Edge-Irreducible Quartic Graphs

Yasuyuki Tsukui
School of Business Administration
Senshu University
2-1-1 Higashi-Mita
Tamaku, Kawasaki
214-80 Japan
email: tsukui@isc.senshu-u.ac.jp

Dedicated to Professor Tatsuo Homma
on the occasion of his seventieth birthday

ABSTRACT. The edge-reduction of a simple regular graph is an
operation which removes two vertices and preserves the regular-
ity. It has played an important role in the study of cubic graphs
[6,7,8). Our main purpose is to study the structure of edge-
irreducible quartic graphs. All edge-irreducible quartic graphs
are determined from a constructive view point. Then a unique
decomposition theorem for edge-irreducible quartic graphs is
obtained.

1 Imtroduction

A graph G = (V, E), with vertex set V and edge set E, means a simple
(undirected) graph without loops and multi-edges. For avoiding confusion,
{u, ) is used to denote an edge with endpoints u and v. To the contrary,
{u,v} means a set of vertices « and v.

A graph is said to be r-regular if r edges are incident to each of its vertices.
For a graph G = (V, E) and a subset X C V, A(X) ={u eV - X|(u,v) €
E,v € X} is said to be an adjacent set of vertices for X. We write A(z)
instead of A({z}). (4) denotes the maximal subgraph of G with vertex set
A

For cubic (= 3-regular) graphs, an edge-reduction (H-reduction and X-

reduction in their papers) was introduced by Johnson([1,3] and Kétzig{2],
(Figure 1).
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Figure 1. Edge-reductions

Theorem JK. ([1][2]) K4 and K3 3 are the only edge-irreducible connected
cubic graphs.

Tsukui has introduced S- and X- transformations for 3-regular graphs
(Figure 2), and proved:

§ =
SRS ARE

Figure 2. S- and X- transformations

Theorem Ts. (Tsukui [6]) If G and H are connected cubic graphs with
the same order, then G can be obtained from H by a finite sequence of
S-transformations.

For quartic(=4-regular) graphs, Toida has shown a Johnson type theorem
as follows.

Theorem Td. (Toida [4]) Any connected quartic graph reduces to Ks by
two types of reductions (edge-reduction and vertex-reduction)(definition
11, 5.1).

In the study of cubic graphs ([1],[2],[4],(6],(7],[8]), ”edge-reduction” has
played an important role.

A purpose of this paper is to make clear the structure of connected edge-
irreducible quartic graphs. The main result is to classify all connected
edge-irreducible quartic graphs.

Theorem 1. If G is a connected edge-irreducible quartic graph, then G is a
finite combination of minimal 4-blocks of B = {Bg,1, Bs2, Bs 4, Br2,Bga}.

Further, the uniqueness of the above ” combination” is proved.

Theorem 2. For any connected edge-irreducible quartic graph G, all de-
composition of G into minimal 4-blocks, with respect to combination, are
unique up to order and 3Bg4 = 2Bg 4.
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In §2, neighbourhoods of irreducible edges are investigated. In §3, five
minimal 4-blocks are introduced and the concept of combinations is de-
fined for classifying the results of §2. §4 is devoted to proving the main
theorems. In the last section, the same techniques as in §4 are applied for
" vertex-irreducible” quartic graphs. Then a counter example is shown to
the theorem Td for 6-regular graphs. '

Definition 1.1. Let G = (V, E) be an r-regular graph and e = (u,v) € E.
Then, P = {(uu,v_,-l), veey (u,-;,,vjk), ey (m,,-_l,vj',-_l)} is said to be a
pairing for (u,v), if

(1) Aw) — {u} = {wir, .. ., viky -y Bir—1},
(2) A(u) - {v} = {'vﬁ, ooy Uskyerey ‘IJj,r_1}, and

(3) ik # win, vik # vin (K # k).
Further, a pairing P is said to be proper if

(4) wix #vje (k=1,2,...,7-1),
(8) {uik,vsx} # {win,vjn} (k # k), and
(6) (uir,vix) ¢ E (k=1,2,...,7r=1).
For a proper pairing P = {(uik,vjk)} for e = (u,v),
G/ (e; P) = (G — {w,v}) U {{wix, i}k = 1,2,...,7 - 1}

is said to be obtained from G by an edge-reduction of e = (u,v) by P.
G//(e; P) is an r-regular graph with order=ord.G — 2.

Definition 1.2. An edge e of an r-regular graph G is said to be edge-
reducible if there exists a proper pairing for e.

When all edges of an r-regular graph G are irreducible, we say that G
is irreducible. An edge e is said to be free if any pairing for e is a proper
pairing. We say that G is not free if G has no free edge.

Definition 1.8. A connected graph B is said to be an r-block, if
(1) deg(v) < r and deg(v) # +1( mod r) for any vertex v of B,
(2) there exists a vertex of deg # r, and

(8) for any r-regular graph G and any embedding of B into G, all edges
of B are edge-irreducible in G.
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Definition 1.4. Any vertex in an r-block of degree # r is called white.
If a connected graph K is obtained from r-blocks Bj,...,Bs(s > 1) by
identifying some white vertices, ui, u}, ..., uf, with 3, deg(ul) = r, then
K is an irreducible r-regular graph or an r-block. T"hen, K is called a
combination of By,...,B,(s21) (K=B1®---® B,).

An r-block B is minimal if B is not a combination of r-blocks By, ..., B,
(s=>2).

2 Quartic graph

Definition 2.1. Let e = (u,v) be an edge of a quartic graph G = (V, E)
and Ky a complete graph with vertex set V. A set O(e) of edges of E(Ky)
is called an obstruction (set) for an edge e in G, if O(e) C E(G) implies
that e is edge-irreducible in G. An obstruction O(e) for an edge e is minimal
if any proper subset of O(e) is not an obstruction for e.

Suppose that e = (u,v) is an irreducible edge in a quartic graph G =
(V,E). Then 3 < #A({x,v}) <6.
2.2. For each case of # A({u,v}), we show all possible edge-reductions and
minimal obstructions for e.

case #3 (#A({u,v}) = 3) In this case only one reduction (one pairing)
is possible (Figure 3-1). Hence there exist three obstructions for e which
are essentially the same (Figure 3-2).

t u

Figure 3-1. Case #3

t u t u t u
w v w v w v
#3-1) #3-2) (#3-3)

Figure 3-2. Minimal obstructions for #3

case #4 (#A({u,v}) = 4) Two edge-reductions can be obtained (Figure
4-1). Taking account of symmetry, there are three minimal obstructions for
e (Figure 4-2).
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y w v y wo v y
(#4-2) (#4-3)

Figure 4-2. Minimal obstructions for #4

(#4-1)

case #5 (#A({u,v}) = 5) We have four reduced graphs (Figure 5-
1). There are 11 minimal obstructions, but because of symmetry we need
consider only 4 minimal obstructions (Figure 5-2).

Figure 5-1. Case #5

t u X t u x t u o ox t u X
~X B
v (#5-‘{) d ¥ (#5‘-'2) ¥ v (#S-;) d v (#SY4) Y

Figure 5-2. Minimal obstructions for #5
case #86 (#A({u,v}) = 6) Since for this case any pairing may be a proper

pairing, there are 6 reductions and 15(= 3 x 243 x 3) minimal obstructions.
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But it is sufficient for us to consider just two minimal obstructions by
symmetry (Figure 6).

[ s
t x t X t
w . y w Vz y w
#6-1) (#6-2)
Figure 6. Minimal obstructions for #6

3 4-blocks

Example 8.1 There exist two irreducible graphs with order < 6, K5 and
K + Cj, which are not combinations of two or more blocks (Figure 7).

FEach graph of B = {36,1,36,2, Bs'4,B7'2,Bs,4} is a minimal 4-block
(Figure 8). K5 is a combination of B2, and K2 + C; is a combination of
B,z which is also a combination of Bg 4.

T Figure 7. Irreducible quartic graphs of order < 8

Bs 1 Bs,2 Bg 4 B, Bg 4
Figure 8. Five minimal 4-blocks

Lemma 8.2. Let G = (V, E) be an irreducible quartic graph having K,
as a subgraph and ord.G = #V > 6. Then, there exists a block Bg, or
Bs,2, in G, which contains Kj.

Proof: Let U = {t,u,v,w} C V and K, be a complete graph in G with
V(Ky) = U (Figure 9). Hence 1 < #A(U) < 4. If #A(U) = 1 then
G = K. Since #A(U) > 3 implies G is reducible, #A(U) = 2. Let
A(U) = {z,y} so that

206



1) z~t,z~w,y~u,y~v,or
2) z~t,z~w,z~u,y~v (Figure 9).

(1) implies that Bg o contains K4 in G. For the case (2), since G is irre-
ducible, £ ~ y. Hence, there exists Bg; in G which contains Kj.

t u X t u t u t u

X y x LV‘

w oV w v w v w v
Figure 9. Blocks containing Ky

Lemma 38.3. Let G = (V, E) be an irreducible quartic graph having K3+
K, as a subgraph and ord.G > 6. Then, there exists a block Bg,1 or Bg,
in G, which contains K3 + K».

Proof: Let K3+ K> be a subgraph of G with V(K3 + K3) = {t,u,v, w,z}
(Figure 3-1). From case #3 there exists an edge of F = {{t, w), (¢, z), (w, z)}
inG, 1 <#(FNE) <3 I#(FNE) = 3, it follows that G = K.
Hence, as in lemma 3.2, there exists Bg 2 or Bg,1, respectively, according as
#(F N E) =1 or 2, which contains K3 + Kj.

Lemma 3.4. Let G = (V, E) be an irreducible quartic graph having K; +
Cy as a subgraph and ord.G > 7. Hence, there exists a block Bz2, in G
which contains K, + Cj.

t . u u
Vel Y z y z
y2
w v w v w v
Figure 10. Blocks containig K; + Cy

Proof: Let K+ Cy be a subgraph of G with V(K14 Cy) = {s,t,u,v,w} =
U as in Figure 10. 1 < #A(U) < 4. #A(U) = 1 implies G = K2 + C; with
ord.G = 6 < 7. As in the proof of lemma 3.2, we may assume #A(U) = 2
and there are two cases as in Figure 10. For the center case of Figure 10,
{(»1, 8), (2, w), (w,u)} is a proper pairing for (y,t). The last case shows
Bza.

Lemma 3.5. Let G = (V, E) be an irreducible quartic graph having Ko+
Cs — K3 as a subgraph. Then G 22 Ko+ Cy.
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Figure 11. Blocks containig K + Cs — K3

Proof: Let K3 + C4 — K3 be a subgraph of G with V(K2 + C; — K3) =
{r,s,t,u,v,w} = U, as in Figure 11. If #A(U) = 0 then G = K3 +
C;. Suppose now #A(U) # 0, then there exists a vertex z € V = U
with 1 < #(A(x)NU) < 3. Let w ~ z. If #(A(z)NU) = 1, (w,z) is
obviously free. Suppose 2 < #(A(z) NU) < 3 and A(z) = {w,n,y,z}.
Then {(v,r}, (w’,2), (u,y)} is a proper pairing for (w,z), even if r = w’
and/or t = y, where A(w) = {u,v,z,w’}. Hence G = K, + C;..

Lemma 38.8. Let G = (V, E) be an irreducible quartic graph having K +
K3 as a subgraph and ord.G > 7. Then there exists a block Bs,1, Bs,2, or
By, in G, which contains K3 + K.

Figure 12. Blocks containing K2 + K>

Proof: Let K2+ K> be a subgraph of G with V(Ko +K3) = {t,u,v,w} =U
as in Figure 12. If £ ~ w or z = y, the argument of lemma 3.2 or lemma
3.3 applies, and K2 + K is contained in Bg,; or Bg 2. Hence suppose that
t 4 w and = # y. From case #4, only #4-2 and #4-3 can occur (Figure
4-2). In case #4-2 G is isomorphic to K2 + Cy — K3. For the case #4-3
it has K; + C, as a subgraph. This completes the proof by lemma 3.4 and
lemma 3.5.

Lemma 38.7. Let G = (V, E) be an irreducible quartic graph having K3
as a subgraph and ord.G > 7 then K3 is contained in one of Bg,, Bg2 and
B7'2.
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u
Vi Vv
W2
\ £ 1
Figure 13

Proof: Let U = {u,v,w} and K3 = Ky, then 1 < #A(U) < 6. Suppose
#A(U) = 6 as in Figure 13. Since (u,v) is irreducible and #A(U) = 6, it
follows from #5 that u; ~ v;(i,5 = 1,2) (#5-4).

From the same observation for (v, w) and (w, u), v; ~ wj,w; ~ u; for any
i,j = 1,2. This contradicts G being quartic. Hence, #A(U) < 6 and there
exists K2 + K2 which contains K3. The proof is completed by lemma 3.6.

4 Proof of the theorems

Theorem 4.1. Let G = (V,E) be an irreducible quartic graph with
ordG > 7. For any edge e of G, there exists a minimal block B in B,
as a subgraph, which containes e.

Proof: Let e = (u,v) be an edge of G. If #A({(u,v)) < 5, e is contained in
some K3. From lemma 3.7, ¢ is contained in one of Bs,1, Bg,2, and By 3.
Suppose now #A({u,v}) = 6. Since e is irreducible, there is a mini-
mal obstruction which is #6-1 or #6-2 in Figure 6. For the case #6-1,
({t, u,v,w,Yy, z}) = BG,4°
Now suppose #6-2 occurs (Figure 14). Let U = {¢,u,v,w, z,y}.

Figure 14.

(4.1.1 assertion) There exists no K3 containing (s, u).

Suppose now that there exists K3 which contains (s, u), and say s ~ z.
By lemma 3.7 K3 = K(,u ,z} is contained in a minimal block B, which is
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one of Bs,1, Bs2 and Br2. In any case, the number of white vertices in
{s,u,z} is at most one. If not all of {s,u,z} are white, there exists K, or
K; + C4 which contains K3. This is a contradiction.

If there exists a white vertex in {s,u,z}, then B = Bgs. If s is a white
vertex then u ~ y or u ~ w. If u (or z) is a white vertex, w ~ y (or t ~ v).
These contradict G being quartic.

(4.1.2 assertion) If #(A(s)NU) > 2 then e = (u,v) is contained in Bs4.

Suppose s ~ ¥, then {(u,v) is contained in {{s,t,u,v,x,y}) = B4 as in
Figure 14.

(4.1.8) Finally, suppose that #(A(s)NU) = 1.

Let A(8) = {u,s1,82,83} (the left case of Figure 14). Since (s,u) is
irreducible, say, 8; ~ ¢, 81 ~ z, and s ~ v. Then ({s, 51,%,u,v,2}) = Bg 4.

Hence, if #A({u,v}) = 6, e = (u,v) is in Bg 4. This completes the proof.

Corollary 4.2. Let K = (V, E) be a 4-block. For any edge e of K, there
exists a manimal block B € B, as a subgraph of K, which contains e.

Proof: For an edge which is not incident to a white vertex, the proof is
the same as that of Theorem 4.1. It is noted that there is no edge both of
whose end points are white.

Now suppose that e = (u,v) € E and one of u and v is a white vertex
in K. Since u or v is white, #A({u,v)) = 3 or 4. Hence only (#5-1)
without {w,y} and (#6-1) without {s,z} can occur (Figure 5-2 and Figure
6). For those cases Bg2 and Bg 4 contain e according as #A({u,v}) = 3
and #A({u,v}) =4.

Definition 4.3. Let G = (V, E) be an edge-irreducible quartic graph or a
4-block. For any edge e of G, by the proof of (4.1) and (4.2), there exists
a subgraph B. which contains e and is isomorphic to one of B — {Bsg4}.
Since Bg 4 is a subgraph of Bg, and of Bq2, we define the above B, as
follows.

If there are two minimal block subgraphs B; and By which contain e and
B, is a proper subgraph of Bj, then we choose B3 as B.. Generally, for
the case B, 2 Bg 4, a subgraph B, is not determined uniquely.

Let B : E — (B — {Bss}) be a map so that B(e) is isomorphic to a
maximal subgraph B. of G which contains e, in the above sense.

Then, the following holds.

Proposition 4.4. Let G = (V, E) be an edge-irreducible quartic graph or
a 4-block. Suppose e and f are different edges of G, where f(e) # Be -
Then B, = By, or B. N By consists of at most two vertices.

Proof: Let W(B,) denote the set of all white vertices of a minimal block
subgraph B.. Since B, 2 B(e) # Bsa, #W(B.) < 2. If W(B.) = W(By)
then B, = By or B, N By = W(B,) and the proposition is true.
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Suppose now B. # By and B. N By # @ for edges e and f of G. It can
not happen that W(B,) C V(B;) — W(B;). We may assume that a white
vertex, say u, of B, is in V(By) — W(By). Hence By — {u} is disconnected.
This is a contradiction to the fact that any minimal 4-block is 2-connected.

Example 4.5 Let Vo, = {vp,v1,...,%n—1} be a set, and let
Fana = (Van, {(:,%i41), (Unti, Untit1), (Vi Vntit1), (Vnti, vig1)i = 0,. .. ,n—2})

be a 4-block with 2n vertices (n > 3).

Denote by Sani1,2 the 4-block obtained from Fy(nyyy4 by identifying
Yp = v,._I(n >3).

Let Ry, be the irreducible quartic graph obtained from Fyny1y,4 by
identifying vo = vn_; and vp = von—1. It is noted that Fg4=Bgy4,F34 =
Bs4 and S72 = Br,s. Fana(n 2 5), Som+1,2(m 2> 4) and Rom(m > 4) are
combinations of Bg4’s and Bg4’s, as follows.

(n—1)

Bs,4 (n:o0dd >3)
Fopa= 2
2n,4 (n - 4)
) Bs4a®Bss (n:even>4)
(m —3) Bsa®Bgy (m:odd >5)
Som+12=19 m 2
536,4 (m : even > 4)
(m —3) Bsa®Bgg (m:odd>5)
Rom=1{ m 2
—536,4 (m: even > 4)

Definition 4.6. Let G = (V, E) be an irreducible quartic graph or a
4-block. We will define a map

B* : E — {B¢,1, Bs 2, Fan 4, Sont1,2, Ronln > 3}

as follows.

For any edge e of G, B(e) € {Bs,1, Bs,2, Fon 4, S2nt1,2ln = 3} by (4.3),
since e is irreducible. Let

B(e), if B(e) € {Bs,1, Bs,2, S7,2},

G, if G & Ry, for somen > 3,

San+1,2, if some subgraph San 4,2 contains e,

Fop 4, if some subgraph Fay, 4 contains e with maximal n > 3.

B*(e) =

B denotes a subgraph of G containing e and B2 =2 8*(e).
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Proposition 4.7. (1) For any different edges e and f of G, in (4.6),
B = B} or E(B;)N E(B}) =0,
(2) for any edge f of B;, By = B;.

Proposition 4.8. Let G = (V, E) be a 4-block with ord.G > 7 which
is not minimal. Then there exist a block B of B and blocks K; so that
G=BoK ®---®K,(s2>1).

Proof: Since G is a 4-block, there exists a vertex, say u, of degree 2.
Let A(u) = {u1,u2}. From the fact that ord.G > 7, B = By u,) % Bs,1.
If B = Bga or B = By, let v be another white vertex of B. Hence we
have G = B® K, where K = G — {V(B) — {v}} — {u} and BN K = {v}.
Let f be an edge incident to v in K. By (4.3) there is a minimal block By
so that By N B = {v}. Hence K is a 4-block with ord. K < ord.G — 5.
Suppose now B = By u,) = Bg4. By (4.6) B* = By y;) = Sony1,2 OF
B* = Fpy 4 for some n > 3. Since G is not minimal block, n > 5. Hence
G=BoK,®---&K,, where B2 Bg 4 or B= Bgg4.

Theorem 1. Let G be a connected irreducible quartic graph with ord.G >
7. Then G is a finite combination of minimal 4-blocks of B = {Bs,1, Bs,2,
Bg,4,Bz2,Bs 4}

Proof: If B(e) = Bg 4 for any edge e of G, then G = Ry, for some k > 3,
or *(e) = Sant1,2(n > 4) or B*(e) = Fan4(n > 5). Hence, in any case, G
is a combination of Bg4’s and Bg 4’s.

Suppose there exists an edge e of G so that B(e) # Bg 4. Now we can see
that G = B, ® K, where K = G — {V(B.) — W(B.)} is a 4-block. Hence
by (4.8) G is a combination of elements of B.

Now the following is a corollary of the above theorem.

Theorem 2. For any connected edge-irreducible quartic graph G, all de-
compositions of G into minimal 4-blocks, with respect to combination, are
unique up to order and 3Bs 4 = 2Bsg 4.

Theorem 8. Let G = (V, E) be a connected reducible quartic graph. Then
there exists a finite sequence (Go, G1, . ..,Gnr) of connected quartic graphs,
in which G; edge-reduces to Gi4+1, (i=0,1,...,n—1), Go =G and G,, is
edge-irreducible.

Proof: It is sufficient to prove the theorem that if G is connected and
reducible then there exists (another) edge e whose edge-reduction preserves
connectedness.

Suppose G = (V, E) is reducible connected quartic graph, and reduction
of an edge e = {u,v) causes G to be disconnected. Assume that

G1UG; =Gfe= (G - {u,v}) U {{u1,v1), (uz, v2), (u3, v3)}
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is a disjoint union of two connected quartic graphs G; and Ga. If #A({u, v})
< 4 then G//e is connected.

X1
S O S 3
s\.": s
G .
Figure 15

case A (F#A({u,v}) = 5)

We can suppose that Figure 15 is the case without loss of generality. Let
G1 D {st,w}, G2 D {z,y} and A(z) = {u,z1,5,z3} (as in Figure 15).
Since G is connected and quartic, there exists a path connecting y and
one of z1,z2 and z3, say 1, in G2 — (z,y). Hence {(z1,t), (2, 3), (z3,v)}
is a proper pairing for (u,z) in G. Obviously G/(u, z) is connected.

S X1
L.le).X Xa
X3
w y
z

Figure 186.

case B (#A((u, v)) = 6)

We may assume that P = {(¢,w), (3, 2), (z,y)} is a proper pairing for
e = (u,v), G(t,w) UG(s,2) U G(z,y) = G/fe; P and G(z,y), at least, is
disconnected from the other part. Where, G(t,w) is a connected component
containing ¢ and w, and we may assume G(t,w) = G(s,z) and A(z) =
{u,z1,22,z3} in G (Figure 16).

By the same argument as in case A,

(1) ¢ and w are connected by a path in G /e — (¢, w),
(2) s and z are connected by a path in G Je — (s, z), as in Figure 16 (left).
Hence P’ = {(z1,1), (3, 8), (z3,v)} is a proper pairing for (u,z) and

G//(u,v); P’ is connected as in Figure 16 (right). This completes the proof
of the theorem.

213



5 v-reduction

Definition 5.1. Let G = (V,E) be a 2n-regular graph and A(v) =
{v1,v2,...,v2q} be the adjacent set of a vertex v of G. P(v) = {{vi1,v51},
< -+»{Vin, vjn}} is said to be an unordered pairing for v if {vi1, ..., %n,vj1,
...,Ujn} = A(v) and to be proper if v and vji are not adjacent in G,
(k=12,...,n).

For a proper unordered pairing P(v) for v,

G/ (v; P) = {G — v} U {{va1, w51}, .., (Win, Ujn) H= G [0)

is called a vertex-reduction (abbreviated by v-reduction) of G at v along
P.

Definition 5.2. A connected graph B is a 4-v-block, if
(1) 3 < deg(v) <4, for any vertex v of B,
(2) there exists a vertex of degree 3, and
(3) for any quartic graph G and any embedding of B into G, all vertices

of B are vertex-irreducible in G.

Definition 5.3. If a connected graph K is obtained from 4-v-blocks B, . ..,
B,(s > 2) by adding edges which join vertices of degree 3, thenK is a vertex-
irreducible quartic graph or a 4-v-block. Then K is called a v-combination
of By,...,B,. A 4-v-block B is minimal if B can not be a v-combination
of n > 2 v-blocks.

Example 5.4 Bs 2 and By 4, in Figure 17, are minimal 4-v-blocks.

Figure 17. Minimal 4-v-blocks Bs 2 and B4 4

The following is obtained in the same way as in section 4.

Proposition 5.5. Any v-irreducible connected quartic graph, other than
K3, is a v-combination of finite number of copies of Bs2 and B, 4.

Proposition 5.6. There are infinitely many connected regular graphs
which are edge-irreducible and vertex-irreducible.
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Proposition 5.6 is shown by a 6-regular graph in Figure 18, which was
made by a student H. Takasu in 1991.

Figure 18. An edge-irreducible and vertex-irreducible 6-regular graph

References

(1] E.L. Johnson, A proof of the four-coloring of edges of a regular three-
degree graph, O. R. C. 63-28(R.R.) Mimeographed rep., Operations
Research Center, Univ. of California, 1963.

[2] A.Kétzig, Regular connected trivalent graphs without non-trivial cuts
of cardinality 3, Acta. Fac. Rerium Natur. Univ. Comenian. Math.
Publ. 21 (1968), 1-14.

[3] O. Ore, The four-color Problem, Academic Press, New York, 1967.

[4] S. Toida, Properties of a planar cubic graph, J. Franklin Inst. 295
(1973), 165-174.

[5] S. Toida, Construction of quartic Graphs, J. Combin. Theory B. 16
(1974), 124-133.

[6] Y. Tsukui, Transformations of cubic graphs, J. Franklin Inst. 333
(1996), 565-575.

[7} Y. Tsukui, Transformations of edge-coloured cubic graphs, Discrete
Math. (to appear).

[8] Y. Tsukui, Transformations of bipartite cubic graphs, Kobe J. Math.
12 (1995), 9-30.

215



