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ABSTRACT. Let A = (ai;) be an m X n nonnegative matrix,
with row-sums r; and column-sums c¢;. We show that

mnY " aif(ra)fle) 2 Y ay ) fr) ) fles)
] i s i

providing the function f meets certain conditions. When f is
the identity function this inequality is one proven by Atkinson,
Watterson and Moran in 1960. We also prove another inequal-
ity, of similar type, that refines a result of Ajtai, Komlés and
Szemerédi (1981).

1 Introduction

Let A = (a;i;) be an m x n matrix with nonnegative real entries. In what
follows, r; will always denote the ith row-sum of A, and c¢; and the jth
column-sum. Also o(A) is the sum of all the entries of A. Please note that

o(A)=) a;=) rn=) ¢.
i,j i F]
Atkinson, Watterson and Moran [2] have proved that
mny_ ayric; > o(A)>. 1)
i
For a recent application of inequality (1), see [3]. Here we give a general-
ization of (1), as well as a variant of it. The generalization is as follows.
Theorem 1. Let f : [0,00) — [0,00) be a differentiable function such

that f(0) =0, f is strictly increasing and concave, and sz’: is increasing.
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Then for every m x n nonnegative matrix A,

mn Y e f(ri)fles) 2 o(A) D f(re) Y Flcy)- (@)
i,J i J

A class of functions satisfying all of the hypotheses of Theorem 1 is f(z) =
zt, where 0 <t < 1. When t =1 we recover (1). More generally, positive
linear combination of the preceding functions, for example f(z) = 2z° + z*
with 0 < s <1 and 0 < ¢ < 1, are admissible. On the other hand, the
restrictions imposed on f by Theorem 1 seem quite severe. Is it possible to
classify such functions f?7

It is of interest to look for conditions on f that reverse the inequality in
(2). (See below for motivation.) One such set of conditions is given by the
following theorem, which deals only with the case of symmetric matrices.

Theorem 2. Let f : [0,00) — [0,00) be a differentiable functions such that
f is decreasing and convex, and z f(z)f'(z) is strictly decreasing. Then for
any n X n symmetric nonnegative matrix A ,

n? " ey f(ri)f(rs) < o(A)Q_ £(ri))>. (3)
[X ] i

Our motivation for Theorem 2 is the following. Let G be an undirected
graph on the vertex-set V and edge-set E. Ajtai, Komlés and Szemerédi
([1], Lemma 5) have shown that
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providing 0 <t < TOL&’ where | V |= n, d; is the degree of vertex ¢ (number
of edges incident to i) and A is the maximum degree of G. Now let A be
the adjacency matrix of G : a;; = 1 if ij € E, a;; = 0 otherwise. Since
o(A) =2 | E |, one easily sees that (4) is equivalent to

n?Y " ayeTt e < o(A)(D_ e ) . (5)
i3 %

Now (5) follows from (3), by taking f(z) = e~**. A simple calculation shows
that in fa.ct (4) is valid (i.e. the hypotheses of Theorem 2 are satisfied) for
0<t< —, which slightly improves the result of Ajtai et al. A more
general example of a function satisfying the hypotheses of Theorem 2is
f(z) = exp(—tz™) where t > 0,0 <r<land 0 <z < (2t)-*. But as
in Theorem 1, the restrictions on f given by Theorem 2 are severe. Is it
possible to classify such functions?

252



2 The perturbation argument

We will prove Theorem 2 by adapting the method of Atkinson et al. [1].
Since the proof of Theorem 1 is similar, we will omit it.

First of all, note that (3) is true (with equality) if all of the r; are equal.
Now define @ := Y _ay; f(rs) f(r3)-

£.J

Our objective is to show that ® is a maximum, for o(A) fixed, when all
of the r; are equal. If this is true, then (3) follows easily. Indeed, given A
let B be the diagonal matrix with each diagonal entry equal to n—'o(A).
Then

n?Y aflr)f(rs) < n?Y byf (@)2
4,5 i3

= o Ty

< A)(Z f(r))?

by the convexity of f, which gives (3).

Since the case n = 1 is trivial, we will suppose that » > 2. Without
loss of generality, we may take r; to be the minimum row-sum, r,, the
maximum row- sum. We will assume that r; < r,,, and show that A can be
transformed, keeping o(A) fixed, in such a way that ® is increased. This
will prove our contention concerning the maximum value of ®.

We first observe that without loss, an, > 0. For suppose ansn = 0. Then
Gni = ain > 0 for some i, because r, > 0. Now replace a, Gin,Gni, Gnn
by ai; + @in,0,0 and ay,, + @;,, respectively. The net change in & is
ain(f(ra) — F(r1))? = 0. So this transformation has made a,,, positive and
not decreased ®. Thus for A with maximum ® we can assume ay,, > 0, as
desired.

Now change an1, @1n, Gnn t0 Gn1+Z, 1n+Z, Gmrn — 27, respectively, where
z is a real indeterminate; and let $(z) denote the ®-function of the trans-
formed matrix. We claim that $’(0), the derivative of ®(z) at z = 0, is
strictly positive. This clearly implies that we may choose z positive and
sufficiently small so that the transformed matrix A is still nonnegative and
symmetric, has o(4) = o(A) and larger ®; and this is sufficient to complete
the proof of our theorem. Now it is straightforward to calculate that

%@'(0) = f(ra)[f(r1) - F(ra)] + f'(r1) Zailf(ri) - f'(rn) Z ainf(ri()s)
T L4

Since f is decreasing, we have f(r;) < f(r;) for all ¢ and f’(r1) < 0; hence
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il (rl)Zaﬂ f(r:i) = r1f(r1)f'(r1). We can similarly bound the last term in

(6) to get $0(0) 2 F(ra)lf(ra) — Flra)] + 71 S(r1)f/(r1) = TS (r) ' (r)-
Our assumptions on f immediately yield that $'(0) > 0, as desired.
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