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ABSTRACT. With the help of computer algorithms, we improve
the upper bound on the classical three color Ramsey number
R(3,3,4), and thus we show that the exact value of this number
is 30 or 31. We also present computer enumeration of all 3-
colorings of edges on at least 14 vertices without monochromatic
triangles.

1 Introduction and Notation

An (ry,72,...,7%) coloring, ; > 1 for 1 < i < k, is an assignment of
one of k colors to each edge in a complete graph, such that it does not
contain monochromatic complete subgraph K, in color ¢, for 1 <i < k.
Similarly, an (r1,79,...,7k;n) coloring is an (ry,...,7) coloring of K,.
Let R(ry,...,7x) and R(ry, ... ,rx;n) denote the set of all (ry, ..., ) and
(r1,...,7k;n) colorings, respectively. The Ramsey number R(ry, ... ,r%) is
defined to be the least n > 0 such that R(r,, ... ,7x;n) is empty.

A coloring using k colors will be also called a k-coloring. Clearly, any
2-coloring can be considered as a graph. In this paper we will study k-
colorings only for k = 2 or k = 3. In the former case we will also use
standard graph theory terminology. A regularly updated survey of the
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most recent results on the best known bounds on multicolor (k > 2) and
graph (k = 2) Ramsey numbers can be found in [Rad].

In 1966 Kalbfleisch [Kalb] constructed a cyclic (3, 3, 4; 29) coloring, which
to date gives the best known lower bound R(3,3,4) > 30. Recently, Pi-
wakowski [Piw] obtained an upper bound R(3,3,4) < 32. In this paper
we reduce this bound to 31, and we conjecture that the exact value of this
Ramsey number is 30. We note that the only known nontrivial value of
a multicolor classical (i.e. avoiding monochromatic complete subgraphs)
Ramsey number is R(3, 3,3) = 17 [GG], and at the moment the only other
multicolor case which seems not hopeless is R(3, 3,4).

Two k-colorings are isomorphic if there exist a bijection between the
vertices of the underlying complete graphs preserving all the colors of edges,
and they are weakly isomorphic if there exists a bijection between vertices
which preserves the relation of two edges having the same color. It is
convenient to think of a weak isomorphism as a composition of permutation
of colors with an isomorphism; for example any graph G, seen as a 2-
coloring, is weakly isomorphic to its complement G.

Let C be a k-coloring and G be a simple undirected graph. Throughout
this paper we will also use the following notation.

degs(z) — the degree of vertex z in graph G

n(G), ¢(G)  — the number of vertices and edges in graph G
V(G), E(G) — the vertex and edge sets of graph G

N¢g(z) — the neighborhood of vertex z in graph G

Cli] — the graph formed by edges of color i in coloring C
Ct — the coloring induced in C by vertices in N¢y;)(z)

Cil4] — the graph formed by edges of color j in coloring Ci
R(a,b,c; = n) — U,czﬂ R(a,b,c; k)

2 (3,3,3) Colorings

The main result of this paper is that (3,3,4;31) colorings don’t exist.
If C is a (3,3,4;m) coloring then, clearly, for every vertex z, C3 is a
(3,3,3;deggp3|(x)) coloring, so the latter are important in the study of
R(3,3,4). Independently, such colorings are interesting by themselves, and
this section gathers basic information about them.

In 1968 Kalbfleisch and Stanton [KS] proved that there are exactly two
nonisomorphic (3, 3, 3; 16) colorings; let us denote them by K.S; and K S,.
Since R(3,3) = 6, by merging two colors in any (3,3,3;n) coloring, we
obtain a (3,6;n) graph. It is interesting that all six (3, 6;16) graphs ob-
tained in this way from R(3,3, 3;16) are isomorphic, yet the 3-colorings
K S, and KS, are not even weakly isomorphic. Both KS; and KS; are
vertex transitive, and the common underlying (3, 6; 16) graph can be defined
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over GF(2*) with two vertices being adjacent if and only if their difference
is a cube.

Deleting one point from the vertex transitive colorings K'S; and K S,
leads to exactly two nonisomorphic (3,3, 3; 15) colorings, with 35 edges in
each color. In a technically very complicated paper, but without using a
computer, Heinrich [Hein] was able to prove that no other such colorings
exist, i.e. |R(3,3,3;15)| =2.

Our computations related to R(3, 3, 3; #) confirmed all the above results,
generated all such colorings on n > 14 vertices, and enumerated all possible
(3, 6; n) graphs which form a single color, for all n.

We found that there are exactly 651 nonisomorphic (3, 3, 3; 14) colorings,
which is reduced to only 115 up to weak isomorphism. The number of edges
in any single color ranges from 28 to 35. Table 1 presents the numbers of
these colorings, divided into classes with the same edge count in three colors.
Note that the ratio between the last two columns is at most 3!, and it is
equal to 6 iff each coloring in this class under all permutations of 3 colors
leads to 6 nonisomorphic colorings.

Having at our disposition a data base of all (3, 6;n) graphs [RK], which
were verified and used in few previous Ramsey related projects, we have
checked for each (3,6;n) graph whether its complement can be split into
two colors yielding a (3, 3, 3; n) coloring. The cumulative data is gathered in
Table 2. These splittable graphs are exactly those which can form a single
color subgraph in any member of R(3,3, 3). For example, only 66 graphs
can form a single color in a (3, 3, 3; 14) coloring. For this work, all colorings
in R(3,3,3; >14) were generated independently by each of the authors and
compared. The computer time needed for obtaining and verifying these
results was very small.

counts of nonisomorphic weakly nonisomorphic

edge colors colorings colorings

31 30 30 249 45
313129 126 23
323029 138 23
32 31 28 60 10
332929 24 5
333028 36 6
342928 12 2
35 28 28 6 1

all 651 115

Table 1. Statistics for R(3, 3, 3; 14) colorings
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number of

n (3,6,n) graphs splittable nonsplittable
1 1 1 0
2 2 2 0
3 3 3 0
4 7 7 0
5 4 14 0
6 37 37 0
7 100 100 0
8 356 355 1
9 1407 1395 12
10 6657 6444 213
11 30395 26034 4361
12 116792 58538 58254
13 275086 21921 253165
14 263520 66 263454
15 64732 1 64731
16 2576 1 2575
17 7 0 7
all 761692 114919 646773

Table 2. (3,6) graphs splittable to (3, 3,3) colorings

3 Algorithm and Computations

The following simple lemma is the basis of the skeleton of our computations
showing that R(3,3,4) < 31.

Lemma 1. In any (3,3,4;31) coloring C there are three vertices z, y
and z such that zyz forms a triangle in the third color, and C3,C3,C3 €
R(3,3,3;> 14).

Proof: R(3,4) = 9 implies that the minimum degree in the graph C[3] is
at least 14 = 31 —8 —8 — 1. Since R(3,3,3) = 17, C must have triangles in
the third color. Thus a triangle, as required by the lemma, exists. (]

Given an arbitrary (3,3,3;n) coloring C, consider the set of colorings
obtained by distinguishing each of the n(n—1)/2 edges in C. Let M denote
the set of all such weakly nonisomorphic colorings with a distinguished
edge, obtained from R(3,3,3; > 14), where weak isomorphisms preserve
the distinguished edges (a distinguished edge can be considered as having
color 4). With computer help we have found that M consists of exactly
5670 (3, 3, 3) colorings with a distinguished edge: 3 on 16 vertices, 13 on 15
vertices, and 5654 on 14 vertices. We will write (C,e) € M to denote that
the edge e has been distinguished in coloring C.

138



Assume C and zyz are as in Lemma 1. Clearly, each of (C2, {y, z}),
(Cg,{x, z}), and (C3,{z,y}) must be weakly isomorphic to some color-
ing in the set M. The colorings in M form the starting points of the
main algorithm constructing (3, 3,4;m) colorings from a triangle in color
3 supporting three overlapping elements of M. The following algorithm
was executed for all triples, repetitions allowed, of (3, 3,3) colorings with a
distinguished edge in M.

The Algorithm

Step 1: Let (Cy,e1), (Ca2,e2), (Cs,e3) € M. The distinguished edges
ey, €2, eg have color 3. Produce 16 starting configurations X by exchanging
colors 1 and 2 in C, and C3 (4 possibilities) and, independently, by assem-
bling a triangle T from the edges e, ez, €3 by identifying their endpoints in
pairs (4 possibilities).

Step 2: Without loss of generality, assume that X = (C, {y, 2}), (Ca, {z, z}),
(Cs, {z,y}) with T' = {z, y, z}. Reject X if

dege, [3)(y) # degc,3)(z),

dege, (3(2) # degey s (),
or
degc,3)(2) # degoys)(v)-

Otherwise, find all possible embedding of X into the situation as in Lemma
1 by permuting vertices in N¢,3)(z), Ncy(3)(z) and Ng,3)(y), while keeping
the vertices of T fixed. Identify Ng,(3j(y) with Ng,gj(z), Ng,(g(z) with
Ng,3)(z), and Ng,3(2z) with Ng,g(y). If the identified neighborhoods
induce identical colorings in all three cases, then such relabeled X can be
considered a partial coloring on

m =n(C1) + n(Cz) + n(Cs) — degc, 3)(y) — dege, (3)(2) — dege,3)(2)

vertices. Reject X if it contains a triangle in color 1 or 2. After this step,
the colored edges of X are only those which where taken from some C; and
the edges in color 3 between T and V(X) - T.

Step 3: For every partial coloring on m vertices obtained in Step 2, assign
three possible colors to each uncolored edge, and iterate the following pro-
cess. For each edge with more than one possible color, delete colors which
lead to a forbidden clique or violate obvious degree restrictions. Terminate
if some edge has no possible colors. If there is no edge for which the deletion
of possible colors is enforced, then go to Step 4. There is no branching in
this step.

Step 4: Perform the exhaustive search for all possible extensions of partial
colorings obtained in Step 3 to full (3, 3,4) colorings on m vertices.
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The algorithm outlined above did not produce any full (3,3,4) coloring
on the input set M. A large number of partial colorings were produced at
Steps 2 and 3. These were generated by two independent implementations
by each of the two authors, and they always agreed up to isomorphism. In
addition, the Step 4 was tested on other data known to produce nonempty
results.

Theorem 1. There does not exist a (3,3,4) coloring C with a triangle
zyz in color 3, such that degcys|(x), degcya)(y), degeys)(2) > 13.

Proof: The computations described above showed that no such coloring
exists. o

Two excellent programs, written by Brendan McKay, were used in this
work: nauty [McK] for testing isomorphism of edge colorings, and autoson
for distributing a large number of small tasks over a local area network. The
total time required for all computations was about 0.5 CPU years, mostly
on Sun Sparcstations and SGI Indys. This was achieved in a reasonable
amount of time by employing a number of computers simultaneously.

4 New Bound
Theorem 2. 30 < R(3,3,4) <31.

Proof: The lower bound follows from a cyclic coloring of the edges of Kag
with vertex set Zag, in which {1,4, 10,12}, {2,5,6,14} and {3,7,8,9,11,13}
are the vertex distances in Zog of the first, second, and third color, re-
spectively. This coloring was found by Kalbfleisch [Kalb]. Lemma 1 and
Theorem 1 give the upper bound. (]

Theorem 3. R(3,3,4) = 31 if and only if there exists a (3, 3, 4; 30) coloring
C such that every triangle T C C[3] has a vertex z € T with degcz)(z) =
13, and furthermore C has at least 14 vertices v such that degc(y)(v) =
degc(z)(v) = 8 and degcg)(v) = 13.

Proof: By Theorem 2 it is sufficient to show that any (3, 3, 4;30) coloring
C has the properties as required on the right hand side. R(3,4) = 9 implies
that for every vertex v, degcys)(v) > 13 = 30—-8—8—1. Thus the first part is
an immediate consequence of Theorem 1. For the second part, assume that
C has at most 13 vertices with the required degree distribution. Then, for
at least 17 vertices degcys)(v) > 14, and since R(3,3,3) = 17 we conclude
-further that some three of them form a triangle in color 3. This contradicts
Theorem 1, and completes the proof. O

It appears that our current approach is not efficient enough to proceed
similarly with all (3,3, 3;13) colorings, though such computations would
lead to the determination of the exact value of R(3,3,4). We conjecture
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that R(3,3,4) = 30. The evidence to support it consists of the intermediate
results of the computations completed for this work, which showed that
the known (3, 3,4; > 28) colorings are quite exceptional. In addition, we
have also performed a large number of heuristic searches for such colorings,
without finding any new ones. The only known (3, 3, 4;29) coloring is the
one found by Kalbfleisch (described above), and the only known (3, 3, 4; 28)
coloring is obtained from it by the deletion of one vertex.
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