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Abstract

In this paper we employ the structures of a permutation graph as exhib-
ited in the Euclidean representation to solve the existence and construction
problems of Hamiltonian cycles on permutation graphs. We define and prove
the existence of a layered Hamiltonian cycle in a Hamiltonian permutation
graph. A linear (in size) time and (in order) space algorithm for construction
of a layered Hamiltonian cycle on a permutation graph is presented and its
correctness proven.

1 Introduction

The Hamiltonian Cycle (HC) problem is one of the classical problems in graph
theory. The HC problem involves the existence and construction of a cycle on a
given graph such that each vertex is visited exactly once. This problem is sub-
stantially more difficult than the superficially similar Eulerian problem in which
each edge is to be traversed exactly once. For graphs in general the HC prob-
lem has been proven to be NP-complete [13]. Although the HC problem remains
NP-complete for the class of perfect graphs, it does become tractable for several
important subclasses such as interval graphs [14] and cocomparability graphs [4].

The HC problem for permutation graphs has been a well known open problem
since 1979 [13]. An O(n?®) time algorithm for the HC problem on permutation
graphs follows from the superclass of cocomparability graphs [4]. That result is
based on exploiting the relationship between the existence of a Hamiltonian cy-
cle in a cocomparability graph and the bump number of a corresponding partial
order [12]. In this paper we present an O(n?) time algorithm for the HC prob-
lem in permutation graphs. Our approach is based on exploiting the Euclidean
representation for permutation graphs.

Three main representations have been developed which reveal some funda-
mental structure of permutation graphs. These are the permutation or matching
diagram, the interval containment diagram, and the Euclidean representation.
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Among these, the permutation diagram has been the tool of choice for investigat-
ing problems on permutation graphs [8, 11, 19]. The interval containment diagram
and the Euclidean representation have been used in only a few studies [9, 20].
However, we have found that the Euclidean representation is useful for studying
a number of problems on permutation graphs, including toughness, traceability,
clustering, and Hamiltonicity [18, 6]. Of particular significance for this work on
the HC problem, the Euclidean representation readily reveals a two-dimensional
layering structure which is not apparent in either the permutation diagram or the
interval containment diagram. This spatial perspective can be exploited in the
solution of the HC problem.

We present the structural properties of the Euclidean representation that are
relevant to the HC problem. We show that in a Euclidean representation the ver-
tices can be partitioned into layers that induce complete subgraphs. The orga-
nization of the layers facilitates identification of interlayer edges for use as a
framework for a particular sort of Hamiltonian cycle that we call a LAYERED
HAMILTONIAN CYCLE. A set of greedy rules for selecting optimal interlayer
edges for the framework is presented. We call our algorithm the Greedy Layered
Hamiltonian Cycle (GLHC) algorithm. We prove that the GLHC algorithm con-
structs a LAYERED HAMILTONIAN CYCLE in O(n?) time and O(n) space given
a defining permutation for the graph. (A defining permutation can be computed in
O(n?) time [3].)

The remainder of this paper is organized as follows. Section 2 provides a con-
cise overview of relevant terminology and introduces the concepts of comparabil-
ity graphs and permutation graphs. An overview of the Euclidean representation
of permutation graphs is presented in Section 3. For more complete discussion the
reader is referred to [18] and [5]. Subsections 3.1 and 3.2 define and discuss the
characteristics of layers and their relevance to the existence and construction of a
LAYERED HAMILTONIAN CYCLE respectively. The structural properties of lay-
ers with respect to interlayer edges are presented in Section 4. A proof of the exis-
tence of a LAYERED HAMILTONIAN CYCLE in a Hamiltonian permutation graph
is given in Section 5. In Section 6 is coverage of the GLHC algorithm. We prove
correctness of the GLHC algorithm in Section 7. An example of the algorithm is
traced in Section 8. A summary concludes the paper in Section 9. The GLHC
algorithm for permutation graphs is presented in pseundocode in an appendix.

2 Preliminaries and Definitions

For standard graph theoretic terminology used in this paper the reader is referred
to sources such as [2] or [11].

Perfect graphs are an important class of graphs introduced by Claude Berge in
1961 [1]. Comparability graphs and cocomparability graphs are two well known
subclasses of perfect graphs. A graph is called a comparability graph if its edges
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admit an anti-symmetric, transitive orientation. Such an orientation imposes a
partial ordering on the vertices; thus the justification of a partial order theoretic
approach to its study A graph G is called a cocomparability graph if its comple-
ment graph G€ is a comparability graph. Of these two, only the cocomparability
graphs admit efficient Hamiltonian cycle algorithms [4]. A permutation graph is
a graph that is both a comparability graph and a cocomparability graph [16].

Permutation Graphs. Let 7 denote a permutation on the first » natural numbers.
Then 7! denotes the inverse permutation which represents positions in #. For
example, if 7 = [5,1,3,4,2], then 7~! = [2,5,3,4, 1] so that w5 = 2 and the
position of 2 in 7 is given by m;! = 5. Denote by 77 the reverse permutation
of . In the example 7% = [2,4,3, 1, 5].

An undirected graph G() = (V, E) can be defined as follows [8, 11]:

V={1,2,...,n} 1)
and
ijEES (i —j)(w;" —1rj") <0,%,j€V. 2)

It may be noted that the graphs for different permutations can be isomorphic. For
example, permutations [4,3,1,2], [4,2,3, 1] and (3, 4,2, 1] are each associated
with a 4-cycle containing a chord.

Definition. A graph G is a permutation graph if there exists a permutation =
(called a defining permutation of G) such that G = G(w).

An immediate implication of this definition is that the vertices V' of a permu-
tation graph admit a labeling £(V) or simply £ (called a permutation labeling)
such that

ij € E & [L(5) = LGlmzgy — ;) <O (3)

Thus two vertices in a permutation graph are adjacent iff their permutation labels
appear in reverse order in the defining permutation. From this characterization it
is clear that the complement graph of G(7) has 7® as a defining permutation and
is therefore also a permutation graph. An orientation of the edges of a permutation
graph toward the vertices with the larger (or equivalently the smaller) permutation
labels is clearly transitive. Thus a permutation graph is a comparability graph and
a cocomparability graph as previously stated. A permutation labeling of vertices
will always be assumed in this paper. Moreover, the vertices V' of a permutation
graph are identified with their permutation labels.

3 Euclidean Representation of Permutation Graphs

As documented in a 1962 paper [15], the Euclidean representation was originally
applied by Ore to partial orders as a tool for studying their dimension. Supowit
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applied the Euclidean representation to the study of permutation graphs in 1985
[20]. Riedesel used the Euclidean representation to solve a number of problems on
permutation graphs [18]. In 1995 Felsner and Wernisch adapted the Euclidean rep-
resentation for the study of trapezoid graphs, a superclass of permutation graphs
[10]. We demonstrate its usefulness for studying permutation graphs by appealing
to this representation in solving the HC problem.

Ore showed that a partial order of dimension d can be represented in a d-
dimensional Cartesian graph in which the axes correspond to the d linear exten-
sions of a realizer [15]. The elements are represented as points in a quadrant of
the space. The coordinates of each point are the positions of the element in the
corresponding linear extensions. A permutation graph G(#) = (V, E) is easily
seen to correspond to a partial order of (at most) dimension 2 by letting one linear
extension of a realizer be the natural ordering of its permutation labeling L, (i.e.
1,2,...,n), and the other linear extension be the permutation 7 [7]. Thus E
represents the elements not in the partial order.

Let G = G(r) be a permutation graph and £ be a permutation labeling for
G. We display the 2-D Euclidean representation, £(G, £), in the fourth quadrant
for the simple reason that the axes and their labels will appear at the top and left
sides of the drawing. The horizontal axis is labeled with the natural numbers 1
through =, i.e. £, and the vertical axis with the permutation = of those numbers.
Each vertex is represented by a point with coordinates corresponding to its label
on both axes. For example, the Euclidean representation for the permutation graph
with the permutation labeling given in Figure 1a is shown in Figure 1c. From the
correspondence of a permutation graph with a partial order, it is easy to see that
two vertices are adjacent if and only if a line joining them has a positive slope.

Each vertex v can be seen to divide £ into five sets or regions: Qo(v) = {v}
and quadrants Q;(v), ¢ = 1,2,3,4, having their origin at v and partitioning
the remaining vertices according to their slope and thus adjacency to v. (See Fig-
ure 2). A vertex in quadrant 1 or 3 is on a positively sloped line and thus is adjacent
to v while a vertex in quadrant 2 or 4 is on a negatively sloped line and thus is not
adjacent to v. Furthermore, any two vertices such that one is in quadrant 1 and
the other in quadrant 3 must be adjacent, while any two vertices such that one is in
quadrant 2 and the other in quadrant 4 can not be adjacent. These relationships are
called the adjacency properties of quadrants. An immediate observation is that in
the Euclidean representation any set of vertices that has pairwise positive slope
has a southwest to northeast ordering in £ and induces a clique in G. Similarly
any set of vertices that has pairwise negative slope induces an independent set in
G.

The concept of gquadrants centered on a single vertex can be generalized as
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Figure 1: Representations of a Permutation Graph

follows for a set of vertices V' C V' and the adjacency properties still hold:

QO(V') . Vl
uV) = [) Q),i=1,2,3,4 @)
vev’

The HC solution makes use of quadrants centered on sets of vertices comprising
layers in the Euclidean representation.

The vertex sets Top and Bottom are defined as follows. The names are
indicative of their respective positions in £, as demonstrated in Figure 3(a).

Definition.

Top = {v|Q2(v) =2} )
Bottom {v| Q4(v) = @} ©)
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Figure 2: Quadrants for a (a) Vertex and a (b) Set of Vertices

A vertex in the set Top is called a rop vertex, and similarly a vertex in the set
Bottom is called a bottom vertex. By the adjacency properties of quadrants, it is
clear that the sets T'op and Bottorn induce cliques in the graph.

A height relation consistent with the concept of top and bottom vertices can
be defined for the pairs of non-adjacent vertices in G. Given two non-adjacent
vertices u and v, u is said to be higher than v, denoted by u > v, if u € Q2(v),
or equivalently, v € Q4(u). Thatis, u is northwest of v. If u > v, then v < u
and v is said to be lower than u. It follows from the definition that the higher
(lower) relation is antisymmetric and transitive. Furthermore, no vertex is higher
than a top vertex or lower than a bottom vertex. The height relation corresponds
to the ordering relation of a partial order that is represented by the graph when

®) V=1{3,4}
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Figure 3: (a) — Top and Bottom Vertices and the Height Relation. (b) — The
Highest Layering shown in Staircase Fashion.

considered as a cocomparability graph.

3.1 Layers in a Euclidean Representation

Let G = (V, E) be a permutation graph with a permutation labeling £ = L(V)
and maximum independent set size X.

Definition. A layering of £(G, L) is defined to be a partitioning of V' into sub-
sets Vq, Va, ..., V& (called layers) such that the following statements are true:

1. V;,1<{ < Z,induces acliquein G.
2. Given u € V; and v € V}, © < j, then either

e u and v are adjacent or
o U>T.

Clearly, there can be more than one layering for a given Euclidean represen-
tation. That there is at least one layering is also clear given the construction that
follows.

To aid in the visual comprehension of a layer in the Euclidean representation,
we draw a staircase pattern, rising to the right, of line segments using each ver-
tex of the layer as the outer tip of a step. See Figure 3(b). For convenience of
reference, the layers are considered to be ordered vertically from top to bottom,
with each layer being a set of vertices arranged from left to right which are labeled
a, B,7,...X,¥,{ respectively.
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For this paper we use a particular layering called the highest layering. In
the highest layering, the staircases do not overlap. The highest layering can be
identified iteratively: The first layer consists of the vertices in the set T'op for the
graph. Each subsequent layer is identified similarly from the induced subgraph of
the remaining vertices. This layering places each vertex in the highest possible
layer. Thus, while the initial set Top is exactly the first (highest) layer, the set
Bottom contains the vertices in the lowest layer and in addition may contain
vertices in higher layers. For an example see Figure 3(b) in which vertices 1 and
5 are top vertices and vertices 2, 4, and 5 are bottom vertices. Vertices 2 and 5 are
bottom vertices even though they are not in the lowest layer. A vertex which can
be assigned to another layer such that the new arrangement is a valid layering is
said to be assignable to that layer. A highest layering is always assumed in this
paper unless otherwise indicated.

Definition. A highest layering of a permutation graph is a layering created by the
greedy strategy described above.

3.2 Layered Cycles

Our algorithm constructs a LAYERED HAMILTONIAN CYCLE. The definition
for an LAYERED HAMILTONIAN CYCLE in a permutation graph is based on the
concept of layered paths, in that a cycle can be viewed as two paths joined at their
terminal vertices, and that the paths are layered in some fashion.

Definition. A layered path is a simple path P = [vp1,vp2,... ,Upt], £ < m, in
a permutation graph in which vp; X vp;, 1 < ¢ < j < k, for some permutation
labeling,.

Thus, in a layered Hamiltonian path, the first vertex of a traversal is a bottom
vertex of the graph and each subsequent vertex is a bottom vertex of the subgraph
induced by the untraversed vertices. In [18] it was proved that a layered Hamil-
tonian path exists in a traceable permutation graph, and that such a path can be
found using an efficient greedy algorithm. Its construction involves an attempt to
build the path layer by layer through the highest layering of the graph beginning
with the lowest layer.

Definition. A LAYERED HAMILTONIAN CYCLE is a Hamiltonian cycle that can
be divided into two paths such that each path is a layered Hamiltonian path in the
subgraph induced by its vertices. The two paths are referred to as HC-paths.

We prove that a LAYERED HAMILTONIAN CYCLE can be constructed in a
Hamiltonian permutation graph. Its construction is similar to that of the layered
Hamiltonian path except that two disjoint paths must be found through the layers.
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4 Interlayer Edges

The challenge in constructing a LAYERED HAMILTONIAN CYCLE is in choosing
interlayer edges such that the HC-paths can collectively be extended through all the
layers. The set of interlayer edges for each HC-path is called a path framework.
Together, the two path frameworks constitute a CYCLE FRAMEWORK. In this
section an HC-path is viewed as a Hamiltonian path in the subgraph induced by
the vertices of the path.

The ordering of vertices within a layer has implications for the existence of
interlayer edges. In this section we explore the structure of layers and develop the
notion of a transition as a sequence of interlayer edges used to continue a path
between two layers. A path framework then consists of a set of these transitions.
In a later section we apply these concepts to the combined view of both HC-paths
in the entire graph.

A transition extends a path from a given layer called an exit layer to a higher
layer called an entry layer. In the case of a Hamiltonian path, the entry layer
is always the next higher layer. The ideal situation is a transition consisting of
exactly one edge between the exit and entry layers. However, if no such edge is
found, then a two edge transition is sought. This consists of an edge to a vertexina
higher transition layer and a second edge back to the entry layer. See Figure 4 for
examples of one and two edge transitions. To be sure that such a transition does
lead to a layered path, the first edge is sought to a vertex in the transition layer that
is assignable to the entry layer. We showed in [18] that such a transition vertex
can be found efficiently by utilizing the layer structure. Moreover, we showed
that only one and two edge transitions are needed to construct a Hamiltonian path
framework in a traceable graph. Therefore a transition either consists of one edge
from the exit layer directly to the entry layer, or two edges, the first from the
exit layer to a higher transition layer and the second back to the entry layer. The
vertices involved in a two edge transition are called the exit, transition, and entry
vertices respectively. In a single edge transition, the transition vertex coincides
with the entry vertex.

A greedy approach for finding transition vertices is presented in [18]. The
following lemma provides the basis for identifying the potential transition vertices
in the lowest possible transition layer. It is the case that each vertex in the lowest
possible transition layer to which there exists an interlayer edge (from the exit
layer) is a valid transition vertex.

Lemma 4.1 (Transition). [18] Let G = (V, E) be a permutation graph, and let
I be the lowest layer above K for which 3v; € I, vy € K such that v;ux. € E.
Then for all J, I < J < K, the induced subgraph G(v; U Vy) is a clique.
Furthermore, v; is assignable to layer J.

The only quadrant of a vertex which can contain non-adjacent vertices of
higher layers is Q2. @2 quadrants for layers are easily seen to be geometrically
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Figure 4: One and Two Edge Transitions

nested in the highest layering of the Euclidean representation. See Figure 5(b).
Let Vi be the set of vertices in a layer I for which there are any adjacencies
to vernces in a lower layer K. Then the nesting of quadrants Q. implies that
Vi C V for any intermediate layer J. Thus accessibility (via edges) to indi-
vidual vertices of a given layer from a lower layer increases with the height of
the latter layer. The following lemma implies that the nesting property of Q2
quadrants for layers is maintained even when some transition vertices have been
removed from higher layers (i.e. by being assigned to lower layers.)

Lemma 4.2 (Nesting). [18] Let G = (V, E) be a permutation graph, and I and
J be o layers of G, I higherthat J. If Vi C Vy is a set of bottom vertices of
the induced subgraph G[Vi UVa U... U Vy], then Q2(V; — Vi) € Q2(Vy).

A layered approach to cycle construction is also possible in the superclass
of cocomparability graphs by defining layers based on vertex height in a Hasse
diagram [4). What is unique with permutation graphs is that each layer has a
linear structure that admits a more efficient algorithm for finding optimal transi-
tions. This structure is easily seen in the Euclidean representation. The Euclidean
representation displays a permutation graph as being ordered both vertically and
horizontally, i.e. 1) the linear ordering of layers, and 2) the linear ordering of
vertices in a layer, respectively.
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Each layer in a Euclidean representation is structured in such a way that the
existence of interlayer edges between two layers can be determined in constant
time by checking only for the two possible edges between vertices from opposite
ends of the two layers. That is, if neither of the edges a;(; or (;a; exists for
two layers I and J, then no edges exist between those two layers. These edges
are referred to as external edges and, based on their appearance in a Euclidean
representation, are said to be oriented left to right and right to left respectively.
This property represents a specific case of the following lemma in which u is
replaced with « and v with (.

Lemma 4.3 (External Edge). [18] Let G = (V, E) be a permutation graph, 1
and J be two layers of G, I < J, u;,v;,w; be vertices in I, u; < v; < w;, and
uj,v;, w; be verticesin J, uj < v; < w; € J. If viv; € E, then the following
statements are true:

1. Either viuj; € E or v;wW; € E,
II. Either u;v; € E or wiv; € E, and
IIl. Either u;w; € E or wiuj; € E.

From these structural properties, an efficient algorithm for the construction of
transitions for a Hamiltonian path framework emerges: Beginning with the entry
layer and continuing consecutively with each higher layer until found, check for
the existence of external edges from the exit layer. The first layer to which either
external edge exists is the transition layer. A closest transition begins with any
interlayer edge between the exit and transition layers. An optimal transition begins
with any such closest interlayer edge except, unless no other closest choice exists,
one that uses an external vertex as the transition vertex. This leaves the external
vertices to be considered for a subsequent optimal transition from the transition
layer. The choice of the second edge for a transition, if needed, is trivial because
the transition vertex is adjacent to each vertex of the entry layer.

S Ecxistence of Layered Hamiltonian Cycles

In this section we prove that a permutation graph is Hamiltonian if and only if
it admits a LAYERED HAMILTONIAN CYCLE. The proof involves partitioning
an arbitrary Hamiltonian cycle into two paths, each of which has one end at the
highest layer and the other at the lowest layer. If these two paths are layered, then
we are done. Otherwise we will show that the two ends of each path can in fact be
ends of a layered path. Thus all that remains is to reconstruct the partially layered
paths into a fully layered paths. The following lemma provides a construction by
which a partially layered path can be reconstructed into fully layered path, thus
constituting a LAYERED HAMILTONIAN CYCLE. The process is iterative, each
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Figure 6: Illustration of Reversing Lemma. Vertex Configuration allows Segment
Reversal. Vertex vg4) may lie in either of the areas marked by (#).

iteration reversing an identifiable subpath so that progressively more vertices are
in a layered position. Note that each path can be considered as a Hamiltonian path
in the subgraph induced by its vertices.

Lemma 5.1 (Reversing Lemma). [18] Let G be a permutation graph and P =
[v1,v2, ... ,vn] be a Hamiltonian path such that the subpath P, 3, 1 <i < mn, is
the initial layered subpath of maximum length in P. Then there exists a layered
Hamiltonian path in G beginning with P, ;.

Discussion of Lemma 5.1. By ‘initial layered subpath’ we mean a subpath that
is layered in the subgraph induced by its vertices, and that each vertex not in the
subpath is higher than or adjacent to the vertices in the subpath, i.e. vertices not in
the subpath could follow the subpath in a fully layered path.

The proof consists of showing that edges exist in G which allow the subpath
Pjiy1 1 to be reversed in P, where vy is the last vertex in P lower than v;4,.
Specifically, the edges v;v;+1 and vgvg41 (assuming k& < n) which bind the
subpath Py into P are abandoned, and the edges v;vx and vy ve4 are
shown to exist and are used to attach the reversed subpath P ;41 backinto P.
P becomes layered by iterating this procedure a finite number of times. Here we
give an outline of the proof that is presented in detail in [18].

Proof. Proof of Lemma 5.1. If i = n then the entire path is layered and there
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is nothing to prove. Therefore assume 7 < n. This means that there is a non-
empty set of vertices C' following v;; in P which are lower than v;y;. Let
v € C be the last vertex in P which is lower than v, . Figure 6 illustrates this
configuration in a Euclidean representation.

Vertices v; and v;4 are adjacent and thus lie on a positively sloped line. The
set C and in particular vertex v are pictured lower than vy, (i.e.in Q4(vis1)),
but not lower than v; (i.e. outside Q4(v;)). Vertex v; is in the initial layered
subpath, so no remaining vertices in P can be lower than it. These constraints on
vy imply that v, lies on a positively sloped line with »; and therefore is adjacent
to v;.

Similarly, if k < n then v and vy, are adjacent and thus lie on a positively
sloped line. Vertex ve41 is notin set C, and therefore not in Q4(vi41). These
constraints, along with the placement of v;. to the southeast of v;,; , force vx4; to
be on a positively sloped line with v;,.; , thusimplying vy, is adjacent to v;.;. O

The Reversing Lemma guarantees a reconstruction of a Hamiltonian path into
a layered Hamiltonian path. However, the lemma applies only to partially layered
paths. It remains to be shown that a careful separation of a Hamiltonian cycle into
two paths will indeed result in the two paths being partially layered in the fashion
required by the lemma. We define the concept of a consistent labeling and prove
a lemma establishing this.

Let G = (V, E) be a permutation graph and £ be a permutation labeling for
G. Let L' be a permutation labeling of the induced subgraph G[V'], V' c V. L'
is said to be consistent with L if L' is order preserving with respect to £. That is,
L(u) > L(v) & L'(u) > L'(v) forall u, v € V. The Euclidean representation
for G[V'] with a consistent labeling can be obtained from a Euclidean represen-
tation for G by removing vertices not in V' and collapsing the representation by
removing empty rows and columns. The vertices are then relabeled so that all
labels are again consecutive from left to right. See Figure 7.

The following lemma provides a guarantee that top and bottom vertices in
the original graph remain as top and bottom vertices if included in an induced
subgraph. This implies that cutting a Hamiltonian cycle into two paths at a top
vertex and at a bottom vertex will generate the required pair of partially ordered
paths, assuming that the terminal vertices are cloned so that each path gets a copy.

Lemma 5.2 (Inheritance). Let G = (V, E) be a permutation graph, and V' C
V. Given a permutation labeling L = L(V) and a consistent labeling L' =
L(V') for G' = G[V'], then £(G', L") inherits the higher (lower) relations from
&(G, L), and vertices of V' that are top (bottom) vertices in £(G, L) are also
top (bottom) vertices in £(G', L').

Proof. The proof follows from the fact that orientation (by vertex quadrant) of
vertices is not affected as vertices in the Euclidean representation are removed,
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because only the corresponding empty rows and columns are removed. Thus the
higher (lower) relation does not change even though the height of vertices may
change. It follows that top (bottom) vertices in G remain so in G[V']. [m]

The preceding lemma is the basis for the main result of this section which
states that a LAYERED HAMILTONIAN CYCLE can be constructed in a Hamilto-
nian permutation graph. The algorithm which is presented in this paper is specifi-
cally designed to generate a LAYERED HAMILTONIAN CYCLE.

Theorem 5.3 (Layered Hamiltonian Cycle Existence). A permutation graph is
Hamiltonian if and only if it admits a LAYERED HAMILTONIAN CYCLE.

Proof. A Hamiltonian cycle must include a top vertex and a bottom vertex. Let
path P4 be one path in the cycle between a top vertex and a bottom vertex, and
let path Pg be the other path, Thus P4 and Pg share only the terminal vertices,
a top vertex and a bottom vertex. Each path is a Hamiltonian path in the subgraph
induced by its vertices. Given a Hamiltonian path in a permutation graph, there
exists a layered Hamiltonian path [18]. By Lemma 5.2, the top and bottom vertices
of a graph exist as top and bottom vertices in the induced subgraphs. Therefore
P4 and Pp each have an initial layered subpath and Lemma 5.1 applies. By the
reconstruction strategy in the proof of the lemma, the end vertices will remain as
end vertices because they are already top and bottom vertices. (Neither vertex
can be within a subpath being reversed.) After the reconstruction, the shared end
vertices can be assigned to either of the paths without affecting the layering of
the paths. A Hamiltonian cycle constructed from the two layered paths will by
definition be layered. O
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6 Construction of Layered Hamiltonian Cycles

Individually, the two HC-paths of a LAYERED HAMILTONIAN CYCLE might not
have vertices from each layer of the graph. Together, the two sets of transitions,
i.e. the two path frameworks, representing the paths must be constructed so as to
incorporate vertices representing all the layers and to contain those vertices in a
cycle. Furthermore, the transitions must be constructed in such a way that all the
remaining vertices of the graph can be inserted into that cycle. These sets then
constitute the CYCLE FRAMEWORK.

We first consider construction of a path framework for a layered Hamiltonian
path. As detailed in [18], the layered Hamiltonian path construction begins with
the identification of a path framework, and if one can not be found, then the graph
is declared to be not traceable. The path framework is constructed by using a set of
greedy rules to find a complete set of transitions, i.e. one transition spanning each
consecutive pair of layers of a highest layering. The greedy rules are based on the
results in Section 4. The transitions must be disjoint so that the Hamiltonian path
can be completed by arbitrarily inserting any unused vertices of a layer between
the entering and exiting transitions for the layer. Alternatively the path framework
can be seen as a path intersecting all the layers in such a way that the remaining
vertices of a layer can be inserted into it at the intersection.

The proof of Theorem 5.3 presumes an existing cycle (not necessarily layered)
and thus also the two vertex partitions for the two constituent HC-paths. Given the
partitions, the construction problem for a LAYERED HAMILTONIAN CYCLE is
reduced to two independent Hamiltonian path constructions. However, we do not
know of a method to precompute the partitions. Instead we consider and prove the
correctness of a joint construction of the two path frameworks, partitioning the
graph layer by layer as work proceeds. The transitions are generated in an optimal
manner starting with the lowest layer such that the choice of vertices for each tran-
sition has the least negative effect on constructing subsequent transitions for either
path, thus maximizing the potential of a Hamiltonian cycle to be constructed. The
algorithm is therefore a greedy algorithm.

6.1 Cycle Frameworks

As indicated above, in the non-partitioned view of the graph, the two path frame-
works of the CYCLE FRAMEWORK might not appear as they would for Hamilto-
nian paths. Some layers may be assigned entirely to one framework, thus giving
the appearance of being missed by the other framework. Other layers may have
single vertices assigned to one of the path frameworks, thus giving the appearance
of having entering and exiting transitions intersecting at those vertices. This is
not possible for a layered path in a highest layering. However, in the subgraph
induced by that path framework, portions of two layers may merge as one. In still
other layers the vertices may be apportioned between the two path frameworks.
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Examples of a CYCLE FRAMEWORK and its constituent path frameworks in their
induced subgraphs are shown in Figures 6.1, 6.1, and 6.1 respectively. We be-
gin this section with some discussion and terminology that expands the notions of
transitions and attachability to accommodate these perspectives.

An intermediate layer on which the entering and exiting transitions for one of
the paths appear to share a vertex is said to be weakly attached to that path. No
other vertices of the layer can be inserted at that intersection. On the other hand,
a layer is said to be strongly attached to a path if the entering and exiting tran-
sitions are disjoint. This is required for all intermediate layers of a Hamiltonian
path framework. However, it is sufficient for a CYCLE FRAMEWORK that each
intermediate layer be strongly attached to one of the paths and weakly attached or
even not attached at all to the other path. Moreover, for a two vertex layer, it is
sufficient that the layer be only weakly attached to both sets,

The conditions for attachment by the lowest layer and the highest layer are
somewhat different. This is because the two sets of transitions only exit or enter
them respectively. A lowest layer consisting of a single vertex may use that ver-
tex as the exit vertex for both transitions. This may appear to be an exception to
the condition that the two sets of transitions in a CYCLE FRAMEWORK are dis-
joint, however it is easily seen not to conflict with the conditions for Theorem 5.3
by considering that lone vertex as being cloned, one copy per path. It may be
noted that the highest layer must have at least two vertices for the graph to be con-
nected. This is easily seen in a Euclidean representation in which a single vertex
in the highest layer implies that all other vertices are in quadrant 4 of that vertex.
The lowest layer and the highest layer are considered to be strongly attached to
both sets of transitions if either 1) the pair of exiting or entering transitions (re-
spectively) are disjoint, or 2) the pair of exiting transitions (for the former) share
the singleton vertex of the layer.

6.2 Greedy Algorithm for Cycle Framework

In discussing the construction of the framework for a Hamiltonian cycle, it is
helpful to be able to distinguish certain layers based on their attachments to the
two paths, and the paths themselves. We present them here:

Base Layer. A layer that is at least weakly attached to both paths is called a base
layer. It is easy to see that in a complete CYCLE FRAMEWORK the lowest
layer and highest layer must be base layers. There may be additional base
layers in the graph. The CYCLE FRAMEWORK can be pictured as a series of
individual cycles between consecutive base layers through the intervening
sequences of non-base layers. The cycles intersect at base layers in such a
way that one cycle through all the layers can be constructed.

Potential Base Layer. At certain stages of construction, it is possible to tenta-
tively identify a layer as the next higher base layer. Construction proceeds
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with the assumption that this potential base layer will become a base layer.
This imposes constraints to the selection of subsequent transition vertices,
because two exiting transitions rather than one are needed from a base layer.

Working Layer. Construction is always layer by layer from the lowest to the
highest. The working layer represents the layer from which a transition(s)
is currently being sought. The working layer and all lower layers have been
attached to at least one of the paths, and no higher layer has yet been at-
tached to either path.

Leading Path. The leading path refers to the set of transitions which has a tran-
sition vertex from the highest layer yet reached, i.e. a potential base layer.
If both sets have transition vertices from the highest layer yet reached, then
the first set (if there is a first) to get such a vertex is the leading path. Oth-
erwise neither set represents a leading path. This can occur if the working
layer is a base layer. The potential base layer is tentatively attached to the
leading path.

Trailing Path. If one set of transitions represents the leading path, the other set
represents the trailing path. The objective is to attach each layer up to and
including the potential base layer to the trailing path, thus establishing the
potential base layer as truly a base layer.

In the greedy algorithm, a CYCLE FRAMEWORK is constructed layer by layer,
identifying one optimal transition for each non-base layer and two optimal transi-
tions, one per HC-path, for each base layer. In some cases the optimality can not
be determined while the layer is being processed. In these instances we show that
candidate vertices for optimal transitions can be marked as reserved, and process-
ing continues. Furthermore, we demonstrate that this method does not result in a
combinatorial explosion of backtracking for resolving the reserved choices.

6.2.1 General Discussion

During construction, a newly identified highest transition layer becomes a poten-
tial base layer. The path corresponding to this transition becomes the leading
path and its construction is interrupted at the transition vertex in the potential base
layer. Construction then proceeds for the other path which now is the trailing
path. If both paths simultaneously reach a new highest transition layer (this is
possible if the working layer is a base layer), thus jointly identifying a potential
base layer, then the identification of leading and trailing path is arbitrary.

If a new higher potential base layer is discovered by using a non-base layer
transition, the next step is to complete the last transition of the (former) leading
path with an entry vertex in the next working layer. Note that the exit and en-
try layers for this transition are not consecutive as they would have been for a
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Hamiltonian path framework. In an implementation only the entry layer and not
the entry vertex needs to be recorded, because the choice of an entry vertex in the
layer is arbitrary and can be deferred.

The potential base layer will become a base layer, and the transition vertex
of the interrupted transition becomes an entry vertex if all lower layers have been
processed, (i.e. attached to the trailing path,) without a higher transition layer
being needed. Otherwise a transition for the trailing path is identified with a still
higher transition layer which becomes the potential base layer, and then that path
becomes the leading path, and the process continues in a leap frog fashion until
a new base layer is finally established. Thus processing alternates on the sets of
transitions for the two paths, always extending the set of transitions for the trailing
path.

The general picture begins with a base layer with two exiting transitions, the
higher to a potential base; then a sequence of layers strongly attached to one path;
then a new potential base when a transition from that path “jumps” the original po-
tential base; then a sequence of layers strongly attached to the other path; then still
another new potential base, etc. until eventually a sequence of layers all the way
up to the latest potential base is strongly attached with no higher jump, thereby
identifying a new base layer. The entry layer for each transition is the layer above
the exit layer except for a transition that identifies a new potential base, in which
case a new sequence is begun in the alternating pattern.

An example in a flattened view of the Euclidean representation is given in
Figure 8. The two HC-paths are distinguished by solid and dashed lines. Only
the transitions identifying new potential bases are drawn. Each numbered group
indicates a sequence of working layers attached to one PATH between the “leap
frog” jumps. All transition vertices are indicated by group number.

Because layers are processed in sequence, all layers up to the working layer
are fully processed except possibly some having vertices which were reserved
when the optimality of transitions could not be immediately determined. If at
some point there is no transition(s) to advance the working layer, the algorithm
declares failure, and we prove in Section 7 that the graph is not Hamiltonian.

As long as the working layer is not a base layer, a transition is sought for the
trailing path from the working layer's external vertices via (ideally) non-external
transition layer vertices so as to attach each new working layer. This is in accor-
dance with the strategy presented in Section 4. If the potential base layer is used
as a transition layer for one of these transitions, then some extra care is needed
in the selection of the transition vertex, because it may be that the potential base
layer will become a base layer for which two exiting transitions are needed.

When the working layer is a base layer, two transitions must be found, one
for each HC-path. A number of cases exist for choosing the optimal pair of tran-
sitions, a situation more complicated than for a single transition. The optimal exit
vertices are end vertices of the layer, either both from the left end, the right end,
or one from each end. Because the working layer only needs to be strongly at-
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tached to one of the paths, it is sufficient for it to be weakly attached to the other
path, i.e. an entering and an exiting transition may intersect. We prove that the
path frameworks can be reconstructed so that an original external vertex of a base
layer, which may have been claimed as a transition vertex, can instead become
the entry vertex for a weak attachment. The entry for the trailing path is optimally
selected (or reserved) after all other transitions using this layer as a transition layer
have been constructed. Therefore, this reconstruction can be applied at most once
on a layer, resulting in reassignment of the entry status from the leading path.
Therefore, if both external vertices were claimed, only one can be used as an exit
vertex. See Figure 9 for illustrations of the reconstruction.

Lemma 6.1. A partial CYCLE FRAMEWORK can be reconstructed so that an ex-
ternal transition vertex in a base layer can be made into an entry vertex.

Proof. Assume an external vertex in a base layer, say a°, is currently used as a
transition vertex for a transition to layer I, and this vertex is desired as an entry
vertex. There are two cases to consider.

1. There are two vertices in the base layer which belong to transitions from a
common (preceding base) layer, each representing one of the paths. One of
these transitions has no second edge, i.e. its path was treated as the leading
path. While the transition for this leading path does not need a second edge
(because the other path was attached to all the intermediate layers), there
certainly exist edges to potentially extend the transition to any vertex of
intermediate layer I. Now the transition using a® can be truncated so that
o’ becomes an entry vertex, and the path back down to layer I be made
instead by using any of those edges which can extend the last transition of
the leading path.

2. There is one vertex, an entry vertex of a transition, in the base layer which
belongs to the leading path. This is a single edge transition. By the algo-
rithm, layer 7 must be higher than the exit layer for this transition. The
only vertices of the intermediate layers not considered in the construction
of this transition are transition vertices of previous transitions, and none of
these vertices therefore can be the the entry vertex of a transition, in par-
ticular of the transition using a°. By the properties of a transition, there
certainly exist edges to potentially extend the single edge transition to any
of the non-transition vertices of intermediate layer I. The reconstruction of
Case 1 can be applied in this case also.

In the second case it was important to consider the “scope’ of the single edge
transition because it is possible that there is no edge from the entry vertex down to
a vertex outside the scope. In both cases there may be multiple transition vertices
for the trailing path, but by construction only one for the leading path. a
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To be precise, the optimal exit vertices from a base layer are one of the follow-
ing pairs. The labels for the pairs are indicative of their appearance in a Euclidean
representation. For reference in this more complicated situation, the original «,
B, etc. vertices will be indicated by superscripting them as a°, 3°, etc. Illustra-
tive examples are given in Figure 10.

Optimal Exit Vertices for Base Layers:

e LR - Thepair a°,8° if a = a°, else the pair a®, a.
¢ RL - The pair {°,9¢° if { = (°, else the pair ¢°,(.
« C —  Thepair a°,(° if either a = a® or { = ¢°,
else one of these pairs:
CL - Thepair o, OF
CR - Thepair a,(¢°.
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The last two possibilities demonstrate the fact that the choices of two exiting
transitions may not be independent, even though the vertex choices for each tran-
sition are disjoint. Therefore a search for two transitions should always be a search
for a viable pair of transitions. Nevertheless, we show that at most four vertices in
the base layer (specified above) need to be checked for possible transition edges
to at most six vertices, «, 3, v, and x, ¥, ¢, in the transition layer, the worst
case occurring when both transitions use the same transition layer.

If possible, transition or entry vertices in the new potential base layer should
be chosen such that all three or four potentially optimal pairs are available as
exit vertices. In practice this means avoiding the external vertices « and ¢ as
transition vertices. Thus single transitions may optimally use 3 or 1, and double
transitions may optimally use 3 and v, § and 1, or x and 3. Although vertex
a or ¢ of a base layer can be reused after reconstruction, it is not always known
in advance that the potential base layer will become a base layer.

As the case by case analysis of the base and non-base layer transitions given
in the next two subsections show, there is no combinatorial explosion of candidate
transitions when optimality can not be immediately determined. The choices for
each layer can always be narrowed to a pair of vertices per path which can be
reserved until a selection is forced at a later stage or the selection is found to be
arbitrary. This is true even when optimality for immediately lower layers remains
unresolved.

6.2.2 Non-Base Layer Transition Cases

There is a single transition to be found from each non-base layer. The closest
transition will have a transition vertex in a layer that is either 1) below the potential
base layer, 2) in the potential base layer, or 3) above the potential base layer. These
three cases are discussed in this section.

CASE 1: A Transition below a Potential Base. This case is comparable
to finding the optimal transition for a Hamiltonian path, as only one path
is involved and no layer can be skipped as a working layer. Three greedy
rules were proposed in [18]. Given an exitlayer X and the closest transition
layer T, the following three rules are examined in order until a rule applies.
A subscript indicates the layer of the vertex.

Transition Greedy Rules:

A. If either a9y € E or {(;8: € E, then choose that edge.
B. Ifboth a,(;, ;¢ € E and

if ¢; and «; are not currently reserved,
then reserve both, else
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if ¢; and ¢ are currently reserved,

then resolve the reservation by selecting either of the edges
for the reserved transition and the remaining edge for the cur-
rent transition,

C. Only a.(; € E or {za: € E, so choose that edge for the transition.

The justification for these greedy rules is as follows: Some external vertex
will provide the optimal exit for a later transition from the transition layer.
Choosing any other vertex as the transition vertex preserves the external
vertices. Increasing accessibility to the transition layer as the working layer
rises guarantees that any other choice of transition vertex is equivalent in
terms of admitting non-external vertex choices for later transitions. If an
external vertex must be used as the transition vertex, it is better, if possible,
to reserve both until it can be later determined which is the optimal exit.

Note that the Greek alphabet labeling is reapplied to the transition layer
vertices remaining after a transition vertex is definitively identified (not just
reserved). If the exit vertex of this transition was reserved, then possibly a
chain of earlier reserved transitions can be resolved.

CASE 2: A Transition to a Potential Base. This case is very similar
to the previous case. The only difference is that the transition layer may
later become a base layer from which two exit vertices must be found. The
greedy rules of Case 1 can be used for this case also, because one claimed
vertex can be recast if needed as an entry vertex by reconstructing a pair
of transitions. Avoidance of the external vertices in the transition layer is
indicated if the potential base is not known to be a base layer, and does not
add to the complexity in any case.

CASE 3: ' A Transition Identifying a New Potential Base. The optimal
transition selection is the same as in the first case, again because the poten-
tial base might not become a base layer. Assuming it actually becomes a
base layer, this transition will remain a one edge transition and the transition
vertex become an entry vertex.

6.2.3 Base Layer Transition Cases

The cases for optimal transition construction from a base layer are distinguished
by six factors involving sizes, commonality, and presence of a base layer for the
transition layer(s); size of and previous vertex use for the base layer; and transition
orientations.
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Distinguishing Features for Cases of Base Layer Exits:

1.

The number of vertices in the closest transition layer. The closest tran-
sition layer may have 2, 3, or more than 3 vertices, and is classified as type
T2, T3, and TM respectively. Exiting the transition layer from two ver-
tices when there are no more than three in the layer inevitably means using
at least one vertex from each of the rightmost pair, the leftmost pair, and the
external pair.

. The commonality of transition layers of the two closest viable transi-

tions. The two closest viable transitions may or may not have the same
transition layer, and are classified as type S and T respectively. When the
two closest transitions have the same transition layer, care must be taken
that the two transition vertices chosen do not impair the optimality of exit-
ing transitions from what will be the next potential base layer.

. The orientation of the closest possible viable transitions. The orientation

of closest possible viable transitions may be left to right and/or right to left.
If both orientations are possible, the number of combinations for choosing
transitions is higher,

. Whether the vertices a® and (° of the base layer are both claimed.

The vertices o® and {° of the base layer may both have been claimed as
transition vertices by lower transitions. Base layers are classified as type
NC if no more than one is claimed or as type CC if both are claimed. One
vertex being claimed does not interfere with its dual use as an entry and
exit vertex, because in this case the layer can still be strongly attached to
the other path. If its use is as a transition vertex, the framework can be be
reconstructed so that it is an entry vertex.

. The number of vertices in the base layer. The number of vertices in the

base layer may be 1, 2, or more than 2, and the layer is classified as type B1,
B2, and BM respectively. Only the lowest base layer in a Hamiltonian
graph may have a single vertex. However, any layer can have exactly two
vertices. If a base layer has two vertices, then it may be that the optimality
of one as the exit vertex for the closest transition can not be determined until
resolution of reserves for the next closest transition (the second transition.)

. If a transition layer is a base layer. In some configurations it can be de-

termined that a newly discovered potential base layer must be a base layer.
If this can be determined, then an external vertex can be used in certain
combinations with other vertices without loss of optimality. Otherwise an
exiting transition must not intersect an entering transition.

We present a notation to express the claim pattern in a layer of vertices, i.e. the
combination of vertices that are claimed, reserved, or unused for transitions. The
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pattern determines the viability of optimal exit vertices from the layer, and is con-
strained by the availability of edges to the layer for use by transitions. A claimed
vertex is indicated by a ¢, a reserved vertex by an r, and an unused vertex by an
o. Vertices other than the external two or three vertices on either end are gener-
ally not involved in the discussion, so their possible presence is indicated simply
with ellipsis (. .. ). The leftmost vertex is the a vertex, and the rightmost is the ¢
vertex. Thus ro. .. cr describes a layer with « and ¢ as a reserved pair and 9 as
claimed.

Claim Notation for Vertices
claimed c
reserved T
unused u

don't care

This notation is used in Figure 11 which categorizes the optimality of poten-
tial base layer claim patterns resulting from double transitions from the preceding
base layer. Optimality is in terms of subsequent exiting transitions. Assuming the
potential base becomes a base layer, a first choice is one that admits subsequent
pairs of exits using any of the potentially optimal combinations of external ver-
tices. A second choice is one that disallows reuse of one of those vertices. There
is no ambiguity for the second choice because a choice of one transition vertex
can always be reused. Assuming the potential base does not become a base layer,
a first choice is one that admits a subsequent exit using either external vertex; a
second choice disallows use of one of the two external vertices; and a third choice
disallows use of some outer pair of the four external vertices, i.e. a and 3, o
and ¢, % and (. Additional optimal claim patterns are possible, however, a close
examination of Figure 13 will reveal that this set is sufficient.

We also present a notation to express the accessibility (presence of edges) of
vertices in a layer for use in transitions from a given lower layer. (See Figure 12
for an illustration.) Certain patterns may constrain transitions to use some of the
external vertices that would be optimal as later exit vertices. The notation is at
most a four digit number, the digits from left to right designating the availability
of transition vertices to the v, ¢, «, and S exit vertices respectively. The first
two digits count positions from the left of the transition layer, and the second two
digits count positions from the right. A 1 indicates no vertex, a 2 indicates the
external vertex only, etc. Because any more than three vertices yields no increased
optimality, patterns with digits above 4 are not considered. For example, the
accessibility for the example in Figure 12 is 1432.

Figure 13 is a table of all patterns (excepting those that are mirror images) that
admit a pair of viable transitions from a lower (base) layer. The optimal claim pat-
tern for a given accessibility pattern and base and transition layer characteristics
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FIRST SECOND THIRD
CATEGORY CHOICE CHOICE CHOICE
Three vertex crr cco
transition rer coe
layer becomes
a base layer. rre oce
Three vertex orr cco
transition layer | rer coc
does not rre
become a occ
base layer.
Multi-vertex g:g‘c’ cCor00
::)r ansition layer COC...0 00...cC
ecorlnes a 0...coC €o...0¢
base layer. CF...Or
ro...rc
Multi-vertex oce...00 €o...co
transition layer | oo...cco 0C...0C ¢C...00
does not 0C...CO €0C...00 00...cC
become a re...or 00...coC €0...0C
base layer. ro...cr Cr...0r
ro...rc
Figure 11: Optimal Double Claims
1

04

Figure 12: Illustration of Notation for Accessibility
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is specified, along with a sketch of the optimal transition configuration.

The cases for pairs of exits to different layers is simpler, and are listed in
Figure 14 for the closer of the two transitions. The rules, which upon examination
are not ambiguous, are to avoid the external vertices of both the base layer and
closest transition layer. If this is not possible, then try to reserve the external
edges. One unique case is for a base layer of two vertices with an edge from
both. The edges should be reserved until it can be determined which provides the
optimal longer transition.

The requirement of finding the closest transitions is the same for two transi-
tions as for a single transition. We show that the relation “closest” is well defined
for pairs of transitions. If the two closest viable transitions are independently
chosen, then clearly no other pair could be considered to be closer. However,
considering that the choice of two transitions from the same layer may not be in-
dependent, it is possible that the choice of a first closest transition A precludes
the choice of the second closest transition B1 and thus forces a higher transition
C as the second transition of a viable pair. However, selection of an intermediate
transition B2 between A and C as the first transition invariably forces the second
closest viable transition to be no closer than C. Thus “closest” is well defined.

Lemma 6.2. The closest pair of transitions from a base layer is well defined.

Progf. Some combination of two vertices from four specified vertices in the base
layer will provide the closest transitions. If any two vertices can be used, then
the proof follows. Assume the external vertices are claimed so that either one
but not both can be used for an exiting transition. If either type LR or type RL
exits provide an optimal pair, then again the proof follows. This leaves either type
CR or type CL. The only way a problem can arise is by having four possible
transition layers, two represented by « vertices and two by { vertices to be the
transition vertices. However, any arrangement by which these two types yield
pairs of transitions in which one pair takes the lowest and highest of the four and
the other pair takes the middle two of the pair also yields either an optimal type
RL or type LR exit pair. This can quickly be seen by checking each possible
combination. Therefore the closest pair of transitions is well defined. O

The lemmas of Section 3.2 pertaining to transitions apply to closest transi-
tions. In the cases of pairs of transitions from a base layer which reach different
transition layers, the question arises as to whether the second closest transition
has similar characteristics. Namely, is there a possible second edge to each vertex
of each intermediate layer, with the possible allowable exception of the transition
vertex of the closest transition? By showing this is the case, it is established that
the algorithm can be executed. In Figure 15 we utilize the Euclidean representa-
tion to clearly demonstrate this result.

192



€61

Ioke-T eseq ®© wroly suonisue] jo sued rewndQ :¢1 omSny

e < g¥ss
L 8868
ee oo K_& 8L JOoX ‘00eg
P ->E e ° ® L 0900 a”@.—..
s o\¥ Py [ e¥¥G eves 686s eres
RS P vee &
& & nu‘ s MW“ JOo***0X (4224
~.. e po 10°0X .%M
& o w od 6w

PPV ‘PP ‘STPS VIS ‘SHYS PIPT
w  |‘SPPI ‘PPES ‘SPES ‘VVET ‘6¥eT ‘PPl

d “\\ ‘SPE1 ‘PPET ‘SVTT ‘VIEL ‘SPTI ‘PYIT
L X J 009°°00 Q”VH.—

20| o09+00
g4/ON| o0o+00| T78C

&L I | IPeT
NL|{ o09*02| ‘1828

20| 90900 | ZPPI
24/ON 02'00 | ‘ZPEI

004f 20000
SON| Joox| oWl

00000 (4441

2 E\i’p

2 X 88T
e ene,
QVQ.“I\ - l\“ - 2900 | «ze11
00'eL 2aX
ON‘SL o tgoN ON‘eL Iox

OO'ML| 90790 | ooy

\
AR
¢
[)
[}
[ ]

— . SHON'WL| 0920
R e S e 2 00| oxox
te _be e e éw Z@/ON| xo-ox| %eeI
: kY
L 8323
% o . 300D .MMM”
SE/ON ‘BL SEON ‘WL
*8..2* P SA/ON‘SL Jox| ‘mver
-y P ® SE/ON 0900 | ‘1881
/ _o\\ Z4/ON'EL | 1wer
i)

Z4/ON| 0902 | ‘1831

e

Z9/ON 2000 | 1321

SNUYALLVd SNOLLIANOD | WNWILLJO | SST00V




ACCESS | OPTIMUM | CONDITIONS PATTERNS
[ X J [ )
1121 |oo..0c e
All
oo o oo oo
1122 | 0o0...0c e
[ ] [ X J [ ] ¢
e e
1131 | 4...co
1141 A“. LA 4
ee oo
1221 |ro..or |cCC DL
«® oo
CcC
1231 | go..co {cCC ee ®
1241 ® oo
CC
1331 | go...co oo .
1841 S ee
1441 Al

Figure 14: Optimal Single Transition from a Base Layer

7 Correctness and Complexity of Algorithm

Theorem 7.1. The greedy layered Hamiltonian cycle algorithm correctly con-
structs a Hamiltonian cycle in a Hamiltonian permutation graph in O(n?) time.

Proof. By design, each HC-path is layered and is optimally constructed within its
vertex partition. By Theorem 5.3 there exists a LAYERED HAMILTONIAN CYCLE
in a Hamiltonian permutation graph. By the lemmas in Section 3.2, an optimal set
of transitions is obtained by choosing closest transitions according to the set of
greedy rules. From Lemma 6.2 it is established that well defined closest pairs of
transitions can be found from a base layer, assuming of course that there exist at
least two transitions. The cases discussed above cover all possible exit combina-
tions from both base and non-base layers. Therefore a LAYERED HAMILTONIAN
CYCLE is constructed in an optimal fashion, and the result follows.

The O(n?) time complexity arises from the search for transitions. From each
of atmost O(n) layers, at most 2 transitions must be determined. A transition can
be found by searching the layers above the exit layer. Each layer can be searched
in constant time, as was previously demonstrated. Thus a transition can be found
in O(n) time, and the complete set of transitions (the CYCLE FRAMEWORK) can
be constructed in O(n2) time. Finding a highest layering can be performed by
extracting decreasing subsequences from a defining permutation in a greedy fash-

194



Edgesonly to o
of exit layer

Lofwest except
for {ofe layer

—

M 4 Entry Lay
// / Empty except for g T

Lowest

Figure 15: Second Closest Transition is a Transition

195



ion. This can be performed in O(nlogn) time. Inserting the remaining vertices
into the CYCLE FRAMEWORK is trivial, involving O(n) time. a

8 Example

The example being presented is sufficiently long to represent a reasonable sam-
pling of cases. An illustration of the CYCLE FRAMEWORK is given in Figure 6.1
with separate illustrations of the constituent path frameworks in Figures 6.1 and
6.1. “Flattened” views of the layers are shown to the left of each Euclidean rep-
resentation. The layering for the constituent path frameworks are shown boxed
where they differ from the CYCLE FRAMEWORK. It can easily be determined that
the path frameworks are indeed layered, and thus the CYCLE FRAMEWORK also.

Let G(«) be a permutation graph with = = [6, §, 2, 10,4, 1, 12,9, 13,11, 8,
16, 18, 14, 15, 20, 3, 23,7, 26, 17, 24, 21, 27, 19, 28, 22, 25]. A highest layering
can be found by extracting in a greedy fashion maximal decreasing sequences
from #.

Working Layer: 11. The lowest layer, a base layer, consists of a single vertex.
The two closest transitions are to vertex 25 in layer 10 and vertex 22 in layer 9.
Case 1.1 for base layer transitions indicates the former for the trailing path (path
A) and the latter for the leading path (path B).

Working Layer: 10. Construction proceeds for the trailing path A. Vertices
25 and 22 have been claimed so the closest remaining transition is from vertex 27
to vertex 19 of layer 8, a new potential base. This is taken according to Case 3 for
non-base layer transitions. Path A becomes the leading path.

Working Layer: 9. Construction proceeds for the trailing path B. Several
transitions are possible to layer 8. Both paths will intersect layer 8, making it a
base layer. By the transition greedy rule A, the edge from external vertex 26 to
non-external vertex 21 is used according to Case 2 for non-base layer transitions.

Working Layer: 8. Two closest transitions are available to layer 7, making it
a base layer. Case 2.1 for base layer transitions applies, and the two transitions are
from vertex 19 to vertex 20 (path A) and from vertex 23 to vertex 17 (path B).

Working Layer: 7. The two closest transitions are to vertex 18 of layer 6
(trailing path B) and vertex 7 of layer 3 (leading path A). These are taken ac-
cording to Case 1.1 for base layer transitions.

Working Layer: 6. Construction proceeds for the trailing path B. The closest
transition to vertex 16 of layer 5 is taken by transition greedy rule C according to
Case 1 for non-base layer transitions.

Working Layer: 5. Construction continues for the trailing path B. The clos-
est transition to vertex 3 of layer 2, identifying a new potential base layer, is taken
by transition greedy rule C according to Case 3 for non-base layer transitions.
Path B becomes the leading path.
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Working Layer: 4. Construction proceeds for the trailing path A. The second
transition edge back from vertex 7 of layer 5 is arbitrary. Both external edges are
available as transitions to layer 3 vertices 9 and 12. Reserve both by transition
greedy rule B according to Case 1 for non-base layer transitions.

Working Layer: 3. Construction continues for the trailing path A. An exter-
nal edge from vertex 8 to vertex 10 of layer 2 is chosen by transition greedy rule
C according to Case 2 for non-base layer transitions. The reserved transitions
from layer 4 is forcibly resolved as vertex 11 to vertex 12. Layer 2 becomes a
base layer.

Working Layer: 2. Several transitions are possible to layer 1. Case 2.3 for
base layer transitions applies. Both external vertices are claimed, so only one can
be used as an exit vertex. Type RL, LR, CR, and CL transitions are sought
for an optimal pair. Layer 1 can be determined at this time to be a base layer, so
avoidance of one external vertex is not necessary. An optimal pair of transitions
from vertex 4 to vertex 5 and from vertex 10 to vertex 1.

The two path frameworks are complete, and any remaining vertices can be
inserted. In this limited example only vertices 2 and 6 of the highest layer are
attached. A LAYERED HAMILTONIAN CYCLE is identified as [28, 25, 27, 19, 20,
7,13,11,12,9,8,10, 1, 2,6, 5, 4, 3, 14, 16, 15, 18, 17, 23, 21, 26, 24, 22, 28].

9 Summary

Permutation graphs have been studied extensively in recent years. Of three rep-
resentations, we have employed the Euclidean representation to reveal structures
of a permutation graph that aid in the development of efficient algorithms. We
have demonstrated the power of the Euclidean representation for aiding the study
of permutation graphs. With the Euclidean representation a permutation graph
can partitioned into layers, each layer having a structure useful for determining
interlayer edges.

It was proved that a LAYERED HAMILTONIAN CYCLE exists in a Hamilto-
nian permutation graph by reconstructing an arbitrary existing Hamiltonian cycle.
An algorithm for constructing such a cycle is presented. Our approach consists
of finding a CYCLE FRAMEWORK of interlayer edges. Vertices not part of the
framework can be inserted in arbitrary sequence between the framework edges
entering and exiting their layers.

We have demonstrated the power of the Euclidean representation for aiding
the study of permutation graphs. The algorithm presented has an improved O(n?)
time complexity. (The previous best known algorithm for the superclass of cocom-
parability graphs had an O(n®) time complexity.) In the process, the structure of
a permutation graph has been more greatly elucidated. It is our belief that the
Euclidean representation will be of significant use in further work on permutation
graphs, especially for problems involving adjacency and distances.
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Appendix — GLHC Algorithm

{* Input: Highest Layering of Vertices *)
(* Output: Cycle Framework *)

{* Lowest layer is a Base layer *)
Working layer ¢+ Lowest layer
Repeat
Find two optimal transitions from Base (Working) layer
Potential Base layer ¢+ Higher transition layer
Increment Working layer
Repeat
Find optimal exit from Working layer
Case Transition vertex
Below Potential Base layer:
Finish transition
At Potential Base layer:
Finish transition
Above Potential Base layer:
Create new Potential Base layer
Finish old transition
Increment Working layer
Until Working layer is a Base layer
Until Highest layer is Working layer or Failure
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