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ABSTRACT. We give a graph theoretic analogue of the cele-

brated Faber-Krahn inequality, that is, the first eigenvalue Ay (2)
of the Dirichlet problem for a bounded domain 2 in the Eu-
clidean space R™ satisfies, A1(R2) > A1(B) if vol(2) =vol(B),
and equality holds only when € is a ball B. The first eigen-
value A1 (G) of the Dirichlet problem of a graph G = (V, E) with
boundary satisfies, if the number of edges equals m, A\, (G) >
A1(Lm), and equality holds only when G is the linear graph L.

1 Introduction

In this paper, we give a discrete analogue of the celebrated Faber-Krahn
inequality (see [1]) for the first eigenvalue of the Dirichlet eigenvalue pro-
belm for a bounded domain in the Euclidean space. Let A;(f2) be the first
eigenvalue of the Dirichlet eigenvalue problem for a given bounded domain
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Q in the n-dimensional Euclidean space R™:

Au=Xu (on Q)
u=90 (on 692).

The Faber-Krahn inequality says that if the volume of Q is equal to the one
of a ball B in R™, then

() 2 M(B),
and equality holds only when  is a ball B.

In graph theory, one can also introduce a graph with boundary, G =
(V,E) = (VU 8V, EUJE) (see [4 and Sect. 2) and consider the Dirichlet
eigenvalue problem of the combinatorial Laplacian A of G:

Au=Xu (onV)
u=0 (on 8V).

Let us denote the eigenvalues of this problem by
0 < A(G) < 22(G) < -+ < M(G),

where k = #(V) is the number of vertices in V (see for example, Lemma
1.9in [3]).

Now we give here an example: we denote by white (resp. black) circles,
vertices in V (resp. dV) and solid (resp. dotted) lines, edges in E (resp.
8E). Ly, will stands for the graph in Figure 1.
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Figure 1

Our main result is stated as follows.

Theorem 1.1. Let G = (V, E) = (V U8V, EUJE) be a connected graph
with boundary. Assume that the number of edges satisfies #(E) = #(E U
8E) =m. Then
AI(G) 2 Al(Lm.)x

and equality holds if and only if G is equal to Ly,.

In our previous paper [5], we treated a graph with boundary satisfying the
additional condition that any vertex which has exactly one edge belongs to
V. In this case, the lower bound of the first eigenvalue is achieved by the

graph of kite type illustrated in Figure 2, and can be proved alternatively
by the new method of this paper.
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Figure 2

2 Preliminaries
In this section, we collect notions and results following [3] or [4] that will
be used in the sequel.

A graph G = (V, E) is a collection of the set V' of vertices and the set E
of edges connecting two vertices. We always assume that G is connected
in this paper. A graph G = (V,E) = (V U 8V, E U 8E) is the one with
boundary by definition (see for instance (3], [4], [6]), i.e.,

(1) each edge in E has both end vertices in V and vice versa, and

(2) each edge in AE has exactly one end vertex in V and one in 8V, and
vice versa.

We call vertices in V (resp. 8V) the interior (resp. boundary) vertices, and
similarly for the edges. The combinatorial Laplacian A acting on the space
C(V) of real-valued functions on V is by definition

Af(z) = f(z) - f@ S f@), zeV, fecw),

y~z

where y ~ z means that = and y are connected by an edge in E = EUJE,
and for each z € V = V U 8V, m(z) is its degree, i.e., the number of
edges in E = E U OE incident to z. Let Cy(V) be the subspace of C(V)
consisting of functions vanishing on 8V. A real number ) is an eigenvalue
of A on Cyp(V) if there exists a non-vanishing function f € Cp(V) (called
an eigenfunction) satisfying Af = Af. This means that f and A satisfy the
Dirichlet eigenvalue problem:

Af=MXf (onV),
f=0 (on 8V).

The eigenvalues are labelled as in Sect. 1.

Here we should mention the relation between our Laplacian A and the
one L in a recent book by Chung (cf. p. 3, [2]): let D be the diagonal
matrix with the (v, v)-th entry having value m(v), v € V, i.e.,

Df(z)=m(z)f(z), zeV, feC(V).
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Then it holds that
A=D"Y2cDpV?

Therefore, both the Dirichlet problems have the same eigenvalues (see Sect.
8.4 in [2]).

We state here for later use, the well-known characterization of the eigen-
values by the Rayleigh quotient (see [4] for instance) which is defined by
(AL S) _ (dfdf)

5 &N’

where the inner products are given by

(fu, f2) =) mlz) fil@)fa(z), fr, f2 € Co(V),

z€EV

R(f) =

0 $ f € CO(V):

and

(¢1: ¢2) = Z 11)1(6)1/)2(3),

ecE

for two real valued functions 1, ¥ on E. Moreover, for f € Co(V), df is
a function on E defined by

df (e) = f(t(e)) — f(o(e)), e=(oe),t(e)) € E,

where an orientation on F is fixed once in advance and o(e) (resp. t(e)) is
the origin (resp. the terminal) of each edge e. It is well-known (cf. Lemma
1.9 in [3], Theorem 2.3 in [4]) that

Lemma 2.1. The k-th eigenvalue of the Dirichlet eigenvalue problem for
a graph G = (V, E) = (VU 8V, EU 9E) with boundary, is given by

M(G) = inf {R(f); 02 f € Co(V), (i) =0(Vi=1,---,k—1)},

where ¢; is the i-th eigenfunction of the Dirichlet eigenvalue problem.

Moreover, the first eigenfunction ¢, is positive every where on V or
negative everywhereon V.

Example 2.2: The first eigenvalue of the Dirichlet problem for the graph
of type L., is calculated as follows: A\j(L1) = 1, M(L2) = 1 —1/V2,
M(L3) = 1 —+/3/2. In general, A\j(Ly) is a least positive zero of the
equation P,(\) = 0, where P,(])) is a polynomial in X of order n given by

Pa) = 0= 1)@uX) - 3Qn1() (n22),

and

n—1

@M =1] (A— 1+ cos (’7”)) n>2); Q:i(\)=0.

=1
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In the sequel, we always take the sign of the first eigenfunction ¢; is
positive. Then

Lemma 2.8. The first eigenfunction ¢,(z), z € Vi, of the graph of type
L, is strictly monotone increasing, that is,

P1()) <) 1<i<j<m+1).

Proof: We first show ¢, attains a maximum, say M, at m 4+ 1. Indeed, if
not, there exists an integer i with 1 < ¢ < m + 1 satisfying ¢1(3) = M >
¢1(m + 1). Define a function g on V_ by

9(k) = {M, otherwise,

for k € Vi_,. Then we have

(g:g) > (‘Pla gol)r (dg’ dg) < (dlpls d‘Pl):

hence we obtain
R(g) < R(1) = A1(Lm),
which contradicts Lemma 2.1.

Second, we show that ; () is never a local convex functionin z € V.
Assume that ¢ is strictly locally convex, that is, there exist two integers
1<i<i+1<j<m+1 such that ¢; can be extended continuously to
a strictly convex function on the interval [4, j] in the real line R. Taking a
linear function & on R satisfying k(i) = ¢1(Z) and h(j) = ¢1(j), define a
test function f on Vi by

h(k), i<k<j,
p1(k), otherwise,

f(k)={

for k € Vz,,,. Then we have immediately

(f: f) > (‘Pl: ‘Pl)v (df: df) < (d‘Ply dﬂol):
so that
R(f) < R(p1) = AM1(Lm),

which contradicts Lemma 2.1.

Together with the fact that ¢, attains a maximum at m + 1, we have, in
particular, that ¢1(3) < p1(j) for1 <i<j<m+1.

Lastly, we show that ¢ is strict increasing. In order to see this, we only
have to see that the following two cases never occur:
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(1) there exists ¢ such that 1 < { <m and
p1(i) =p1(i+1) <p(i+2),
(2) or there exists ¢ such that 1 <7 <m and
p1(d) =1 +1)=---=p1(m+1).

The first case (1) never occurs, because if 50, ¢; is locally convex. Assume
that the second case occurs. Then we take for a sufficiently small ¢ > 0,
the following test function:

_ [eut), (1<k<m),
fe(k)— {cpl(m+l)+€, (k=m+1).

Then we have

(fer fe) = (01, 1) + 2601 (m + 1) + €2,
and
(dfe, df<) = (dipy, dip1) + €.

We denote the Rayleigh quotient of f, by Q(e) for (¢ > 0): Q(e) = R(fe).
Then

Q(0) = R(p1) = M(Lm),

and its derivative in ¢ satisfies

/() = Zleren) +4pi(m + 1) — 2eldpy, dpy) — 2p1(m + 1)(dipy, dipn)
= {(p1, 1) + 2e01(m + 1) + €2)2

<0,

for all sufficiently small € > 0, since y1(m + 1)(dp1,dp;) > 0. Therefore,
there exists € > 0 satisfying

R(e) < R(0) = A1(Lm),
which is a contradiction. a

3 Plantation Technique

To show Theorem 1.1, we use the plantation technique which is defined as
follows:

Definition 3.1: (1) The plantation is the method to produce the graph of
type L, from any graph with boundary. Let G = (V, E) = (VUédV, EUJE)
be a graph with boundary. Let ¢ be the first eigenfunction of the Dirichlet
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eigenvalue problem for G = (V, E). Let p be a vertex of G at which ¢
attains a maximum, say M. Taking a boundary vertex g, let c be a geodesic
connecting ¢ and p. Recall that a geodesic in a graph G is by definition
a shortest path connecting two vertices and a geodesic passes only once
through each vertex of the geodesic.

Now the plantation is an operation of choosing the geodesic c, cutting
each edge in E — c and pasting it successively in a row from the vertex p,
and adding new vertices if necessary. Then we obtain the graph of type L,
with m = #(E) = #(E U JE). Let us denote by P a plantation from G to
L,,. See Figure 3.

q .----JP——I
c €2 _—
> -—- -0 P

%4 LS

Figure 3

(2) Using the plantation P, for the eigenfunction ¢, of G, let us define
the function & on L,, by

~ . Spl(x)) rec
so(x)—{M, rde,

and the multi-valued function ®; on L., by

21(P(z)) =p1(z), and @1(P(y)) = 1(y),

for each e = (z,y) € E with end vertices z and y, where P is the plantation
in (1) obtaining L,, from G = (V, E).

Then we obtain:
Lemma 3.2. We have:

(®1,21)1,. = (1, 01)e,  (d®1,dB1)L,,. = (dip1,dip1)c (1)

(‘-ﬁt ‘;)Lm 2 (Ql: Ql)l«m (415, d‘;")bm < (th dél)Lm (2)

223



Proof: For (1), the proof is obtained by

@L81)L. = ., (B1(PE)+(2:1(P®))*)

e=(z,y)EE

=) m(z)ps(z)?
zeV

= (‘Pla ‘PI)C’

and

(d®1,d®1)L,, = ) d®1(P(e)), d®1(P(e))
cEE

=" doi(e)des(e)

ee B

= (dip1,dyp1)c.

For (2), we have

(@1,01)1, = Y (21(P()*+21(P®)))

e=(z,y)EE

=Y 2p1(2)*+ Y 20 +ei(m+1)?
z€C z¢e, P(z)#m+1

<Y 2@+ ), eMP4M?
z€e z¢e, P(z)#m+1

= (5’ @Lm ‘

The last inequality follows from the fact that § equals the constant M on
Ly, — ¢ and @ coincides with @; on c. o

4 Proof of the Main Theorem

We are now in position to give a proof of Theorem 1.1.
By Lemma 3.2, we have

_ (dp1,dp1)e
MO = ea

_ (d®y,d®y)s,,

T (@1, %)L,

> (d$: d@bm

- ("ﬁ, ‘;)Lm

2 )‘I(Lm)a
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which is the desired inequality.
Furthermore, assume that G = (V, E) is not L,,. In order to show that
A(G) > A1(Ly), we only have to see

M(G) > ‘%‘%“’% > M(Lm).

By the assumption that G is not L,,, there exists a vertex in G — c.
Therefore, § is not strictly increasing by its construction, i.e., there ex-
ists 1 < i < m such that

PA)=g(i+1)=---=p(m+1).
By Lemma 2.3, & is never the first eigenfunction of L,,. Hence, we obtain

G > i

‘We obtain Theorem 1.1. (]
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