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ABSTRACT. The main object of this paper is the construction
of BIBD’s with 6 < k < 11 and A = 1. These balanced incom-
plete block designs can be simply constructed from some asso-
ciated group divisible designs with the number of groups being
a prime power, and it is these group divisible designs that are
constructed directly. Other related designs are discussed.

1 Notation

The notation is largely taken from Hanani [12].

A design is a pair (X, B) where X denotes a set of points of finite cardi-
nality, v, and B is a family of (not neccessarily distinct) subsets of X. The
cardinality of the subsets are called the block sizes.

A group divisible design (a GDD) is a design with a partition of X. X
is partitioned into groups with cardinalities in M. The block sizes have
cardinalities in K. The design also satisfies the condition that every pair
of points from distinct groups is contained in A blocks, whilst no block
contains a pair of points from the same group. The design is denoted by
GD[K, A\, M;v], and the set of v for which such designs exist is denoted by
GD(K, )\ M).

A pairwise balanced block design is a GDD with group size of 1, and
is denoted by B[K, );v]. A B[{K, k*}, X;v] denotes that a block of size k
is present (if ¥ € K, then more may be present). A balanced incomplete
block design (a BIBD) is a GDD with all groups of size 1, and a constant
block size of k, and is denoted by B[k, A;v].

A resolvable design is a design that admits a partition of the blocks of
B into resolution sets. Each resolution set is a partition of X. Resolvable
designs are denoted by the prefix R.
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Let Z(p) denote the cycle of residua mod p, and let Z(p, z) denote Z(p)
with the additional information that z is the primitive element used.

Let GF(q) denote the Galois field of order g, and GF(q, f(z) = 0) denote
GF(q) with the additional information that z is the primitive element used.

The design will be given in the form of base blocks of exponents of the
primitive element. For the residuum of 0 the symbol 0 is used.

In the case of group divisible designs, X =Y x Z, and Y denotes the set
of points in a group and Z the set of groups. It will be convenient to refer
to the value of Y as the membership number, and to the value of Z as the
group number.

Let the index function be defined for GF(q, f(z) = 0) by

ind(z)=s if s=t mod (g —1).

The residue function is the inverse of the index function, and is defined
by

res(t) = z* mod q.

2 Background
The parameters of a BIBD must obey the integrality conditions

AMv—1)=0mod (k—1)

and
Mv(v — 1) = 0 mod (k(k —1)).

The case of interest here is A = 1. If k is a prime power, then either
v =k(k—1)t+1or v =k(k—1)t+k Ifkis not, then v can take
on other residua mod(k(k — 1)) (such as 15, 21 for k = 6). In [8] many
designs were constructed with v a prime power. If v = k(k — 1)t + k, then
obviously k is a divisor of v, so alternative methods are needed. Although
the constructions in this paper are given in terms of GDD’s, the GD(k, A, k)
are easily converted to BIBD’s by just forming a (parallel) set of blocks on
the groups A times, and the GD(k, A, k — 1) are converted to BIBD’s by
forming X sets of blocks on the groups together with a point at infinity.

I have included the following account of the development of the paper as
an indication of the sources of the ideas I have used. The starting point
was my attempt to show the sufficiency of the neccessary conditions in the
B(7,)) case. This study will be reported elsewhere [3], but it naturally
caused me to consider the GD[7, 3, 7; 7q] series with q an odd prime power
and ¢ > 7 given by Hanani [12]. Hanani also gives a GD[7,1,7;7 - 13].
This design can be obtained from the former series by a judicious choice of
parameters and a judicious omission of base blocks. Could this feature be
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generalized? I first attempted to construct GD(7,1, 7; 7q] designs with q a
prime power and ¢ = 1 mod 6. I obtained 5 successes in the first 8 cases.
Hanani [12] gives the generalization to the GD[k, (k—1)/2, k; kq] series with
k = 4s + 3 a prime power. In a similar vein I tried the GD[11,1,11;11q]
series with ¢ = 1 mod 10, again with some success. A further reading of
[12] yielded his GD[6,1,5;125]. There are two new features here: firstly
the group size is k —1; secondly there are two base blocks in the underlying
B(3,3;5) design. The first feature yielded some GD[8,1,7;7q] designs; the
second gave some GD[9, 1, 9; 9q] designs; both gave some GDI[6, 1, 5; 5g] and
GD(10,1,9;9q] designs. With q = kt+1, for these designs with A = 1 there
are ¢ - v blocks. To accommodate the two base blocks in the membership
design, I needed ¢ even. A related construction gives the GD[k, k —1, k; kq]
series with ¢ and k odd prime powers and q > k and k = 4s+1. Could this
be improved to GDIk, (k — 1)/2, k; kq]? When I looked at cases of k < 6,
there was a hint that it could. Bose [6] gives a series (G2) with no restric-
tion that ¢ be even. A hand check of prime k < 128 convinced me that the
restriction that ¢ be even could be removed from my basic construction of
GDlk, 1, k; kq] designs for k odd. A proof of this was garnered from Hall
[11]. Its application to these sort of designs seemed to be new. I then re-
turned to the basic membership design to see whether I could exploit these
in other ways when I allowed X > 1, or considered other group sizes. The
final facet of this paper is that the completion of my GD|2s,1,2s — 1;v]
designs to B[2s,1;v + 1] designs actually yields resolvable BIBD designs.
This resolvability result closely parallels Hanani et al.’s construction of
RBI[4,1;3q + 1] designs with ¢ a prime power and ¢ = 1 mod 4 [14]. Other
authors have published some related constructions for odd k. Mathon [16]
has what amounts to a special case of the constructions I give. He imposes
more structure on his base blocks (i.e. on the 4’s) than I do. This restric-
tion limits the cases where he obtains solutions, but greatly simplifies the
searching, and he obtains some solutions for the case k = 13 which I did not
even attempt. For GD[7,1,7;7¢] with ¢ =1mod 6, g < 97 and ¢ a prime
power, Hanani [13] presents solutions in the same cases that I give later.
His solutions are very similar to mine, which is hardly surprising given the
heritage of my ideas. Bagchi and Bagchi [5] deal with & < 11, k odd, and
present number-theoretic arguments showing the existence of designs in a
large number of cases.

3 Basic Designs
The starting point of this exposition is with four well known BIBD’s.
Theorem 8.1 Let p be an odd prime power. If p = 4s+ 1 then p €

B(2s,23—1) and p€ B(2s+1,2s+1). I[f p=4s+3 thenpe€ B(2s+1,s)
and p € B(2s+2,s+1).
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Proof: See (12, Lemmas 4.1-4.4]. Let X = GF(p, f(z) = 0) with p an
odd prime power. Let

B, ={a,a+2,...,a+p—3) mod (p)

B’a= 9,a,0+2,... ,a+p—3) mod (p).
Then the 4 designs are given by By U By, By U Bj, By, and By. o

Remark 3.2 Note the similarity between B, and B,,. This will be ezxploited
repeatedly.

I now turn to the consideration of what differences arise from the base
block of By in the 4s + 1 case. The differences are found to be

(¥ -1)z% fori=1,2,...,25—1; j=0,1,...,2s—1.

Suppose I write ™ — 1 = z°. Then how many values of s are even as r
ranges from 2 through even values to 4s — 2? The cyclotomic numbers of
order m are denoted by (%, ;) and are defined as the number of solutions to

14z =2" with s=imodm and r=jmodm.

It is supposed that p— 1 is divisible by m and that p is a prime power. For
cyclotomic numbers of order 2 with p = 4s+ 1, Hall [11, Equation 11.6.42]
gives
©0=s-1 (1,0=(01)=(,1)=s

In particular, (1,0) — (0,0) = 1 so there is exactly one more odd multiplier
than there are even multipliers of z?7. In other words, each quadratic
residue is represented s — 1 times, and each non-square s times. Super-
imposing two Bp blocks quadruples these numbers, and also gives 4s zero
differences. Now super-imposing a By and a Bj will give each element
(including @) 4s ocurrences in the signed differences. This is exploited in
the following theorem.

Theorem 3.3 Let p and q be odd prime powers with ¢ > p. Then pq €
GD(pa (P - 1)/2,}’)

Proof: Let X = GF(p, f(z) = 0) x GF(g, f(y) = 0) and d = (¢ — 1)/2.
Let

Sba = ((8;9),{(b+ 2i;am + Yei + jd) : i=0,... ,(p-3)/2; j=0,1})
mod (p, g).

Now take m =1, 70s =i and B={Sps : a =0,... ,d —1}. Then (X, B)
is the required design. (]
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Remark 3.4 The case of p = 4s+3 is well known, but the case of p = 4s+1
seems to be new (12, Remark to Lemma 4.26].

Theorem 3.5 Let p and q be odd prime powers with ¢ > p and p = 4s+1.
Then pge GD(p+1,p+1,p).

Proof: Let X = GF(p, f(z) = 0) x GF(q,f(y) = 0) and d = (g — 1)/2.
Let

ba = ({(B;am + . +35d) : 5 =0,1},
{0+ 2;am + v +jd) :i=0,...,(p—-3)/2; j=0,1})
mod (p, g).

Now take m = 1, 7, = 0,7 =i+land B= {5}, : b=0,1; a=
0,...,d—1}. Then (X, B) is the required design. ]

Theorem 3.6 Let p and q be odd prime powers with ¢ > p and p = 43+3.
Then pge GD(p+1,(p+1)/2,p).

Proof: Let X and S;, be as defined in Theorem 3.5. Now take m = 1,
Y.=0,%i =%t+1and B={Sy, :a=0,...,d—1}. Then (X, B) is the
required design. a

4 Designs with A=1

In the last section it was seen that Theorem 3.5 could be improved to
Theorem 3.6 by dropping an appropriate collection of blocks when the con-
ditions were right. Similar improvements might be made to Theorems 3.3,
3.5, and 3.6, especially if the 4’s were nicely chosen. The best result one
could obtain would be A = 1, which in turn implies ¢ = (p — 1)t + 1 for
Theorem 3.3, and ¢ = (p + 1)t + 1 in Theorems 3.5 and 3.6. The main
objective in the rest of this paper is to find such designs for small p, (i.e.
5 < p < 11). The designs will be given in terms of the S, and S;, for
0 < b < B defined in the proofs of Theorems 3.3 and 3.5. For the other
parameter, 0 < a < ¢t/B —1. This will impose the restriction that ¢ be even
ifB=2.

Table 1.

Design P z q Blocks B m Comments
GD(6,1,5) 5 2 6t+1 Sj, 2 6 teven
GD(1,1,7) 7 3 6t+1 Sy, 1 3
GD(8,1,7) 7 3 8+1 S, 1 4
GD(9,1,9) 9z2=2z+1 8t+1 Sy 1 4
GD(10,1,9) 9 z?=2z+1 10t+1 S}, 2 10 t even

GD(11,1,11) 11 2 10t+1 S, 1 5
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The next question is what conditions are needed on the «’s? The mem-
bership part of these designs in non-exponential form is:

on Z(5,2) (0,1,4) with (0,2,3) mod (5)
on Z(7,3) 0,1,2,4) mod (7)
on GF(9,2% =2z +1) (00,01,21,02,12)

with (00,10,22,20,11) mod (3,3)
on Z(11,2) (0,1,4,5,9,3) mod (11).

The structure we have imposed now reduces the problem to one of search-
ing for a suitable set of v’s, and checking that the pure and mixed differences
are evenly spread amongst the m cyclotomic classes. Without loss of gen-
erality, we can take the first oy to be 0, and restrict the remaining ~’s to
0 < v < d. Consideration of the pure differences shows that the v’s must be
distinct modulo m. More structure on the +’s makes the searching easier.
I initially used more structure in the case of k = 7, but my later choices of
structure caused me to abandon this, except in the B = 2 cases. Here the
structure I used caused the v’s to be distinct modulo m/B.

The extra structure imposed was as follows. For k = 6, I took v,; =
70i + 3; (1. was treated similarly). A similar simplification by adding 5
in the case of k = 10 is possible. However, there is also the choice of
7. = 7v0. +5 and y1; = v0s + 5 for i = 1,3, and 713 = Y0,2-¢ + 5 for
i = 0,2; this was a much better choice, and the one finally used. In the
case of k = 7, the simplification y; = 2y, was also used; ~» is given in
the appendix. Although there will be some later improvements, the main
results of this paper are summarized in the following theorems that are
proved with the constructions in the appendix tables.

Theorem 4.1 If t ¢ {2,6,8,12}, and t < 832, and 6t + 1 i3 a prime
power, and t i3 even, then GD[6,1,5; 30t + 5] exists.

Remark 4.2 The four exceptions can be removed.

Theorem 4.3 If t &€ {3,4,6}, and t < 512, and 6t + 1 is a prime power,
then GD[7,1,7;42t + 7] exists.

Theorem 4.4 If t € {1,2,3,11} and t < 512, and 8t+1 is a prime power,
then GDI[8,1,7;56t + 7] exists.

Remark 4.5 The first two of the four exceptions can be removed.

Theorem 4.6 If t € {2,3,5,10,12,14}, and t < 729, and 8t+1 i3 a prime
power, then GD[9,1,9;72t + 9] exists.

Remark 4.7 The AG(3,9) design removes the t =10 exception.
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Theorem 4.8 If t ¢ {4,6,10,12,18,24}, and t < 729, and 10t +1 is a
prime power, and t is even, then GD[10,1,9; 90t + 9] ezists.

Theorem 4.9 If t ¢ {3-19,24-31,49}, and t < 121, and 10t +1 is a
prime, then GD[11,1,11;110¢ + 11] exists.

Remark 4.10 The composite prime power cases in this range were not
attempted for k =11 (i.e., t € {8,12, 36, 84,96} ).

5 Resolvability

It is a simple matter to complete any of these designs to a BIBD. How-
ever, when the block size, k, is even, these completions yield resolvable
designs. Consider the partial development of an S’ type block developed
mod(k — 1, —), and augment this with a new base block:

((00), (0;0),{(5;0) : i =0,... , k- 3}).

These augmented base blocks form a resolution set. Clearly the develop-
ment of this augmented set (developed mod(—, q)) generates a resolvable
BIBD.

Theorem 5.1 If t ¢ {2,6,8,12}, and t < 832, and 6t + 1 is a prime
power, and t i3 even, then RB[6,1;30t + 6] exists.

Remark 5.2 All but the first of the four ezceptions can be removed.

Theorem 5.3 If t & {1,2,3,11} and t < 512, and 8t+1 is a prime power,
then RB[8,1;56t + 8] exists.

Remark 5.4 The first two of the four exceptions can be removed.

Theorem 5.5 If t & {4,6,10,12,18,24}, and t < 729, and 10t +1 is a
prime power, and t is even, then RB[10, 1;90t 4 10] ezists.

6 Other Designs

The focus of this section is on the small exceptions noted in the last two
sections. Some of these missing designs can be constructed using a more
flexible approach, and sometimes designs with A > 1 can be constructed.
These designs were constructed by hand in a rather ad hoc fashion. The
basic approach is to look for g starter base blocks, instead of the original
B, replace the old number of cyclotomic classes, m, by mB/(B)), and
have each starter base block generate t\/f base blocks. The cyclotomic
classes should have A representatives each. The integrality of these numbers
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imposes some restriction on the choice of 8. This approach was used to
obtain Table 2, although it is partially hidden to compress the table. The
notation of Theorems 3.3 and 3.5 is used for Table 2, with the 4’s given in
the order 7s., (if applicable), 10, 11, - - » Yon-

Table 2.
Design t ¢q T Blocks m v v v «¥
GD(6,1,5) 8 49 z?=6z+4 s 3 0 417 a=0,1,4,5
S, 3 221118 a=0,1,4,5
GD(6,1,5) 12 73 5 e 12 01119 a=0,1,2
12 92028 a=0,1,2
e 12 31422 a=0,1,2
12 617 25 a=0,1,2
GD(7,2,7) 319 2 Soa 3 0 6 8 a=0,1,2
3 127 a=0,1,2
GD(7,2,7) 425 z2=4z+3 Soa 3 0 4 7 a=0,...,3
3 0811 a=0,...,3
GD(7,2,7) 6 37 2 Soa 3 021 a=0,...,5
3 02211 a=0,...,5
GD(8,2,7) 3 25 z2=4z+3 0a 2 06 39 a=0,...,5
GD(9,2,9) 217 3 S 1 0145 a=0,...,3

The designs given above with k even can also be completed to yield
resolvable BIBD’s. In addition to the designs tabled above, the following
are known: BI[6,1;66], RB[6,1;186], RB[8,1;64], and RB[8,1;120]. One
is the AG(2, 8), and for the others, see [7, 15, 20].

Theorem 6.1 If g = 6t+1 is a prime power, then RBI[6,2;30t+ 6] exists.

Proof: The above demonstration of resolvability also applies to Hanani’s
construction of GD[6,2, 5; 5q] designs [12, Lemma 4.19]. O

7 Consequences

One use of these designs, in conjunction with those in (8], is the construc-
tion of B(k, 1) designs for 7 < k < 9, and of RB(8,1) designs which will be
reported more fully elsewhere [9], but the initial findings were that there
are constructions with just 40, 78, 157, and 95 exceptions, the largest of
which were 4915, 12937, 32697, and 58192. There are some more imme-
diate consequences, namely {246,306,486} C RB(6,1). Two of these are
new B(6,1) designs; the value 306 is not new, (there is an unpublished
construction by Hanani [17]). The smallest value also yields a construction
of B[6,1;5391] using a T[22, 1;49] design, and a B[7,1;295] using the re-
solvability, with AG(2,7) to fill in the resulting flat. The construction of
GDI[8,1,7;287] enables a B(7,3;575] to be constructed, eliminating one of
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the seven exceptions for this case [13, Theorem 103]; the B[7, 1;295] men-
tioned above can be used to construct a B[7,3;323], thereby eliminating
another of the seven exceptions. (Constructions for the remaining cases
also exist; see [3] for details).

More recently, Abel has tackled these same problems [1}, and with his
constructions, the initial findings noted above can be improved upon (see
[2] for a recent list). For the RB(8,1) case there are now 66 exceptions,
with 24480 being the largest [10].

8 Other B(6,1) Designs

This section is quite independent of the rest of the paper, and is based
on the constructions of Mullin et al. [19]. The objective is to remove two
of the exceptional values given by Mullin [19, Table 1], in addition to the
three given above. Actually, a construction for the value 1066 was known,
and its inclusion in the exception list in [19] was an oversight; hence, the
real interest in Corollary 8.3 lies in the other design constructed. These
constructions, or alternatives, have been incorporated into recent lists, such
as [4], but the techniques used could be of interest.

Lemma 8.1 The incomplete transversal design T[6,1;155 + a] — T'[6, 1; a]
exists for 7 < a < 23.

Proof: In the T'[24, 1;23] design suppose the first and last blocks intersect
in the first group. Retain the first 7 groups, delete all but the points of
the last block in the next a — 7 groups, delete all but the point of the
first block in the next group, and delete all remaining groups, to give a
GD[{7,8,9,8*%,a*},1,{1,23}; 155 + aJ; filling in the groups, and removing
the block of size a gives a GD[{7,8,9,23},1, {1,a*}; 155+ a] and the result
follows from [21]. 0

Lemma 8.2 If 7 < a < 23, then a GD[6,1, {31,(31 + 5a)*}; 961 + 5a]
exists.

Proof: Use the blocks of T'(6,1;31) to fill in the groups of the incomplete
transversal with 31 — e points at infinity. These points and those of each
missing subgroup are to lie in a flat of size 31. a

Corollary 8.3 The designs B[6,1;1066] and B[{6,31*},1;996] ezist.

Proof: Take a = 21 and a = 7, and note that {31,66,136} C B(6,1)
[19]. m]

Corollary 8.4 The design B[6,1;5901] exists.
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Proof: We may apply [19, Theorem 1.1] with v = 996, f = 31, and a = 16.
Since 8 - 17 = 136 € T(9,1), and 981 = 7 - 136 + 13 + 16, the needed
incomplete transversal is easily constructed [21]. Note that 111 € B(6,1)
(19]. o
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A Appendix

The main purpose of the appendix is to give the basic constructions of
BIBD’s. Some variants were given in section 6. The first table gives the
primitive polynomials for all odd prime powers < 10000. The remaining
tables give the parameters of successful constructions found. These tables
give the primitive element, z, used to generate the GF(v). In the case of
prime powers this entry contains ** and the primitive element used is a

root of the polynomial in the first table.

Table A.l.
Table of primitive polynomials of GF(p™) with p odd.

pﬂ
9
27
81
243
729
2187
6561
25
125
625
3125
49
343
2401
121
1331
169
2197
289
4913
361
6859

Table A.2.
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Table A.3.
Table of y2 for GD[7,1,7; 7q).

qg T 7 q9 2 7 g9 T 7 q

7 3 2 13 2 2 31 3 5 43

49 ** 16 61 2 2 67 2 7 73
79 3 26 97 5 25 103 5 4 109
121 ** 14 127 3 7 139 2 46 151
157 5 23 163 2 46 169 ** 23 181
193 5 2 199 3 8 211 2 28 223
229 6 31 241 7 31 271 6 5 277
283 3 5 289 ** 7 307 S5 26 313
331 3 23 337 10 40 343 ¥+ 8 349
361 ** 22 367 6 8 3713 2 4 379
397 5 13 409 21 11 421 2 17 433
439 15 31 457 13 5 463 3 59 487
499 7 17 523 2 T 529 ** 25 541
547 2 5 571 3 10 577 5 52 601
607 3 16 613 2 26 619 2 20 625
631 3 10 643 11 37 661 2 65 673
691 3 32 709 2 17 727 5 38 733
739 3 67 751 3 4 w2 2 769
787 2 13 811 3 61 823 3 16 829
841 ** 22 853 2 4 859 2 26 877
883 2 20 807 2 4 919 7 2 937
961 ** 13 967 5 8 991 6 44 997
1009 11 7 1021 10 2 1033 5 13 1039
1051 7 106 1063 3 11 1069 6 22 1087
1093 5 2 1117 2 4 1123 2 31 1129
1153 5 4 171 2 1 1201 11 8 1213
1231 3 38 1237 2 19 1249 7 62 1279
1201 2 44 1207 10 20 1303 6 5 1321
1327 3 2 1369 ** 8 1381 2 37 1399
1423 3 11 1429 6 11 1447 3 14 1453
1459 3 14 1471 6 2 1483 2 19 1489
1531 2 14 1543 5 52 15499 2 91 1567
1579 3 4 1597 11 37 1609 7 80 1621
1627 3 11 1657 11 10 1663 3 8 1669
1681 ** 25 1693 2 1 1699 3 25 1723
1741 2 1 1747 2 32 17683 7 5 1759
1777 5 1 1783 10 13 1789 6 7 1801
1831 3 13 1849 ** 8 1861 2 47 1867
1873 10 19 1879 6 32 1933 5 28 1951
1987 2 8 1993 5 17 1999 3 25 2011
2017 5 16 2029 2 2 2053 2 4 2083
2089 7 1 2113 5 8 2131 2 31 2137
2143 3 8 2161 23 47 2179 7 14 2197
2203 5 11 2209 ** 28 2221 2 35 2239
2251 7 2 2269 2 41 2281 7 1 2287
2293 2 4 2311 3 2 2341 7 29 2347
2371 2 1 2377 5 13 2383 S 5 2389
2401 ** ] 2437 2 29 2467 2 8 2473
2503 3 5 2521 17 13 2539 2 1 2551
2557 2 11 2593 7 1 2617 5 17 2647
2659 2 16 2671 7 7 2677 2 22 2683
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2689
2731
2797
2851
2953
3037

73

97
121
169
233
257
289
337
361
409
449
521
569
593
617
641
729
769
841

13

13
22

2707
2749
2803
2857
2971
3049
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11

11

2713
2767
2809
2887
3001
3061

Table of 4’s for RB[8,1;7¢ + 1].

r2
30
2
31
105
103
226
110
223
127
74
97
351
37
483
437
134
101

1087
1121
1245
1311
1679

711
1037

274
1150
1857

965

q
49
81

113
137
193
241
281
313
353
401
433
457
529
577
601
625
673
761
809
857
929
953
977
1033
1097
1153
1201
1249
1297
1361
1409
1481
1553
1609
1681
1721
1777
1849
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2113
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2183
1394

1531

2126

1914
2386
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1070
990
1142
1578
710
1490
1466
1219
3151
2970
2083
1865
10
3749
1046
1425

2518

1677
3313
1603
3217

1763
3363
2827

1489
1001
1365

69

1975

327
1811

531
117
2523
1087

2613
1259

839
1207
2539
1911

2243
2467
1605

802

782
1486
199
3759
333
870
3049

2161
2273
2297
2393
2417
2473
2593
2617
2657
2713
2753
2801

2897
2969
3041

3137
3209
3257
3329
3433
3457
3529
3617
3697
3761
3793
3881
3929
4049
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Table of 4’s for GD[9, 1,9; 9q].

™3
1

9
9
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217
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178
166
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13
2070

1178
1601
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1443
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1471
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1617
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2401
2521
2741
2861
3041
3121
3221
3361

3721

5741
5821
5881
6101
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6301
6421
6521
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6701
6781
6961
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Table A.7
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7

121
202

431
606
433

118
416

852
1232
142
767
1057
857
1147
707
1007
817

1512

1262
2147
1057
2867
2607

622
1187
2647

2642
602
22

263
338
323
133
983
433

128
593
43
13
408
1303
218

148
113
268
198

124
399
659
1134
374
229
409
1544
1594
349
1154
894
859
1519

204
1869
1359
2304

624

844
1359

594

949
2229
1659
1629

369
2289
1399
1834
1859
2159

984
1709
2529
2749
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3181

28
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3701
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Table of v's for GD[11,1,11;11q].

T2

3
8
318
296
166
208
36
228
391
121
252
838

Y4

51

q =z
211 2
401 3
431 7
521 3
571 3
631 3
661 2
701 2
761 6
821 2
911 17

m
84
26
338
304
231
427
543
3
66
339
111

362
1147

592
612
387
1372
577
1547

862

597

957
1092

572
1527
1407
1232
1452
1067
1237
2302
2127
1242
1752
1992
1067

497

912
1597

1912
2922
132
142
1667
272

318

328
63

18
18
78

182
182
192

153

186
506
147
231
373

699

759



vev
6901
6501
(44

6.8

12
£es
86

N

80E

e1s
801
959
281
99L
tA<4

vcor~aNN

1

1021
TL11
1601
1601
1201
1.6

(43

j4( ¢
612
601
6v.L
60V
v62

861
99.L
484
9v6
186
9LL

1811
[£:19¢
1901
1€01
166
1v6



