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ABSTRACT. Cyclotomy can be used to construct a variety of
combinatorial designs, for example, supplementary difference
sets, weighing matrices and T-matrices. These designs may be
obtained by using linear combinations of the incidence matrices
of the cyclotomic cosets. However, cyclotomy only works in
the prime and prime power cases. We present a generalisation
of cyclotomy and introduce generalised cosets. Combinatorial
designs can now be obtained by a search through all linear
combinations of the incidence matrices of the generalised cosets.
We believe that this search method is new. The generalisation
works for all cases and is not restricted to prime powers. The
paper presents some new combinatorial designs. We give a new
construction for T-matrices of order 87 and hence an OD(4 x
87; 87,87, 87, 87). We also give some D-optimal designs of order
n=2v=2x 145,2 x 157,2 x 181.

1 Cyclotomy

The methods and techniques in this paper have been inspired by many
authors including Dokovic [2], Furino [4] and Hunt and Wallis [9). We use
these methods and further generalisations to find many new combinatorial
designs.

We now give a short introduction to cyclotomy. More details are given
in [5] and [16]. We let I, be the identity matrix of order n and J, be the
matrix of n x n 1’s.

JCMCC 27 (1998), pp. 143-160



Definition 1 Let z be a primitive element of F = GF(q), where ¢ = p* =
ef +1 is a prime power. Write G =< = >. The cyclotomic cosets C; in F
are:

Ci={z**:5=0,1,...,f-1},i=0,1,...,e—1.

We note that the C;’s are pairwise disjoint and their union is G = F\ {0}.
For fixed ¢ and j, the cyclotomic number (3, 5) is defined to be the number
of solutions of the equation

zi+1=2z; (z € Ci, z; € Cj),

where 1 = z? is the multiplicative unit of F. That is, (,7) is the number
of ordered pairs s, ¢t such that

gt 1=zt (0<s,t < fF—1).
Note that the number of times
zea+i _ $¢t+k € CJ

is the cyclotomic number (k — j,i — j). It can be shown (see for example
[16] or [19]) that
(k—j»i —.7) = (.7 —-k,i _k)-

Notation 1 Let A = {ay,a3,...,ax} be a k-set; then we will use AA for
the collection of differences between distinct elements of A, i.e,

AA=[a;—aj:i#5,1<4,5<Kk].
Now
AC; = (0, O)C.' + (1, O)Ci+1 + (2, O)Cg+2 +...
and
A(Ci-C;) = (0,0)C; + (1,0)Cj41+...

...+{0,0)C; + (1,0)Ciy1 + ...

v+ (0,6 —5)C5+ (1, = 5)Cit1 + ...

e+ (0,7 —3)Ci+ (1,5 —)Cigr + ... .
Notation 2 We use C,&C, to denote the adjunction of two sets with rep-
etitions remaining. If A = {a,b,c,d} and B = {b,c, e}, then A&B =

[a,b,b,c,c,d,€]. Cs ~ Cy is used to denote adjunction, but with the ele-
ments of the second set becoming signed. So A ~ B = [a, b, —b, ¢, —¢, d, —€].
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We define [C;] the incidence matrix of the cyclotomic coset C; by

L 1, ifzk—zjeC,;
%=1 0, otherwise.

As G = CoUCU...UC.y = GF(p*) \ {0}, its incidence matrix is

Jefir = Lepyr (e, 525[Cs] = Jes+1 — Iog41), and the incidence matrix

of GF(p®) is Jes+1. Therefore, the incidence matrix of {0} will be .4 1.
The incidence matrices of C,&Cj and C, ~ C; will be given by

[Ca&eCh) = [Ca] + [Ch] and [Ca ~ Cp] = [Ca] — [Cb)-

Example 1 Welet ¢ =p =13, e =3, f =4, z = 2. The cyclotomic cosets
are

Co = {1,8,12,5}
¢ = {2,3,11,10}
C: = {4,6,9,7}

The cyclotomic numbers are given in the following table. The number (%, 5)
will be found in row ¢ and column j.

0j1]2
112
21111

—

Considering, for example, C;, we have

AC; = (0,0)C;+(1,0)C2 +(2,0)Co
= C2 + 2COt

and

[Ci]=

O M OOOOOOMMMEROO
H_OOOOOO=HOOO
HFOO0OO0OOOOHMOOOR
COO0COCOOHHOOO =
COO0OO0OOHRHOODOKHMHO
O OO O R FHFOOOMOO
COOHMRROOORMMFOOO
COHMHMOOORMFEFOOOO
O MOO0OO=H MR OOOOCO
HHEHOOQOORMHOODOOOO
HOOORMMOOOODOO
COO R MHROOOOOO M-
COMMMHOOOOOOMO
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Observe that for prime ¢ the matrices [C;] are all circulant (“NW to SE
strips”) since we are working in Z,. However, this is not the case when
q is a prime power. In these cases the operations are done in GF(q) and
the elements may be represented by polynomials which does not lead to
circulant [C;]’s.

2 Combinatorial Designs

We first turn to ternary sequences, that is, sequences with entries 1,0, —1
which have certain properties. From there we show how these sequences can
be used to construct some combinatorial designs and how they correspond
with the incidence matrices of the cyclotomic cosets.

Definition 2 (Periodic Autocorrelation Function)

Let X={{:B10, ceey fl?l,n—l}, {:czo, vee ,.'1:2,,,,_1}, S A ,xm,n—l}}
be a family of m sequences of elements 1, 0 and —1 and length n. The peri-
odic autocorrelation function of the family of sequences X, denoted by Px,
is a function defined by

n—1
Px(s) = ) _(T1Z144s + T2iT2 440 + - - - + TmiTm,ita),
=0
where s can range from 1 to n — 1 and the indices are reduced mod =, if
necessary.

The weight w of a family of m sequences is defined as the total number
of non—zero entries in these sequences.

Example 2 We write ‘+’ for 1 and ‘-’ for —1. Consider the four sequences
of length n = 4 and weight w = 10

A = ++—+
B = 4+4+4+-
C = 000+
D = -000.

It is easy to see that these four sequences have zero periodic autocorre-
lation function. The weight w of these four sequences is 10 and it is a
well established fact (see, for example, [17]) that the sum of the squares
of the row sums of the sequences must add to w as a necessary (but not
sufficient) condition for the periodic autocorrelation function to be zero. In
this example we have 22 + 22 + 124+ 12 = 10.
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Four sequences A, B, C, D of length n and weight w with zero periodic
autocorrelation function are equivalent to four circulant n x n matrices M4,
MBg, Mc, Mp with first rows A, B, C, D which satisfy

MM + MgME + McMZ + MpME = wi,.

Definition 8 (Orthogonal Design) An orthogonal design A, of order n,
and type (s, 82, ... ,84), denoted OD(n; sy, s2,. .. ,3y) on the commuting
variables (£z;,%zs,... ,+zy,0) is a square matrix of order n with entries
4z, where each x; occurs s; times in each row and column such that the
distinct rows are pairwise orthogonal.

Definition 4 (Weighing Matrix) A weighing matric W = W(n,k)
is a square matrix with entries 0, &1 having k non-zero entries per row
and column and inner product of distinct rows zero. Hence, W satisfies
WWT = kI,. The number k is called the weight of W. A W(n,n), for
n = 0( mod 4), 1 or 2, whose entries are £1 only is called an Hadamard
matric.

If we have four sequences A, B, C, D of length n and weight w with zero
periodic autocorrelation function, M4, Mp, Mc, Mp may be “plugged
into” a special array, called Goethals—Seidel array, which gives a weighing
matrix W(4n,w). Details of this standard construction, are again given in

[17].

Definition 5 (T-matrices) A set of 4 T-matrices T}, i = 1,...,4 of
order ¢ are four circulant or type one matrices that have entries 0, +1 or
—1 and that satisfy

(i) Ty *T; =0, i # j, (* denotes the Hadamard product);
(ii) 2?:1 T; is a (1, —1) matrix;
(ifi) Yi-y TRTT =tI;; and
(iv) t =t? +t3 +t3 +t3, where ¢; is the row (column) sum of T;.

Four sequences A, B, C, D of length n and weight n with zero periodic
autocorrelation function and the additional property that they are disjoint,
that is, a; + b; + ¢; + d; = +1 (where z; is the i-th element of the sequence
X) forall i =0,...,n—1 are equivalent to four circulant T-matrices of
order n. T-matrices can be used to construct orthogonal designs.
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Definition 6 (D—optimal designs) Let n = 2 mod 4, v = %n, I, be
the identity matrix and J, be the all 1 matrix of order ». Let M, N be
commuting v x v matrices, with elements +1, such that

MMT 4+ NNT = (2v — 2)I,, + 2J,. (1)
Now the n x n matrix
M N
R= [ —NT MT

is called a D-optimal design of order n.

D-optimal designs have maximum determinant among all n x n +1-
matrices, where n = 2 mod 4 ([1], [3]). The following two theorems give
rise to infinite families of D-optimal designs.

Theorem 1 (Whiteman [21]) There exist D-optimal designs of order
n =2 mod 4 where
n=2v=22¢+2¢+1)

and q is an odd prime power.

Theorem 2 (Koukouvinos, Kounias, Seberry [10]) There exist D~ op-
timal designs of order n =2 mod 4 where

n=2w=2¢+q+1)

and q is a prime power.

D-optimal designs can be constructed from supplementary difference
sets (see Definition 7) and sequences with constant periodic autocorrela-
tion function. The details are, for example, given in [7].

We now consider supplementary difference sets. These are related to
sequences as we now see.

Definition 7 (Supplementary Difference Sets) Let S;,Ss,...,S, be
subsets of Z,, (or any finite abelian group of order v) containing k;, ks, .. . , ks
elements respectively. Let T; be the totality of all differences between ele-
ments of S; (with repetitions), and let T be the totality of all the elements
of T;. If T' contains each non-zero element of Z, a fixed number of times,
say A, then the sets will be called n—{v; k1, ko,... ,kn;A} supplementary
difference sets (SDS).

148



The parameters of n—{v; k1, k2, . .. , kn; A} supplementary difference sets
satisfy

Mo—1)=) ki(ki —1). 2
i=1
If ky = k2 = ... = ky = k we shall write n—{v; k;\} to denote the n

supplementary difference sets and (2) becomes
AMv—-1)=nk(k-1).

Example 8 The cyclotomic cosets of Example 1 form 3-{13;4; 3} supple-
mentary difference sets. We have

ACy = (0, 0)Co + (1, 0)C; + (2, 0)C>
AC, = (0, 0)01 + (1, 0)02 + (2, O)Co
AC; = (0,0)C2+(1,0)Co + (2,0)C;.

Hence,

ACy+ AC1+AC; = ((0,0)+(1,0) + (2,0))(Co + C1 + C?)
= 3x G,

which proves the claim made above.

In fact, it can be shown that the cyclotomic cosets C; always form e-
{a; f; f —1} difference sets ([18]). The challenge is to find other supplemen-
tary difference sets using only some of the cyclotomic cosets C; ([16] and

20)).

Saying that the cyclotomic cosets C; form e—{g; f; f — 1} difference sets
is equivalent to

[Col[Col™ +[CLICHT + ...+ [Cetl[Ce]” = (f = 1)Jg + (ef = (f = 1))y

We now see the correspondence between the above statement and ternary
sequences. If the [C;]’s are all circulant, that is, if ¢ is prime, then the
sequences which correspond to the first rows of the [C;]’s ! have constant
periodic autocorrelation function, A = f — I'. If we take sequences which
are formed in a similar way as the above set of sequences except that we
change all zero entries into —1 entries we get again sequences with constant
periodic autocorrelation function.

1We can of course take the j-th row of the [C;]'s rather than the first row.
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Example 4 Referring to Example 1 we form the binary sequences X, Y,
Z (entries £1) from the cosets Cy, Cy, Cs.

X = —+—-——+-—+-———+
Y = ——44—————— ++-
Z = ————4—tt—t———

Observe that X, Y, Z have constant periodic autocorrelation function. The
value of the periodic autocorrelation function can be calculated from A and
is —g+44+42\=-13+4+4%x3=3.

3 The Experimental Search

In Example 4 we constructed some +1-sequences with constant periodic
autocorrelation function from cyclotomic cosets. However, this constant
usually will be different to zero. A more sophisticated (and indeed more
successful) approach is to take linear combinations of the incidence matrices
of the cyclotomic cosets. That is, we have

My = ae[{o}] + aO[CO] + al[CI] +...+ ae-I[Ce—l]
Mp = be[{0}]+bo[Co) + b1 [C1]) + ... + be—1[C.—1]
Mc = ce[{0}] + co[Co] + c1[C1] + ... + ce—1[Ce-1)

Mp = de[{0}]+ do[Co] + &1[Ci] + ...+ de—1[Ce-1],
where a;, b;, ¢;, d; € {1,0,—1}. We hope that for some a;, b;, c;, d;
MaMZ + MgME + McM5 + Mp M3 = wl,,

that is, M4, Mg, Mc, Mp can be used to construct a weighing matrix of
order 4q and weight w.

If q is prime then the matrices involved are all circulant and we can
express all the above “in the language of sequences”. That is, the cyclotomic
cosets serve as “master switches” for four ternary sequences which we hope
have zero periodic autocorrelation function and from these four sequences
we can construct the desired combinatorial designs.

Example 5 Welet g=p =13, e =4, f = 3, z = 2. The cyclotomic cosets
are

Co = {1,3,9}
Ci = {2,6,5}
C, = {4,12,10}
Cs = {8,11,7}.
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Suppose we are looking for four sequences A, B, C, D of length 13 and
weight 10 with zero periodic autocorrelation function. Then the following
sequences may be obtained by using appropriate “master switches”. It
turns out that in this case there are many “master switches” which lead to
the desired result.

— 0+ 00 + 4000000
— 000 + 00000 + 0 +

+ 000000000000
= <+ 000000000000.

T Qw»
I

In matrix—form and using Notation 2 the same example may be written as
My = [~{0}&C]
Mp = [~{0}&C]
Mc [{o}]
Mp = [{0}].

M4, Mg, Mg, Mp can now be used in the Goethals-Seidel array to give a
weighing matrix W (52, 10).

There has been some analytical work about cyclotomic cosets and mainly
supplementary difference sets in, for example, [5], [9], [16] and [19]. How-
ever, our search is, as the name suggests, completely experimental, and all
we do is relying on the fact that the differences of the cyclotomic cosets have
some “nice algebraic structure”, which may or may not be exploited to give
us the sequences (or matrices) with the desired properties. We search for
such sequences (or matrices) via computer by exhaustively going through
all reasonable linear combinations.

Searching through linear combinations of cyclotomic cosets has been em-
ployed in a variety of papers and books ([5], (8], [9]) and has given rise to
many new combinatorial designs. The lengths or sizes of these designs may
be far beyond the limits if one searched for such designs exhaustively with-
out the help of the cyclotomic cosets or such “master switches”. However,
negative answers do of course not imply that such combinatorial designs do
not exist. Note that cyclotomy is limited to primes and prime powers.

4 The Generalisation

So far we have introduced cyclotomy and we have stated that all the
computer—searches were relying on was the “nice algebraic structure” of
the cyclotomic cosets. The rest was experimental and good luck. This led
us to find any partitions for any arbitrary number n, that is any compos-
ite n, which have some similar “nice algebraic structure”. We could then
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carry out experimental searches again and hope again to find sequences or
combinatorial designs with the desired properties.

Let us look again at Example 1. Cj is merely the subgroup of order? 4
or the subgroup containing all the powers of the generator y = 5 mod 13
while C; and C; are its multiplicative cosets.

To find similar partitions for any number n we now work in Z, and take
the powers of any element y which is relatively prime to n to get an initial
set which is a subgroup of the ¢(n) elements which are relatively prime to
n. The cosets are obtained by multiplying each element of the initial set
by a fixed number. This fixed number does not need to be relatively prime
to n. However, in this case the coset is not really a coset anymore in the
group theoretical sense since we, clearly, are moving out of the group. We
shall refer to such sets as generalised cosets.

Example 6 We let n =21 =7 x 3, y = 2. (We are slightly inconsistent in
enumerating the cosets: we now call the initial set C; while Cp is the set
containing only the element 0.)

C1 =1{1,2,4,8,16,11} initial set, powers of y

C2={3,6,12} multiply by 3, generalised coset
C3 = {5,10,20,19,17,13} multiply by 5, coset

Cy={7,14} multiply by 7, generalised coset
Cs = {9,18,15} multiply by 9, generalised coset
Co = {0} multiply by 0, generalised coset

Observe that the generalised cosets may or may not “collapse” into a
smaller size, since ma = mb is now possible even for @ # b. It can be
shown that the property that the differences of any coset whether proper
or generalised can be expressed as the sum of other proper or generalised
cosets, as in cyclotomy, remains. For example,

AC3 =C) +2C5+C3 +3C4 + 2Cs.

This fact entitles us to be confident when carrying out experimental computer—
searches for combinatorial designs based on “master switches” which are
obtained from such proper and generalised cosets.

We believe that this idea, that is, finding a partition of n as above and
then searching through the corresponding linear combinations is new. How-
ever, we wish to refer to Golomb [6] who usd proper and generalised cosets
in a similar manner to find shift register sequences. This served definitely

2Note that for the prime case it makes sense to talk about the subgroup of a certain
order, since there is only one such subgroup generated by a given generator g. However,
this is generally not true if n is composite.
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as a seed (and we believe a very fruitful one) in our research. We would also
like to cite Storer [19] who has made major contributions in the analysis of
Galois domains GD(p%q?) = GF(p*) x GF(q?) and difference sets.

We give an example (for a small n) of linear combinations of proper and
generalised cosets which lead to the desired result.

Example 7 We let n = 21, y = 2 as in Example 6. Consider the four
sequences

e+ttt t—F—F————
—dttt -ttt -ttt ————
O++++—++++—++-+++-+——
= O++++—+—++—++——++-+—-,

QW
I

and observe that 4, B, C, D have zero periodic autocorrelation function.
In matrix—form

My = [~ Co&Ci1&C, ~ C3&Cy ~ Cs)

Mg = [~ Co&C1&C5 ~ C3&Cy ~ Cj)
Mg = [C1&C; ~ C3&C4&Cs)
Mp = [C1&C2 ~ C3 ~ C4&Cs).

My, Mg, Mo, Mp can now be used in the Goethals-Seidel array to form
a weighing matrix W (84, 82).

5 The Search and Some New Results

Again we used raw computer—power to find appropriate “master-switches”
for the desired combinatorial designs. In particular, we were searching
for weighing matrices, supplementary difference sets, T-matrices and D-
optimal designs. The search is being and has been carried out on a variety
of sun workstations running under the UNIX™ operating system in our
centre. The computer yielded many results and one of us (Gysin) had in-
deed to ask the system-administrator to increase the disk—quota in order
to be able to store all the results. Search-times (that is, going exhaus-
tively through all the “master-switches”) varied between a few seconds to
a couple of months depending on the total number of “master—switches” or
cyclotomic cosets used (and not depending on the length or size n of the
final combinatorial designs). Of course the algorithm is exponential in the
total number of “master—switches”. At any time we have about 20 different
processes running on the workstations all searching for new results.

We give some combinatorial designs found.
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Example 8 (Weighing Matrices) Welet n =66 =2x 3 x 11, y = 5.
We get the following partition.

C1 = {1,5,25,59,31,23,49,47,37,53}

C; = {2,10,50,52,62,46,32,28,8,40}
Cs = {3,15,9,45,27}
Cs = {4,20,34,38,58,26,64,56,16,14}
Cs = {6,30,18,24,54}
Ce = {7,35,43,17,19,29,13,65,61,41}
C; = {11,55}
Cs = {12,60,36,48,42}
Co = {21,39,63,51,57}

Ciw = {22,44}

Cu = {33}
C = {0}.

In this case we were looking for four sequences of length n and weight
w = 4n — 2. One (of the more than 1000 possibilities) is

A = ++-tdtt——t—t-——dttt—F—tt—ttttt——t++—
++——tt++-———- t-t—t—t—ttttttt———t+-
B = +—4+——F+++++++—t-+++-———+——++++—-+
——dt—— -+ttt -ttt bt —tt-———t++——+
C = O0——++—++—+—+—++++++++—+—-+—++—++——
—tt -ttt —mmmm——— +H+-+——+-—++
D = O+++-4-——t++tt——t-—————- +H—t—t++-—++
e e e i e A e o

The matrices and corresponding linear combinations are

M A = [Co&Cl ~ Cz&C3&C4&Cs ~ CG&C7 ~ Cg&Cg ~ CIO&CII]

Mp = [Co~ C1&Cr&C3 ~ Cs&Cs&Cs&Cr&Cs ~ Cy ~ Cyp ~ C14]

Mg = [~C)~ C&C3&Cy&C5&Cs&C7 ~ Cg ~ Cg&Cg ~ Ci1]

Mp = [Ci1&C2&C5 ~ Cy ~ Cs ~ Cs&Cr&Cg ~ Cg&Cyg ~ C11].

From these matrices we can obtain a weighing matrix of order 264 = 4x 66
and weight 262 = 4 x 66 — 2 via the standard construction in the Goethals—
Seidel array.

Example 9 (T—matrices) We let n = 87 = 3 x 29, y = 7. We get the
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following partition.

The first rows of the circulant T-matrices of order 87 are

A

B

c

D

G
Cs
Cs
Cy
Cs
Ce
Cy
Cs
Cy
Cro
Cn
Cr2
Cis
Cu
Co

+ 0 + 000 + 00 + 0 + 00 + 00 -+ 00 — 00 — —00000 — 0 - 00 — 00000 + 0
0 — 0000 + 40 — —00 + 0 — 000 + 0 — 00000000 — 00 + —00 — 0 — 000
000 — —0000000 + —0 + 60 4 +0 — —0000 + — + 0 + 00 — 0000 + +00 +
00 + 0 — 00000000000 — +00 — 0 + —0 — 00 — 00 — 000 + 0000 + 00

0 + 000 + 0 4+ —0000000 + 00000000 + —00600000 +- 00 + 00 — 00

— 00 — 0 4+ 00 + 000 — 00000 + 00000 — 00 + 00000000 -+ 0 + 000 +

{1,7,49,82,52,16, 25}
{2,14,11,77,17, 32, 50}
{3, 21, 60,72, 69, 48, 75}
{4,28,22,67,34, 64,13}
{5,35, 71, 62, 86, 80, 38}
(6,42, 33,57,51,9, 63}
{8, 56,44, 47, 68, 41, 26}
{10, 70, 55, 37, 85, 73, 76}
{12, 84, 66, 27, 15, 18, 39}
{19, 46, 61,79, 31, 43,40}
{20, 53, 23,74, 83, 59, 65}
{24, 81,45, 54, 30, 36, 78}
{29}

{58}

{0}.

0000000000 + 00000000000000000000000000 + 000000

060000060000 + 00 — 00000000000 + 00 + 00 + 00000000 + O.

The matrices and linear combinations are

T
T2
T3
T,

[Co&Cr&Cg ~ Cyy ~ Cha]
[~ C3 ~ C4&Co&C10&C3]
[C1&Cs ~ C7]

[Cg ~ 014].

These T—matrices give new orthogonal designs.
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Lemma 1 Let z, y, 2z, w be commuting variables and let

X = sy +yTr+ 213 +wT,

Y = -y +zTo+wl5 — 2Ty
Z = =z —uwl+zT3+yT,
W = —wh + 2Ty —yT3+zT4.

Now X, Y, Z, W can be used in the Goethals-Seidel array to construct
new OD(4 x 87;87,87,87,87).

Example 10 (D-optimal designs) In this case we are looking for two
circulant matrices M and N which satisfy (1). Many examples are given in
(7). We give D—optimal designs of order n = 2v = 2 x 145,2 x 157,2 x 181.

The case n = 2v = 2 x 145: We let y = 24. Now
C1 = {1,24,141,49,16,94, 81,59, 111, 54,136, 74, 36,139}

C: = {2,48,137,98,32, 43,17,118,77,108,127, 3, 72,133}
Cs = {4,96,129,51,64,86,34,91,9,71,109,6,144,121}
C: = {5,120,125,100,80,35,115}
Cs = {7,23,117,53,112,78,132,123, 52, 88, 82, 83, 107,103}
Cs = {8,47,113,102,128,27,68,37,18,142,73,12,143,97}
Cr = {10,95,105,55,15,70,85}
Cs = {11,119,101,104,31,19,21, 69, 61, 14, 46, 89, 106, 79}
Co = {13,22,93,57,63,62,38,42,138,122, 28,92, 33, 67}
Cio = {20,45,65,110,30,140,25}
Cu = {26,44,41,114,126,124,76, 84,131, 99, 56, 39, 66,134}
Cr = {29,116}
Cis = {40,90,130,75,60,135,50}
Cu = {58,87}.

The matrices M and N are now given by
M = [~Cor~ Ci1&C2&C38C1&C5 ~ Ce&Cr&
Cs ~ Co&Ci0 ~ C11&C12 ~ C13&C4)
N = [~Co&Ci ~ Cy ~ C3&Cs&Cs&Cs&Cr&
Cg ~ Cg ~ C1o ~ C11&C12&C13&Ch4).

[2] gives a D-optimal design for the same case. However, the design given
there is inequivalent to the above one.
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The case n = 2v = 2 x 157: Note that 157 is prime. We let y = 130, that
is, we take the subgroup of order 13 and its cosets. The matrices M and
N are now given by

M
N

[~ {0}&Co&Cy ~ Ca&Cs ~ Cy ~ Cs&Cs ~ Cr&Cs&C&C10 ~ C1]
[{0}&Co ~ C1&C3 ~ C3 ~ Cys ~ Cs ~ Ce&C&Cs&Co&C10 ~ Cn1].

This case is believed to be completely new.
The case n = 2v = 2x181: This case is covered by [14]. We independently
found D-optimal designs for the same case using the generator y = 39. The
generator used in [14] is the same.

Example 11 (First Construction for SDS) From the four sequences
A, B, C, D in Example 8 we can construct the eight sequences A, A,
B,B,CU160,CU=100,DU100, DU—-160, where X Ue ¢k means
replace the element at position k in X by e. It can be easily shown that

(i) these eight new sequences have zero periodic autocorrelation function
if A, B, C, D have zero periodic autocorrelation function and the
element at position 0 of C and D is zero;

(ii) the position of the minuses (‘—’) in these eight sequences form sup-
plementary difference sets.

Hence, we get the following 8-{66;27, 27, 28, 28, 31, 32, 31, 32; 104} supple-
mentary difference sets

S = {2,7,8,10,12,13,17,19, 22, 28, 29, 32, 35, 36,
40,41, 42,43, 44, 46, 48, 50, 52, 60, 61, 62, 65}

S2 = S
. 83 = {1,4,5,14,16, 20,21, 22, 23, 25, 26, 31, 33, 34,

37,38, 39,44,47, 49, 51, 53, 56, 57, 58, 59, 63, 64}

Ss = 83

Ss = {1,2,5,8,10,12,21,23,25,28,31, 32, 33, 36, 37,39,
40, 42, 46, 47,48, 49, 50, 51, 52, 53, 57, 59, 60, 62, 63}

Se = Ssu{0}

Sy = {4,6,7,13,14,16,17,18,19, 20,21, 24, 26, 29, 30, 33,
34, 35, 38, 39, 41,43, 51, 54, 56, 57, 58, 61, 63, 64, 65}

Ss = SyuU{0}.

30f course we could also take the positions of the plusses (‘+’) to get the comple-
mentary supplementary difference sets.
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A similar construction for getting 4-supplementary difference sets out
of circulant T-matrices (Example 9) uses the positions of the minuses (or
plusses) in the four +1-sequences A+B+C+D, A+B—-C-D, A-B+C-D,
A — B — C + D, where the sequences A, B, C, D are the first rows of the
T-matrices.

Example 12 (Second Construction for SDS) We can also test which
of the proper and generalised cosets form supplementary difference sets.
Again we may carry out an experimental search where we check 2" possible
configurations if there is a total of n cosets. For example for n = 121 =
11 x 11 we found the following 12—{121; 5; 2} supplementary difference sets.

S1 = {2,6,18,54,41} S, = {11,33,99,55,44}
S: = {4,12,36,108,82} Sz = {16,48,23,69,86}
S3 = {5,15,4514,42} S, = {17,51,32,96,46)
Sy = {7,21,63,68,83} Sio = {19,57,50,29,87}
Ss = {8,24,72,95,43} S; = {20,60,59,56,47}
Ss = {10,30,90,28,84} S;; = {40,120,118,112,94}

Note that S7 is the only generalised coset.

6 Conclusions

We gave a brief introduction into cyclotomy, cyclotomic cosets and their
correspondence to some combinatorial designs. We presented an exper-
imental search through linear combinations of the incidence matrices of
cyclotomic cosets. By introducing generalised cosets we were able to ex-
tend the idea to any length or size n. We believe that this generalisation
is new. Again we relied on the property that the proper and generalised
cosets had some “nice algebraic structure” and performed an experimental
search. The search led to many new results.

In the generalisation all the operations have been done in the ring Z,.
The structure of the ring (which was neither a field nor an integral domain
since ab = 0 did not imply a = 0 or b = 0) was obviously good enough to
give us some nice results, that is, sequences with zero or constant periodic
autocorrelation function. However, at this stage we have not yet obtained
a theoretical model for our computational results. A more analytical ap-
proach would definitely be interesting and is subject to further research.
We would also like to stress that one is of course not confined to work in
Zy. Any algebraic structure may be exploited to get the desired results.
This is again subject to further investigation. As already mentioned the
search for combinatorial designs has been experimental and in Z,. It is by
no means finished yet. Since this search is only limited by the number of
proper and generalised cosets, we anticipate many new sizes and length n
will prove fruitful.
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