n) for all n < 28. An extensive list of base sequences
BS(n +1,n) for n < 32 (including normal and near-normal sequences) is
given in the Appendix.

In Section 13 we show that the BS(m,n) are empty if (i) m > 2n,n > 1,
and m + n is odd; or (ii) m = 2n — 1 and n is odd. In a certain sense,
m = 2n — 1 is a borderline case. Indeed it is known that BS(2n — 1, n) is
not empty for even n < 24.

In Section 14 we discuss an important class of sequences called T-sequences
which are closely related to ACQC and BSC. The set of all T-sequences of
length n is denoted by T'S(n). There is also a conjecture regarding these
sequences.

T-sequence Conjecture (TSC). The sets T'S(n) are non-empty for all
n>0.

The relationship between the four conjectures mentioned above can be
summarized as follows :

BSC = TSC = ACQC = HMC.

In Section 15 we describe essential features of our computer program
which was used to carry out the searches mentioned in the body of the

paper.

1 Aperiodic Auto-Correlation Functions

We shall denote finite sequences of integers by capital letters. If (say) A
is such a sequence of length n, then its elements will be denoted by the
corresponding lower case letter with indices 1,2,... ,n. Thus

A=aj,a3,...,0q . (1.1)
The aperiodic auto-correlation function N4 of A is defined by:
NaG) =) ajaiy;, i€2,
i€z

where ax = 0 if k < 1 or k > n. Observe that Ng(—i) = N4(¢) for all
i€ Z.
To the sequence (1.1) we associate the polynomial

Al@)=a1+az+...+ agz™ !,



which we view as an element of the Laurent polynomial ring Z[z,z~!]. A
simple computation shows that

A@)A ) =) N@ .
i€z
For later use, it will be convenient to define the norm of A to be
N(A4) = A(z)A(z"?) € Z[z,z71].

We shall be especially interested in {+1}-sequences A, i.e., those for
which a; = +1. When displaying such sequences, we shall write + for +1
and — for —1.

If A is the sequence (1.1), then —A will denote the negated sequence:
—-A=-aj,—az,...,—an.

By A, B we denote the concatenation of sequences A and B.

2 Golay Sequences

Let (A; B) be an ordered pair of {£1}-sequences of length n > 1. They are
called Golay sequences if

N(A)+N(B)=2n . (2.1)

Let GS(n) denote the set of all Golay sequences of length n. If GS(r) # 0,
we say that n is a Golay number.

By evaluating the Laurent polynomials N(A) and N(B) at z = 1, we
obtain from (2.1) the equality

a2 +b2=2n, (2.2)

where a and b are the sums of A and B, respectively. Thus 2n, and con-
sequently n, must be a sum of two squares. It is also easy to show that
if n > 1 is a Golay number, then n» must be even. Furthermore, Eliahou,
Kervaire, and Saffari [8] have shown that Golay numbers are not divisible
by any prime p = 3 ( mod 4). For a simpler proof of this result see [7].
These negative results show that relatively few natural numbers are Golay
numbers. On the positive side, it is known that all numbers

n=2%.10".26°, (23)

where a, b, c are non-negative integers, are Golay numbers. Golay himself
[11, 12] has shown that 2,10 and 26 are Golay numbers. Turyn [27] has
constructed a map

GS(m) x GS(n) —» GS(mn).



It follows that all numbers (2.3) are indeed Golay numbers.
If (A; B) € GS(n), n > 1, one can easily show that

@ini1—i +bibpt1-=0, 1 <i<n.

This condition is useful when programming a computer to search for Golay
sequences (see [2]).

After applying the above mentioned existence results and non-existence
conditions to the integers n < 100, only the six cases n = 34, 50, 58, 68, 74,
82 remain undecided. Exhaustive computer searches carried out by Andres
[1], James [16], and more recently by Eliahou, Kervaire, and Saffari [9] have
shown that 34, 50, 58 and 68 are not Golay numbers.

3 Base Sequences

Let m,n > 0 and let (A; B; C; D) be a quadruple of {%1}-sequences with
A and B of length m, and C and D of length n. We say that they are base
sequences if

N(A) + N(B) + N(C) + N(D) = 2(m +n). (3.1)

Let BS(m,n) denote the set of all such base sequences. If (A;B) €
GS(m) and (C; D) € GS(n), then (A; B; C; D) € BS(m,n). This gives an
embedding :

GS(m) x GS(n) — BS(m,n), (32)

and in particular a bijection
GS(n) — BS(n,0). (3.3)
There is another important embedding
GS(n) — BS(n+1,n) (3.4)

defined by
(A;B) — (A,+; A, —; B; B). (3.5)

Because of the bijection (3.3) we may view Golay sequences as a special
case of base sequences. Base sequences are used extensively in various
constructions of Hadamard matrices. We refer the interested reader to the
survey paper [25] and also the papers [4, 18, 28]. The most important case
for these applications is the case of BS(m,n) with m +n odd.

By evaluating the Laurent polynomials in (3.1) at z = 1, we obtain the
equality

a2+ +2+d?=2(m+n) (3.6)



where a, b, c, d are the sums of the sequences A, B, C, D, respectively. Thus
every quadruple (A; B;C; D) € BS(m,n) determines the quadruple of in-
tegers a, b, ¢, d satisfying (3.6). The squares a2, b2, c?, @ form a partition of
2(m + n). We shall say that this partition is associated with (4; B;C; D).
Two partitions which differ only in the order in which the squares are listed
will not be considered as different.

Note that BS(0,0) is a singleton. There is a map
BS(m,n) - BS(m+n,m+n) (3.7)
defined by
(A4; B;C; D)~ (A,C;A,-C, B,D; B,—D).

By taking m = n in (3.7), we see that it suffices to prove ACQC for odd n
only.

It is well known that ACQC implies HMC. Indeed, if (A;B;C;D) €
BS(n,n), construct four circulant matrices of order n having these se-
quences as their first rows, and insert these circulants into the Goethals—
Seidel array (see [10]) to obtain a Hadamard matrix of order 4n.

4 Equivalence Classes in BS(m,n)
If Ais as in (1.1), we write A’ for the reversed sequence :
A-':afhan—l:"' » @1

It is easy to see that

N(-A)= N(A') = N(A). (4.1)
We also introduce the alternated sequence A* by :
A* = a1, —G2,803, —Q4,.-., (_l)n_la’“
Note that '
Na+(8) = (-1)"Na(3), (4.2)
forallie Z.

It follows from (4.1) and (4.2) that if (A; B;C;D) € BS(m,n), then
we can construct another member of BS(m,n) by performing one of the
following elementary transformations :

(i) negate one of A, B,C, D;
(ii) reverse one of A, B,C, D,

(iii) interchange two of the sequences of the same length;



(iv) alternate all of A, B,C, D.

Two members of BS(m, n) are said to be equivalent if one can be obtained
from the other by a finite sequence of elementary transformations.

In Section 3 we have associated to each (A; B; C; D) € BS(m,n) a parti-
tion of 2(m +-n) into four squares. The elementary transformations of types
(i), (ii) and (iii) do not change the associated partition. On the other hand,
the elementary transformation of type (iv) may change this partition. For
instance the base sequences in BS(6, 5) given by :

A= + 4+ =
B= +++ ==
C= +,+1—)+’+ =D;

have associated partition
22 =22 40%+3%24+3% (4.3)

The partition associated with the alternated base sequences (A*; B*; C*; D*)
is
22 =42422 412412 4.4)

5 Base Sequences BS(n+1,n)

Recall that it suffices to prove ACQC for sequences of odd length only. By
taking m = n + 1 in (3.7), we obtain the map

BS(n+1,n) = BS(2n+1,2n+1).

Hence ACQC is a consequence of BSC. It is known that BSC is true for
all n < 32 (see [25] and our Table 1). Consequently ACQC holds for all
n < 66. It is also known that BSC holds for all integers n given by (2.3).
Indeed these numbers are Golay numbers and it suffices to apply the map
(3.5). It follows that ACQC is true for all numbers n = 2k + 1 where k is
a Golay number.

Another important construction due to Yang [28, Theorem 4], gives a
map :

BS(m +1,m) x BS(n+1,n) — BS(t,t),

where ¢t = (2m+1)(2n+1). Since we can take m and n to be arbitrary Golay
numbers, this construction provides an infinite collection of odd integers for
which ACQC holds.

It was shown in [19] that the sets BS(2n — 1,n) are non-empty for even
n < 24. By taking n = 24 and by applying the map (3.7), it follows that
BS(71,71) # 0.



By using the results mentioned above, it is easy to check that ACQC is
true for all integers n < 100 except for the cases n = 67, 73, 79, 83, 89,
97 that remain undecided. The claim made in [5] that it is known that
BS(67,67) # 0 is in error.

A number of particular base sequences in BS(n + 1,n) for small n have
been constructed in many places. For instance in [21] several members
of BS(n + 1,n) are constructed for each n in the interval 19 < n < 24.
The claim made there, that the authors have exhibited enough elements of
BS(n+1,n) so that the associated partitions of 2(2n+ 1) into four squares
exhaust all possibilities, is erroneous. For instance, if n = 19 they do not
obtain the partition 76 = 82 4 32 422 412,

All of these constructions, with a few exceptions, have been achieved by
using a computer search. For that purpose the following fact established in
[27] (see also [21)) is very useful. If (A; B;C; D) € BS(n+ 1,n), then

aiant2—i = bibnt2-i , 251 < (6.1)

CiCnt1—i =didny1-¢, 1 <i<n. (5.2)

6 The Graphs I',,

The computational results indicate that the sets BS(n + 1,n) increase
rapidly in size with n (although not monotonically). In this section we
introduce a graph I'y, which serves as a very crude measure for the richness
of BS(n+1,n).

The vertices of 'y, are partitions of 2(2n + 1) into four squares. More
formally, the vertices of Ty, are ordered quadruples (g, b, c,d) of integers
such that @ > b > ¢ > d > 0 and a2 + b2+ c? +d? = 2(2n+1). For instance,
I's has only two vertices : the partitions (4.3) and (4.4).

Two vertices, say v and w, will be joined by an edge (if v = w this
means that we are introducing a loop at the vertex v) if there exists
(A; B;C; D) € BS(n + 1,n) such that v and w are the partitions asso-
ciated with (A; B;C; D) and (A*; B*;C*; D*), respectively. We shall also
say that (A; B; C; D) is a witness for the edge joining v and w. An edge of
I', may have many witnesses.

For simplicity we allow only one edge between any two different vertices
and only one loop at each vertex. There is an obstruction of arithmetical
nature to the existence of certain edges in I'y,. This will be discussed in the
next section.

We conclude this section with the description of I's. The base sequences
given in Section 4 show that the two vertices of I'; are joined by an edge.
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The base sequences

A= +,+,+,— — +;
B= ++ - -
C= +,+1+1_)+ =D;

and
A= +)+v+1 _v+$+;
B= +,++ =+ 3
C= +, =5
D= +, =+ 4, —;

show that I's has a loop at each of its vertices. Thus I's has the maximum
number of possible edges.

7 Some General Facts about I'y,
We establish here some general properties of the graphs I'y,.

Proposition 7.1. Let (A, B,C, D) € BS(n+1,n) withn even. If a,b,c,d
are the sums of A, B,C, D, and a*,b*,c*,d* those of A*, B*,C*, D*, then

(i) c=dand ¢* =d* ( mod 4) ;
(ii) ¢* =c+n ( mod 4).

Proof: As n is even and a and b are odd, we have
a? 4+ b2 =2(2n + 1) = 2 (mod 8).
By applying the equality (3.3) with m = n + 1, we conclude that
&+ d? =0 (mod 8).

As c and d are even, it follows that c=d ( mod 4). Thus (i) is proved. To
prove (ii) let

d=ci+eg+-tea1, '=c2teat-+en,
and observe that ¢ = ¢ = n/2 ( mod 2). Sincec=c+c¢” and¢* = -¢”,
we have ¢ — ¢* = 2¢" =n ( mod 4). Thus (ii) holds. a

We can partition the set of vertices (a,b,c,d) of Ty, n even, into two
classes : the even vertices and the odd vertices according to whether the
two even integers among a, b, ¢, d are congruent to 0 or 2 (mod 4).

Corollary 7.2. If n = 0 ( mod 4), then no edge of I', can be incident
with an even vertex and an odd vertex.

11



Corollary 7.8. If n =2 ( mod 4), then every edge of Iy, is incident with
an even vertex and an odd vertex. Thus Iy, is a bipartite graph, and in
particular it has no loops.

Both corollaries follow immediately from Proposition (7.1). (n]

There is no simple formula for the number of vertices  of Iy, as a function
of n. A more general question has been studied by E. Grosswald [14]. He
denotes by Pi(n) the number of partitions of n into k squares (allowing
zeros). He shows how to determine the sets Sy, ,, of positive integers n such
that Px(n) = m. By using his notation, we have v = Py(4n + 2). D. H.
Lehmer (23] (see also [13, p. 85]) has shown that P4(n) > n/48, if n is not
divisible by 4. It follows that n < 12v. Hence v =1 only for n = 0,1, 3;
v=2only for n=2,5,7,11; and v = 3 only for n =4, 6,9, 15.

8 Description of Iy, for n < 27

In graph theory one denotes by K,, the complete graph on m vertices.
This means that every pair of vertices is joined by a single edge and that
there are no loops. We shall denote by K2, the graph which is obtained
from K,, by adding a loop at each of the vertices. Recall also that graph
theorists denote by Km n the complete bipartite graph on m + n vertices.
IfI" and A are finite graphs, we shall denote by I + A their disjoint union.
The notation I' ~ A will be used to indicate that the graphs I" and A are
isomorphic.
We can now state our result.

Theorem 8.1. Let v (resp. vp, v1) be the number of vertices (resp. even,
odd vertices) of T, n < 27. Then

Tp ~ K? if n is odd;

Iy = Kyp,1y if n=2m, m odd,

T, ~ K% + K9 ifn=0,16,20,24;

| ".ZK?-I-I" H PsﬁK?-i-P” ; FlzzK?-I-Fm;

where I" is obtained from K2 by deleting both loops, I'”' is obtained from
K3 by deleting one of the three edges which are not loops, and I’ is
obtained from K3 by deleting one of the four loops.

Proof: In the Appendix we give the list (in encoded form) of witnesses for
all edges of I',, whose existence is asserted in the theorem. The encoding
used there will be explained in the next section. Corollary (7.3) determines
the partition of I',, into two connected components when n > 0 is divisible
by 4. Similarly, the partition of the complete bipartite graphs I', when
n = 2m, m odd, is determined by Corollary (7.2).

It remains to show that I', has no other edges. This is clear if n is odd
since K2, has maximum number of edges. If n = 2 (mod 4), the validity of

12



the theorm follows from Corollary (7.2). If n = 0 (mod 4) and n # 4, 8,12,
then the assertion follows from Corollary (7.3).

If n = 4, Corollary (7.3) shows that there is no edge joining the vertex
(3,2,2,1) to (3,3,0,0) or (4,1,1,0). One still has to show that there are
no loops at the last two vertices. Assume that there is a loop at (3,3,0,0)
and let (A; B;C; D) € BS(5,4) provide such a loop. Using the notations
from the previous section, we would have

a+a"=43, a’ —a" =43.

Since a’ is 0odd, it follows that a’ = +3 and similarly b’ = +-3. This implies
that Na(4) + Ng(4) = 2, a contradiction. One can show similarly that
there is no loop at (4,1,1,0). In the remaining two cases n = 8,12 we rely
on our computer search. 0

9 Encoding of BS(n+1,n)

It is inconvenient to display in full the base sequences (A;B;C;D) €
BS(n+ 1,n) for large n. For that purpose we shall use the following en-
coding scheme. Consider first the pair (A; B). We decompose this pair into

quads
% Ontai | _yo . |2t 9.1
[bi bn+2—i:|’1 S ) ©.1)
and, if n = 2m is even, the central column
m-+1 9.2
[omt ] (92)

By replacing (A; B;C; D) with an equivalent quadruple, we may assume
that the first quad in (9.1) is the following

[1‘ J_r] . (9.3)

We shall encode this quad with 0. The restriction (5.1) implies that all
other quads in (9.1) must be one of the following which we encode with
integers 1,...,8:

ol PR M B R B Rt
T il Co Rl P B e

The central column (if present) will be encoded as follows:
_[+ _[+1 ,_[- _[-
o=[1]or=[2] =22 [2]
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If n = 2m is even, then the pair (A; B) will be encoded by the symbol
8162 - - 8pnbpm i1 (94)

where §;, 1 < i < m, is the digit (1-8) representing the i-th quad in (9.1),
and 6,41 is the digit (0-3) representing the central column (9.2). If n =
2m+-1 is odd, then the pair (A; B) will be encoded by (9.4) where now, for
each i, §; represents the i-th quad in (9.1).

We shall use the same scheme to encode the pair (C;D). The only
difference is that the quad 0 will not occur because of (5.2). The quadruple
(A; B; C; D) will be encoded by a pair of symbols of type (9.4). For instance,
the base sequences from Section 4 are encoded as 065 ; 113. In the Appendix
we list certain base sequences using this encoding scheme.

10 Turyn Sequences

Recall that A’ denotes the reverse of the sequence A (see Section 4). We say
that a sequence A is symmetric (resp. skew-symmetric) if A’ = A (resp.
A’ = —A). Note that a skew-symmetric {+1}-sequence must have even
length.

We say that (A; B; C; D) € BS(n+ 1,n) are Turyn sequences if :
(i) A=A and C' = —C, if n is even;
(ii) AA=-Aand C'=C, if nis odd.
Then the conditions (5.1) and (5.2) imply that also :
(iii) bpt2—i =b; for 2<i<nand D' = —D, if n is even;
(iv) bpto—i = —=b; for2<i<nand D'= D, if n is odd.

Our definition is a slight modification of the usual one (e.g. see [6]) where
it is also required that

ai=bh=c=di=a=b=+. (10.1)

Given Turyn sequences (in the sense of our definition) it is easy to apply a
few elementary transformations in order to achieve normalization (10.1).

We denote by TU(n) the subset of BS(n + 1,n) consisting of Turyn se-
quences. Let TU*(n) C BS(n+1, n) consist of all quadruples (A*; B*; C*; D*)
where (A; B; C; D) € TU(r). The set TU*(n) has a very simple character-
ization : it consists of all base sequences (A; B; C; D) € BS(n+ 1,n) such
that all four sequences A; B;C; D are symmetric except that b,4+1 = —b;.

It is known that TU(n) # 0 for n < 7 and also for n = 12 and 14
(see [6, 25]). On the other hand, if » is odd and 2n + 1 is not a sum of
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two squares, then TU(n) and TU(n + 1) are empty (see e.g. [6, Lemma
8)). It is also known that TU(n) = 0 for all n such that 8 < n < 51 and
n # 12,14. For n < 29 this was reported in [21], and for n < 41 in [6].
We have carried out exhaustive computer search in the remaining cases
n = 42,43, 44,45,48,49, 50, 51 and did not find any Turyn sequences.

11 Normal Sequences

We view base sequences as fundamental objects, and so we shall include
under the same umbrella some other important classes of sequences. In this
section and the next we describe two such classes which were introduced
originally (in a different form) by C. H. Yang [28].

We say that the base sequences (A; B; C; D) € BS(n + 1,n) are normal
sequences if any; =+, bny1 = —, and a; = b; for 1 < i < n. Thus normal
sequences have the form

(A=X,+;B=X,—;C; D). (11.1)

We denote by NS(n) the subset of BS(n + 1,n) consisting of normal se-
quences. From normal sequences (11.1) we can extract the following triple
of sequences of length n:

X;Y=(C+D)/2; Z=(C-D)/2 (11.2)
This means that
vi=(c+d)/2, z=(c; —di)/2

for all i = 1,2,...,n. As C and D are {+1}-sequences, Y and Z are
{0,+1}-sequences. Furthermore Y and Z are disjoint in the sense that
y;z; = 0 for each 1.

Since (A; B; C; D) satisfy (3.1) with m =n + 1, it is easy to see that
N(X)+N({Y)+ N(Z) = 2n, (11.3)
(see e.g. [19, Theorem 5] for details).

Conversely, given sequences (X;Y'; Z) of length n, with X a {+1}-sequence
and Y and Z disjoint {0, +:1}-sequences, satisfying (11.3), then

(A=X,+;B=X,—;C=Y+2Z;D=Y — Z) € NS(n) .

(The usual practise is to refer to the triple (11.2) as normal sequences. In
essentially this form they were introduced by Yang [28].)

If NS(n) # 0, then (11.3) implies that 2n is a sum of three squares.
On the other hand, the embedding (3.4) maps GS(n) into NS(n), and so
NS(n) # 0 for all numbers n given by (2.3). There is also an embedding

TU(n) —» NS(2n+1) .
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In order to describe this embedding we define interleaved sequence A/C by

A/C = @1,€1,G2,C2y... yCn,y0n41

if A has length n+1 and C length n. Then the above embedding is defined
by
(A;B;C; D) — (A/C,+;A/C,—;B/D; B/ — D) (11.4)

if n is even, and
(4;B;C; D) - (B/C,+; B/C,—; A/ D; A/ - D) (11.5)

if n is odd.

Consequently NS(2n +1) # @ for all n < 7 and n = 12 and 14. For
n < 30 it is known that NS(n) = 0 only for

n = 6,14,17, 21, 22, 23, 24, 27, 28, 30 .

This claim for n = 17,21, 22, 23 is established in [6], and for n = 24 it was
shown by M. Gysin (ibid). The search for n = 27 and 28 was carried out
by us.

12 Near-Normal Sequences

We define near-normal sequences to be base sequences (A; B; C; D) € BS(n+
1,n), with n even, such that

b =(-1)"la;, 1<i<n,

and
1=+, bny1=—.

We denote by NN(n) the set of all near-normal sequences in BS(n+1,n).
Again the original definition of C. H. Yang [28] is different. For the rela-
tionship between this definition and the usual one we refer the reader to
[20]). Yang has stated in the above paper that it is likely that NN(n) # 0
for all even integers n > 0. This is known to be true for n < 30, but noth-
ing is known about NN(n) for even n > 30. For even n < 22 examples of
near-normal sequences are given in [28], and for n = 24, 26,28 and 30 see
[19]. We have enumerated (up to equivalence) all near-normal sequences in
BS(n+1,n) for all even integers n < 28. In our Appendix the reader will
find examples of near-normal sequences NN(n) for all even n < 30.
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13 Some BS(m,n) are empty

So far we have discussed mainly the base sequences BS(m,n) with m =
n+1. Other cases (with m+n odd) are also important for the construction
of Hadamard matrices. Turyn [27] proposed a method for constructing base
sequences in BS(2n — 1,n). It turns out (see [19]) that this method is
feasible only for n even (and n = 1). By using this method, it was shown
that BS(2n — 1,n) # @ for even n < 24. (The claim made in [19, Remark
2], is in error. For instance, when n = 12, the number 2(3n — 1) = 70 has
five partitions into four squares, while only two of them are listed in their
Table 1.)

Proposition 13.1. If m > 2n, n > 1, and m + n is odd, then BS(m,n)
is empty.

Proof: Assume that there exist base sequences (4; B;C; D) € BS(m,n). If
z,y € {+1}, then zy = z+y—1 ( mod 4). Hence for s = n,n+1,... ,m—1
we have

Na(s) + Np(s) Yoim (aiaiys + bibiys)
Yot (@i + b + ai1p + iy —2) ( mod 4)

= E:';_la(al + bs' +am41-i + bm+1—i - 2)_

Since (3.1) implies that N4(s) + Np(s) = 0 for the above values of s, we
conclude that

m-—s

3" (@i + b+ Gmg1-i + bms1-: —2) =0 ( mod 4) (13.2)

=1

fors=n,n+1,...,m—1. It follows that
@i +bi +ami1-i + bny1-i =2 ( mod 4) (13.3)

fori=1,2,... ,m —n and, by symmetry, also for i =m,m —1,... ,n+1.
Asm >2n, (13.3) holds for all i = 1,2,... ,m.

If m is odd, we obtain a contradiction from (13.3) by setting ¢ = (m+1)/2.
Hence m must be even, and so n is odd and » > 3. By using the congruences
(13.3), we find that

Na(8) + Np(s) =Y "(aitits + bibits)
= 3 0%(0s + bi + aiys + biys —2) ( mod 4)

m

=Y i1’ (as + bi + @mg1—i + bnp1-i — 2)
=0 ( mod 4),

for s=1,2,...,m — 1. Now (3.1) implies that
Nc(s)+ Np(s)=0( mod 4)

17



for s=1,2,...,n — 1. By the same argument as in the proof of (13.3), we
can show that

G +di + cnp1—i + dny1-i =2 ( mod 4) (13.4)
for i=1,2,...,n. By setting i = (n + 1)/2, we obtain again a contradic-

tion. o

In [19, Theorem 7] the authors show that their method cannot be used
to construct base sequences BS(2n — 1,n) for odd » > 1. This is not
surprising, as we can show that these sets are empty.

Proposition 18.5. If n > 1 is odd, then BS(2n — 1,n) is empty.
Proof: Assume that there exist base sequences (A4; B;C; D) € BS(2n —
1,n). As in the proof of Proposition (13.1), we can show that

a; +b; + agn—i + ban—i =2 (mod 4)

for i = n+1,n+2,...,2n-1 (and, by symmetry, alsofori =1,2,... ,n—1).
Hence for s=1,2,... ,n — 1 we have

Na(s)+ Na(s) =Tyl ™" (@0iys + bibiy)
Z e (a'-l-b +at+a+bs+o "2) ( m°d4)
2’21—1 ® (a; + b + azn—i + bon—i — 2)
=2 ( mod 4).

By (3.1), we conclude that
Nc(s8)+ Np(s)=2 ( mod 4)
fors=1,2,...,n—1. Since
Nc(s)+ Np(s) = 2::16(‘36‘“ + didiys)

= Y0 (i + di + Cipe + digs — 2) ( mod 4)
=Y e+ di+ cnyrmi+ dny1-i — 2)

we have

n—s

3 (ei+di+cng1-i+dny1-i —2) =2 ( mod 4)

i=1

for s=1,2,...,n —1. It follows that (13.4) holds for ¢ = 2,3,... ,n - 1.
By setting i = (n + 1)/2 in (13.4), we obtain a contradiction. o
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14 T-sequences

T-sequences are ordered quadruples (A; B;C; D) of {0,+1}-sequences of
the same length, say n, such that :

(i) N(A)+ N(B)+ N(C)+ N(D) =n;
(ii) for each :=1,2,...,n exactly one of a;, b;, ¢;, d; is non-zero.

We denote by T'S(n) the set of all T-sequences of length n. They are used
extensively for the construction of orthogonal designs OD(4n; n, n,n, n) (see
[4, 10, 18, 24, 25]). The embedding T'S(n) — BS(n,n), given by

(A;B;C; D) - (A+B+C+D; A+ B-C-D; A-B+C—-D; A—B-C+D),

shows that T'SC implies ACQC. More generally, Yang [28, Theorem 2*] has
constructed a map :

NS(m) x TS(n) = BS(mn,mn) .

The problem of constructing T-sequences was originally considered by R.
J. Turyn [27]. He observed that there is 2 map

BS(m,n) = TS(m+n) (14.1)
given by
(A; B; C; D) — ((A+B)/2, 0n;(A—B)/2,0n; 0, (C+D)/2; 0, (C-D)/2)

where 0 denotes the zero sequence of length k. More generally, C. H. Yang
[28, Theorems 1 and 3] has constructed maps :

NS(s) x BS(m,n) — TS((2s +1)(m + n)), (14.2)

d
. NN(s) x BS(m,n) — TS((2s + 1)(m + n)), (14.3)

known as Yang multiplications. In view of these results, it is convenient to
define a Yang number to be a positive odd integer 2s 4+ 1 such that NS(s)
or NN(s) is not empty. Hence if ¢ is a Yang number and BS(m,n) # 0,
then we can conclude that T'S(t(m + n)) # 0.

From Sections 11 and 12 it follows that :

(a) ift < 61 is a positive odd integer, then ¢ is a Yang number if and only’
if ¢ # 35,43,47, 55;

(b) if s is a Golay number, then 25 + 1 is a Yang number.
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In view of the map T'S(n) — TS(2n) given by
(A; B;C; D) —» (A+ B,0,;C + D,0,;0,,A — B;0,,C — D),

we are mainly interested in constructing T-sequences of odd length. By
setting m = n+ 1 in (14.1) and by taking into account the above map, we
conclude that BSC implies TSC.

By using known results about BS(n+1,n) and BS(2rn—1,n), mentioned
in previous sections, and by applying the maps (14.1-3), it is easy to show
that T'SC holds for all odd integers n < 200 except perhaps » = 67 and the
primes n > T1.

15 Outline of the Algorithm

We represent the known terms of the sequences (A; B; C; D) by using the
quad notation of Section 9. We assume that A and B have length n + 1,
while C and D have length n.

After k steps the following elements are known:

Q1,82+ 3 Ok41y Cn—k+1, Bn—k+42) - -« »On; Cn+1;
b1, b2, ..., bk+11 bﬂ—k+1: bn—k+2) ey bnv b‘n+1;
C1,C2, .-+ yCkyCr—k+1yCn—k+2y -+ » 1 Cn;

dl) d?s ceey dky dn—k-}-l) du-—k-{-z) reey d'l;
and we also know that the equation

Na(s)+ Np(s) + Nc(s) + Np(s)=0 (15.1)
is satisfied for s =n,n—1,... ,n—k. We proceed to choose next two quads
Qk4+2 CGn—k ] and [ Ck+1 ©Cn-k ]
bry2  bn—k diy1 dnk

so that the equation (15.1) is also satisfied for s=n—k —1.

At the same time we keep track of the partial values of the first auto-
correlation, i.e., the expression

Y, (aiai;:-ll'*' bibit1 + ant1-i@n+2—i + bnt1-ibni2—i)
+Y 0, (cicipr + didipy + enicny1—i + dn—idnt1-i) -

If the absolute value of this expression becomes too big, we switch to our
backtracking procedure. When k+ 1 becomes equal ton—k —1orn—k,
we choose the remaining unknown elements and test whether the remaining
equations (15.1) are satisfied or not. Although one can determine in advance
the possible values for the sums a, b, c, d of the sequences (4; B; C; D), we
do not make any use whatsoever of that fact.
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In addition to the partial values of the first auto-correlation, we also store
the values of the expressions

k k-1
Z (@it n—k + bibitn—k) + Z (ciCiyn—k — didipn—k),
i=2 i=2

in order to avoid the task of re-computing them after backtracking.

The search for normal or near-normal sequences is easier because at each
step the number of possible branches is smaller.

Appendix

For each nin therange 0,1, 2,... , 27 we list at least one witness (A4; B; C; D)
€ BS(n+ 1,n) for each edge of I',. For n = 28, ... ,32 we list witnesses
for all known edges of I',. The integer n is given in the first column of
Table 1 below. The second (resp. third) column gives, in encoded form,
the first (resp. last) two sequences of the witness. The encoding scheme is
explained in Section 9.

As an example let us consider the last set of base sequences given below
for n = 8. We see that the first two sequences A and B are encoded as
06142. Since n = 8 is even the digit 2 is encoding the central elements of
A and B. In this case we have

A=+;+:+;+$_’—v+a"v+ ’
B=+s+)+v_’+:+’+a_’_ .

Similarly the last two sequences, C and D are encoded as 1675, and so

C=+’+$_t_,+3—1_’+ ’
D=+l+)+7+$_,+)—)+ .

The fourth column gives the sums a,b,c,d of these four sequences. In
the above case they are :

a=3,b=3,¢c=0 d=4.

The fifth column gives the sums a*,b*,c*, d*, of the alternated sequences

A*, B*, C*, D*. In our example,
a*=3,b0"=3 c*"=0, d* =—4.

These base sequences show that there is a loop at the vertex (4,3, 3,0) of
Is.

In the last column, the symbol ns resp. nn indicates that the base
sequences are normal resp. near-normal. If an edge has a witness in NS(n)

or NN(n) we always give such a witness. Consequently some edges have
two witnesses in the table.
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Table 1

Some base sequences BS(n +1,n)

n|A&B[C&D]| abecd | a*b*c,d*
011 1,-1,0,0| 1,-1,0,0 |ns,nn
110 0 2,0,1,1 0,2,1,1 ns
2 |00 6 3,1,0,0 1,-1,2,2 ns
01 6 3,-1,0,0 1,1,2,2 nn
3 |06 11 2,0,3,1 -2,0,1,3 ns
4 | 060 16 3,1,2,2 | 3,1,-2,-2 ns
073 12 -1,1,4,0| 3,-3,0,0 nn
5 | 016 640 4,2,1,1 2,4,1,1 ns
065 113 2,0,3,3 | -4,2,-1,-1
064 160 2,0,3,3 0,-2,3,3
6 0512|127 33,22 | 51,00 nn
0760 167 1,3,0,4 |3,-3,-2,-2
7 | 0616 1232 4,2,3,1 -4,-2,1,3 ns
0613 1673 4,2,-1,3 0,2,1,5 ns
0618 |1261 |2,0,5,-1| —-2,0,-1,5 | ns
8 | 06633 | 1163 1,-1,4,4 1,-1,4,4 ns
05850 | 1163 1,-1,4,4 1,-1,4,4 nn
08110 | 1866 5,3,0,0 5,3,0,0 ns
06183 | 1271 1,-1,4,4 5,3,0,0 ns
07643 | 1641 -1,1,4,4| 3,-3,0,—4 nn
06151 | 1618 51,2,2 | 5,1,-2,-2
06142 | 1675 3,3,0,4 3,3,0,—4
9 | 06136 | 16650 | 4,2,3,3 2,4,3,3 ns
06581 | 11671 2,0,3,5 | —4,2,3,-3
06583 |11631 |0,-2,5,3{ —6,0,1,—1
06187 | 16131 0,2,5,3 -2,0,5,3
01246 | 66540 | 6,0,1,1 0,6,1,1
01675 | 61530 | 2,4,3,3 | 0,6,-1,-1 -
10 | 061633 | 12671 3,1,4,4 53,22 ns
056732 | 11726 | -1,3,4,4| 5,-3,2,2
058511 | 11635 { 3,—1,4,4 1,1,2,6
061740 | 12685 | 3,5,2,-2| 5,-1,0,4
064240 | 16573 | 5,-1,0,4 | -1,1,-6,—2
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n|A&B c&D a,bcd a*, b*, c*,d*

11 | 061618 126232 4,2,5,-1 | —4,-2,-1,5| ns
061774 126353 0,6,3,-1 —4,2,1,5
061624 126332 6,0,3,1 -6,0,1,3

12 | 0686130 | 115763 3,1,2,6 3,1,2,6 ns
0585140 | 115763 3,1,2,6 3,1,2,6 |nn
0764870 | 167162 -3,3,4,4 5,—5,0,0 |nn
0685871 | 117266 | -3,-3,4,4| 1,-7,0,0
0686240 | 116723 3,-3,4,4 3,-3,4,4
0612760 | 128287 5,3,0,—4 1,7,0,0
0617220 | 126876 7,1,0,0 7,1,0,0
0617212 | 126857 5,5,0,0 5,-3,0,4
0647373 | 126716 -3,3,4,4 5,-5,0,0
0737510 | 186672 1,7,0,0 5,-5,0,0
0716872 | 187651 | —3,5,0,4 | 5,—3,—4,0

13 | 0618616 | 1613551 4,2,5,3 2,4,5,3 ns
0161633 | 6484150 6,4,1,1 4,6,1,1 ns
0614642 | 1286351 | 6,0,3,-3 | —4,6,-1,1
0617874 | 1271662 | —2,4,3,5 | 0,-2,-5,5
0618824 | 1265152 | 2,-4,5,3 | 0,-2,1,7
0617824 | 1265620 | 2,0,7,-1 | 0,-2,-1,7
0616358 | 1267113 2,0,5,5 —4,-6,1,1
0616234 | 1265760 6,0,3,3 0,-2,-1,7
0615146 | 1268562 | 6,4,1,—-1 0,2,1,7
0618557 | 1613540 0,2,55 -2,0,5,5
0617413 | 1618861 | 4,6,1,-1 | —2,—4,5,3
0613647 |1678373 | 2,4,-53 | 0,6,3,3
0612646 | 1675230 6,0,3,3 0,6,3,3
0648276 | 1262282 | 0,-2,5,—5 2,0,1,7
0165243 | 6151653 | 6,0,3,3 | 0,2,—5,—5

14 | 05673512 | 1172336 1,5,4,4 7,-1,2,2 nn
05821712 | 1182236 | 7,3,0,0 51,4,4 |nn
05123512 | 1678524 7,3,0,0 55,-2,-2 | nn
06814171 | 1187667 3,3,-2,6 -7,-3,0,0
06484861 | 1617326 | —1,-5,4,4| 5,5,-2,-2
06421270 | 1653857 | 7,1,~2,2 | —3,7,0,0

15| 06163118 | 12676761 | 6,4,1,3 —6,-4,3,1 | ns
06188366 | 12626262 | 0,—2,7,-3| 0,2,-3,7 | ns
06147226 | 12876712 | 6,0,—1,5 | —6,0,5,—1
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n | A& B CcC&D a,b,c,d a*,b*, c*,d*

15 | 06177646 | 12716733 0,6,1,5 | —4,-6,—1,3
06173682 | 12776732 2,0,-3,7 | -6,-4,3,1
06172486 | 12777652 | 2,0,-3,7 | —6,0,—1,5

16 | 061611880 | 12537165 5,3,4,4 5,3,4,4 |ns
076534120 | 12556713 5,3,4,4 5,3,4,4 |nn
051564173 | 12276715 3,5,4,4 7,1,4,0 |nn
076517353 | 12441318 -1,5,6,2 7,-3,2,2 |nn
066821450 | 11186754 5-1,2,6 | 5-1,-2,6
066814363 | 11187637 1,-1,0,8 | 5,3,—4,—4
066814222 | 11186725 5,—3,4,4 5,5,4,0
066387422 | 11676547 | —1,-1,0,8 | -1,-1,8,0
066236780 | 11673753 1,-1,0,8 1,7,04,
066427850 | 11262185 1,-1,8,0 | 5,—5,0—4,
078425223 | 16781722 3,-7,2,2 |3,-7,-2,-2
078451111 | 16765381 5,5,0,4 1,-7,—4,0
078434872 | 16653727 -7,1,0,4 | 1,-7,0,—4
072462243 | 18768555 | 5,-5,—4,0 | 5,—5,0,—4

17 | 066275153 | 117182163 | 4,2,5,5 2,—4,—7,1
066217543 | 117654642 | 4,2,1,7 —6,4,-3,3
066424181 | 116754232| 6,0,3,5 —4,6,3,-3
066423683 | 116535720 | 2,—4,5,5 0,6,-3,5
066424726 | 116373250 | 4,-2,5,5 -2,8,1,1
066388475 | 116762180 | —4,-2,5,5 2,4,5,5
066385122 | 116536813 | 6,-4,3,3 | 4,2,-5,-5
066358141 | 116546771 | 4,2,1,7 -2,8,1,-1
065327141 | 118675781 | 6,4,-3,3 | —4,6,-3,3
065838623 | 116576181 | 0,-6,3,5 -6,0,3,5
018763577 | 613775481 | —4,6,-3,3 | 2,8,1,-1
018258836 | 617443151 | 0,—6,3,5 2,8,-1,1
018253521 | 615752482 | 8,-2,-1,1 | —2,8,-1,1
018433826 | 643685872 | 2,—4,-7,—-1| 0,6,-3,—5
018466371 | 643735873 | 2,4,-7,1 —4,2,1,-7

18 | 0616138163 | 126575621 | 5,3,6,2 3,1,8,0 |ns
0517848731 | 125352156 | -3,1,8,0 3,-5,2,6 |nn
0512876462 | 164341136 | 1,1,6,6 3,-1,80 |nn
0767846432 | 126627155 | —5,3,6,2 5,-7,0,0 |nn
0664281361 | 117652676 | 5,—3,2,6 7,3,0,4




n|A&B c&D a,b,cd a*,b*, c*, d*

18 | 0662457272 | 117653214 1,1,6,6 -5,7,0,0
0664248713 | 116337215 1,-1,6,6 7,-3,0,4

19| 0118636816 | 6653441710 4,2,3,7 4,6,51 ns
0668563745 | 1117265342 -2,0,5,7 -2,-4,7,-3
0614454413 | 1288767580 | 6,4,—5,—1 | 2,0,—7,5
0614461254 | 1288656450 8,2,1,-3 -8,2,-1,3
0614461272 | 1288635571 | 8,2,-1,-3 | —4,-2,-3,7
0614736578 | 1287526211 | —2,4,7,-3 | 2,4,-3,7
0614744631 | 1286852741 4,6,1,-5 | -8,-2,-1,-3
0614724631 | 1286856641 6,4,1,-5 —6,—4, 5,1
0614587446 | 1286265260 0,2,7,-5 -8,2,-3,1
0644176818 | 1677121322 | 0,2,5,7 0,2,7,5

20 | 08311616133 | 1883131336 7,5,2,2 7,5,2,2 ns
05173534120 | 1275533663 7,5,2,2 7,5,2,2 nn
06613118360 | 1133831863 | 7,5,2,2 31,66 |mns
06811616383 | 1183131366 3,1,6,6 3,1,6,6 ns
05153487123 | 1616571625 3,1,6,6 3,1,-6,—6 |nn
05146784840 | 1663611547 -1,1,4,8 3,-3,8,0 nn
05126532340 | 1286556373 9,-1,0,0 1,7,4,4 nn
05673282320 | 1166536724 5,-5,4,4 -3,3,0,8 nn
06484827832 | 1617552435 | —5,-5,4,4 | 7,-1,—4,—4
06483552752 | 1617867574 | —1,—1,-4,8 | —1,7,—4,—4
06482715432 | 1617677855 1,1,-4,8 9,1,0,0
06481556532 | 1617554561 1,1,4,8 5,5,4,—4
06484174433 | 1616377215 -1,1,4,8 -1,1,—-4,-8
06484821640 | 1615724773 3,-3,0,8 7,1,4,—4
06482768562 | 1615731478 | -3,-3,0,8 9,1,0,0
06452512173 | 1615874387 7,1,—4,4 7,1,4,—4
06442456280 | 1677534728 | 5,—5,—4,4 9,-1,0,0
06424687240 | 1677355451 3,-3,0,8 3,-3,-8,0
06432357223 | 1667576385 | 5,—5,—-4,4 5,-5,4,4
06152512273 | 1276533843 9,-1,0,0 9,-1,0,0

21 | 06842717113 | 11876737623 | 4,6,-3,5 -6,0,1,-7
06844824235 | 11865726460 | 2,-8,3,3 —4,6,3,-5
06844842738 | 11863357211 | —4,-6,5,3 2,0,1,-9
06842348538 | 11868657722 | —2,—8,-3,3| 0,6,—7,—1
06837848463 | 11866377853 | —6,—4, 5,3 | 0,—6,—5, -5
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n|A&B C&D a,b,c,d a*,b*,c*, d*

21 | 06838772746 | 11867666312 -6,0, 1,j7 0,6,-7,-1
06842346121 | 11868537272 | 8,-2,—3,3 | —2,0,1,-9
06818622553 | 11817655241 4,-6,5,3 | —-6,-4,-3,-5
06824574641 | 11863375712 | 2,0,—1,9 0,2,-9,1
06821537745 | 11865476710 0,2,1,9 -6,0,-7,1
06877635856 | 11766781543 -6,0,-1,7 | 0,-6,-5,-5
06875863837 | 11765543280 -8,-2,3,3 2,8,3,3
06886577813 | 11765412380 -6,0,5,5 0,-2,1,9
06864822184 | 11762355813 2,-8,3,3 0,—6,-5,-5
06875624284 | 11661534580 0,-6,5,5 -6,0,5,5

22 | 051532351482 | 12653363142 51,8,0 3,3,6,6 nn
051535148732 | 12631554424 1,5,8,0 7,-1,6,2 nn
078212153261 | 16778255254 9,-3,0,0 -1,7,2,-6 | nn
076487121512 | 16337381132 3,7,4,4 9,1,2,2 nn
076537321212 | 16156871224 5,5,6,2 7,3,4,—-4 nn
076435857863 | 12871616562 | —7,-1,6,2 | 3,1,-8,—4
076434883831 | 12876423125 | —5,—5,6, —2 5,1,0,8
076414341780 | 12876773668 1,7,-6,2 7,-3,4,4
076411654773 | 12876151586 -1,9,2,2 5,-1,0,8
076445318823 | 12866242834 | -1,-3,4,-8| 5,-5,6,—-2
076448413133 | 12865264125 1,3,8,—4 3,-3,-6,6
076438642411 | 12867121282 3,-1,8,—4 9,1,-2,-2
076424341510 | 12866352873 7,5,0,—4 9,-1,-2,2
064411463722 | 12863315525 5,5,6,—2 7,—5,-4,0
064384226811 | 12868354577 5,—7,—4,0 3,3,-6,6
064256153521 | 12816563847 9,-3,0,0 3,3,6,6
064213758243 | 12875838384 | 3,-3,-6,—6| -3,7,—4,-4
064221664181 | 12858637416 9,-3,0,0 -5,-5,2,—6
064423632142 | 12828778675 | 7,—1,—6,—2 5,-7,0,4
064238484243 | 12876854464 | 1,-9,—2, -2 3,9,0,0

23 | 061588351872 | 161234284320 | 0,-2,9, -3 0,-6,7,3
011876765672 | 668385722453 | 0,6,-3,-7 | —8,—2,-5,-1
011876734544 | 668371721610 0,6,3,7 4,-2,-7,5
011865653637 | 668387782181 | 2,4,-7,-5 | 2,—4,-5,-7
011834576387 | 668856384471 | —2,4,-7,-5| -2,8,—-1,5
011843854727 | 668755387713 0,2,-9,3 8,-2,5,1
011844723445 | 668717154763 | 4,2,-5,7 0,—-2,9,-3




n|{A&B cC&D a,b,c,d a*,b*, c*,d*
23 | 011835823773 | 668736358482 0,2,—-9,-3 0,-2,-3,-9
011824565625 | 668757528711 | 8,-2,-5,1 -8,2,1,-5
011824564276 | 668751123170 6,0,3,7 -6,0,-7,-3
24 | 0515373265143 | 126265241457 53,80 53,0,8 nn
0512653237623 | 165353436747 | 7,-3,-2,6 -1,5,6,6 nn
0761232522583 | 162738637128 | 7,-7,0,0 7,-7,0,0
0618441731220 | 161824654782 9,3,2,-2 9,3,2,-2
0644381822863 | 128652453571 1,-9,4,0 5,3,0,—-8
0785384835831 | 161835855841 | —7,—7,0,0 5,-3,0, -8
0785231641223 | 161871657538 | 7,-3,—2,6 3,-7,2,—-6
0785848265132 | 161785487748 | —3,-3,-8,4 | —3,-3,4, -8
0785823385781 | 161785243834 -7,-7,0,0 | -3,-3,-8,—4
0785864557880 | 161758373262 ~-9,-3,2,2 | 3,-7,—-6,—-2
0785866386572 | 161757832366 | —9,—1,0,4 -1,-9,0,4
0785866347221 | 161726576241 -1,-5,6,6 3,-9,-2,-2
0785675761323 | 161755421233 -3,3,8,4 1,-9,0,-4
0785552453682 | 161772115438 | -3,-3,4,8 5,-3,-8,0
0785584522330 | 161755454162 1,-5,6,6 5,-1,6,—6
0785577341573 | 161754832843 7,7,0,0 1,-9,0,4
25| 0161633813118 | 6414148485143 8,6,1,1 6,8,1,1 ns
0615136477647 | 1618836524732 | 0,10,-1,1 2,8,3,5
0615135164456 | 1618856557451 | 8,6,—1,1 6,4,7,1
0615614824146 | 1614556627431 8,2,5,3 2,4,9,-1
0615621857446 | 1615271224643 4,2,9,1 2,4,9,1
0615735785244 | 1616751436260 0,2,7,7 2,0,7,7
0614576515556 | 1675341263153 4,6,5,5 2,4,1,9
0614724178515 | 1676251355261 4,6,7,1 -6,4,7,1
0615712245624 | 1615876732523 | 10,0,1,1 8,-6,1,1
0614742453467 | 1676575435610 2,4,1,9 -8,6,1,1
0615643274811 | 1615563275621 6,4,7,1 —4,2,-1,9
0615622781175 | 1615434228350 | 6,4,7, —1 0,2,7,7
0615642466136 | 1615277334622 8,2,3,5 2,8,3,5
0615564245823 | 1615337721820 | 6,-4,5,5 0,-10,1,1
0614614367622 | 1675245351341 8,2,5,3 6,8,1,-1
0615612742235 | 1614725488440 10,0,1,1 4,2,1,9
0615511258745 | 1614834521760 6,4,5,5 -8,6,1,1
0615671377685 | 1613276538312 -2,8,3,5 4,6,7,1

27




n|A&B c&D a,b,c,d a*,b*,c*,d*
25| 0615714268347 | 1612864262711 2,4,9,-1 0,-2,-7,7
0615774715633 | 1612576388522 0,10,1,-1 6,-4,1,7
0614284161471 | 1678385227450 8,6,—1, —l 2,0,7,7
0614741227336 | 1676617221543 6,4,5,5 —-4,6,-7,1
0614725168638 | 1675812411440 2,0,7,7 |0,10-1,-1
0614778264623 | 1675415381210 2,0,7,7 -4,6,-5,—5
0614774641627 | 1675421382312 2,8,5,3 0,-2,-7,7
0614622163581 | 1674576223833 | 10,0,-1,-1{ 0,10~-1,-1
0174617668216 | 6167252374160 4,6,5,5 2,8,5 -3
0172116382817 | 6166757871282 6,4, 5,5 4,6,-5,5
26 | 06663168818110 | 1113811681836 5,3,6,6 -5,-7,4,4 | ns
05126265841481 | 1287432361571 7,-5,4,4 -3,5,6,6 |nn
06642512781532 | 1176758554637 51,-4,8 7,7,2,2
06462876132573 | 1611252645646 1,-1,10,2 7,5,4,-4
06347845157852 | 1681715562551 5,3,6,6 5,9,0,0
06337112714573 | 1685756153533 3,9,0,4 -7,7,2,2
06338372427540 | 16847857 ,—1,-10,-2 -9,5,0,0
06336277161612 | 1683252617578 5,9, 7,7,-2,-2
0646328743 1611325452831 -1,1, 1,-5,-8,4
07742445466113 | 1688225363621 6, —6 5,4,8
07741624145363 | 1688654231522 3,5,6,—6 9,3,0,—4
07745533541130 | 1686154242817 3,9,4,0 1,-1,2,-10
07868434286832 | 1617885275223 | -7,-7,2,-217,—5,—4,-4
27 | 01747385847264 | 61683574385882 | —4,2, -9, -3 0,10,1,3
06824788121163 | 11876252325230 | 4,-—2,9,-3 4,2,-9,3
01747376332571 | 61674586812243 | 0,10,1, -3 0,2,-5,-9
01648381282472 | 61633885385753 | 4,—6,—7,~-3| 0,10,3,-1
01747836688263 | 61673761181783 | —4,—2,-3,9| 0,6,7,—5
01287663641511 | 66383725412172 8,6,1,3 4,6,3, -7
01743118358613 | 61665711252813 4,6,7,3 -4,-2,9,-3
01741618677553 | 61667358723653 | 0,10,-3,1 0,6,-5,7
01741633516525 | 61661725682342 8,6,3,1 0,2,9,-5
01746165128335 | 61683567215170 6,4,3,7 6,4,-3,—-7
01748338354572 | 61673821152130 -2,0,9,5 2,—4,3,-9
01748157537837 | 61673562483473 | —6,8,-3,1 -6,8,-1,3
01747465342683 | 61678388854363 | 0,2,—9,—5 | —4,6,-3,-7
01747244633685 | 61678716533732 0,2,-5,9 0,2,5,-9

28




n|A&B C&D a,b,c,d a*,b%,c*,d*

27 | 01747346137354 61675674228411 0,10,3,1 0,10,-3,-1
01747258378538 61675231544141 -6,0,7,5 -6,0,—-7,-5
01746325133176 61677258628230 6,8,1,-3 2,4,-9,3
01746183123277 61677276651240 4,6,3,7 0,6,—7,5
01746332341224 61675822457212 10,0,3,1 -6,8,1,3
01746166227166 61675483213571 8,6,1,3 0,6,-5,-7
06174741583364 16185625225443 0,6,7,—5 0,2,9,5

28 | 076514146435673 12566715632821 1,7,8,0 9,-1,4,4 nn
051567121285343 12256358721165 7,1,8,0 3,5,8,4 nn
078517356737323 12747162866717 -5,5,0,8 7,-7,0,4 nn
078582621567150 12456332286115 3,1,10,—-2 3,1,10,-2 nn
076534321432170 16128847836248 7,5,~2,—6 7,5,6,—2 nn
063442242645720 | 16878675223565 | 9,-5,—-2,—-2| 1,3,2,-10
063843754227283 12877268658522 -1,-7,0,-8 7,1,8,0
064276387717651 16214382134382 —-358—-4 5580
064442136178270 16772717864644 5,3,—4,8 5,3,—4,-8
064442171647233 16774372735546 5,3,—4,8 9,-1,4,—-4
064843722816531 16178757852578 3,-5,—-8,4 7,7,0,—4
071286286424863 18877615344454 1,-9,-4,4 5,—5,—8,0
072161633841562 18332113414382 5580 1-780
076185788565812 16215443325247 —7180 —-7-7-40
076441234324112 12876513727844 9,5,-2,2 5,-7,6,2
076441322271811 12876352552655 9,1,4,—-4 -7,-7,0,4
076815711426771 16143822334818 194 -4 91 -4—-4
077442312346813 16888578675634 3,1,-10,-2 | -5,-7,—6,—2
077658617271583 12852541333416 -5,5,8,0 -5,5,0,-8

29 | 016186616313366 641515851514853 8,6,3,3 6,8,3,3 ns

30 | 0641462126585640 | 164711856213678 9,-1,2,6 3,-7,8,0 nn

31 | 0164482648131672 | 6488874517518730| 6,0,-9,3 2,0,1,—11
0164483618165471 | 6488874628615542 | 4,6,—7,—5 -8,2,3,-7
0653131761458613 | 1185857125332351 | 6,8,5,—1 6,4,—5,—7

32 | 01113181831663860 | 6666818111883663 9,7,0,0 -7,-9,0,0 | ns
01836183616638333 | 6116611661833816 1,-1,8,8 -7,-9,0,0 ns
06668636113881680 | 1111363633661881 1,-1,8,8 1,-1,-8,8 ns

29
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