Existence of (3,1,2)-HCOLS and (3, 1,2)-ICOILS
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ABSTRACT. A Latinsquare (S,-) is said to be (3, 1, 2)-conjugate-
orthogonal if x -y = z-w, £ 312y = 2 312 w imply z = z and
y = w, for all z,y,z,w € S, where z3 312 z; = z3 if and
only if z; - 2 = z3. Such a Latin square is said to be ho-
ley ((3,1,2)-HCOLS for short) if it has disjoint and spanning
holes corresponding to missing sub-Latin squares. Let (3,1, 2)-
HCOLS(A™) denote a (3,1, 2)-HCOLS of order hn with n holes
of equal size h. We show that, for any h > 1, a (3,1,2)-
HCOLS(h™) exists if and only if n > 4, except (n,h) = (6,1),
and except possibly (n,h) = (10,1) and (4,2t + 1) for t > 1.
Let (3,1,2)-ICOILS(v, k) denote an idempotent (3,1,2)-COLS
of order v with a hole of size k. We prove that a (3,1,2)-
ICOILS(v, k) exists for all v > 3k+1 and 1 < k < 5, except
possibly k = 4 and v € {35, 38}.
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1 Introduction

Let (S, -) be a quasigroup where the multiplication table of - forms a Latin
square indexed by S. The (i,j, k)-conjugate of (S,-) is (S,-ijx), where
(i, 3, k) is a permutation of (1,2, 3) and z;-;;xz; = zx if and only if z;-z3 =
z3. Following the convention (see [5]), we call (S,-) a Latin square (i.e.,
the multiplication table of - is a Latin square indexed by S). A Latin
square is said to be (3, j, k)- conjugate-orthogonal ((i, j, k)-COLS for short)
ifr.-y=2-wand z 45y = 2z yjx w imply £ = z and y = w, where
z -y denotes the entry in the cell (z,y) of the square. We will use (3, 7, k)—
HCOLS(hT! - -- hi*) to denote the type of holey (3,4, k)-COLS of order
22;1 h;n;, which has n; holes of size k;, 1 < ¢ < k, and all the holes
are assumed to be mutually disjoint, and each of them corresponds to a
missing sub-Latin square. It is well-known that there does not exist any
(1,2,3)-HCOLS(h™) for n > 1; a (3,2,1)-HCOLS(h") exists if and only if
a (1,3,2)-HCOLS(h") exists; a (3,1,2)-HCOLS(h") exists if and only if a
(2, 3,1)-HCOLS(h"™) exists.

The existence of (2,1, 3)-HCOLS(h™) has been completely settled [5, 9].
The existence of (3,2, 1)-HCOLS(h") has also been settled [10], with the
only possible exception of (h,n) = (13,6). In this paper, we investigate the
existence of (3, 1,2)-HCOLS using a similar approach. As mentioned in
[5], the nonexistence of a (3,1,2)-COILS(4) has made the investigation of
(3,1,2)-HCOLS(h™) considerably more difficult than that carried out for
the other conjugates. Despite this difficulty, we are still able to provide an
almost conclusive result to the existence of (3, 1,2)-HCOLS(h").

Note that an idempotent (3,1,2)-COLS of order v can be written as a
(3,1,2)-HCOLS(1%). An incomplete idempotent (3,1,2)-COLS of order »
with a hole of size k, denoted by (3,1,2)-ICOILS(v, k), exists if and only
if a (3,1,2)-HCOLS(1v~*k?) exists. The previous results concerning the
existence of (3,1, 2)-HCOLS(h") are summarized in the following theorem
of the survey paper [5]:

Theorem 1.1 ([5]) There ezists a (3,1,2)-HCOLS(h™) if and only if h >
1 and n > 4, except (n, h) = (6,1), and except possibly

1. whenn € {10,12,14,15} and h=1;

2. whenn € {4,6} and h is odd;

3. whenn =15 and h=1 or 5 (mod 6);

4.

when (n, k) €{(6,2), (6, 6), (6, 10), (6, 14), (6, 18), (6, 22), (6, 26), (6, 30),
(6,34), (6,38),(6,42), (8, 2),(9,2), (10, 2), (10,3), (10, 34), (10, 38),
(12,2), (12, 3), (12,4), (12, 14), (14, 3), (30, 2)}.



In this paper, we remove most possible exceptions in Theorem 1.1 and
thus obtain the following one:

Theorem 1.2 There ezists a (3,1,2)-HCOLS(h™) if and only if h > 1
and n > 4, except (n,h) = (6,1), and except possibly (n,h) = (10,1) and
(4,2t +1) fort > 1.

The previous result regarding the existence of (3,1,2)-ICOILS(v, k) is
summarized in the following theorem.

Theorem 1.3 ([5]) For any integer v > 1, a (3,1,2)-ICOILS(v, k) ezists
if v > (10/3)k +68. For 2 < k < 5, a (3,1,2)-ICOILS(v, k) ezists if
v 2 3k+ 1 ezcept possibly when

v € {8,12,14,16,17,18,20,21};

v € {15,17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30};

v € {18,19, 20,22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 34, 35, 36, 37, 38};
v € {23,24, 26,28, 30, 31, 32, 34, 38, 39}.
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We are able to solve all the open cases when 2 < k < 5 except k = 4 and
v € {35,38}. That is, we have the following:

Theorem 1.4 For2 <k <5, a(3,1,2)-ICOILS(v,k) ezists if and only if
v 2 3k + 1, except possibly when k=4 and v € {35, 38}.

2 Construction Techniques

The construction techniques that we used are conventional (such as the
cyclic group construction, the “fill-in-holes” construction and the group-
divisible designs) and can be found in the survey paper [5]. The use of
these techniques is similar to that of [9] where the existence of (2,1, 3)-
HCOLS(2"3!) is established.

2.1 Direct Constructions

Our most direct constructions use a starter-adder type construction, called
the cyclic group construction, which constructs a (3,1,2)-HCOLS of type
(h™k!) from its first row and first column using an Abelian group of order
hn. In [5], this technique is described using the Abelian group Z,. In [10],
the construction using an arbitrary Abelian group of order kn is presented:
The Cyclic Group Construction Let (G,+) be an Abelian group of
order hn and H a subgroup of order A. In general, we assume G =
{0,1,.,hn —1} and H = {imn : 0 < i < h}. Let X = {z1,...,zx}
{hn,...,;n+k -1} and S=GU X.
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Let e € (SU {0})*™ be a vector of length hn, where @ denotes that a cell
is empty. Let f,g € G* be two vectors of length k. A (hn + k) x (hn + k)
square L can be constructed from e, f and g, as follows: Let (i - j) denote
the entry in the cell (4,7) of L. The first row is filled by the two vectors e
and f, i.e.,

e+f=(0-0,..,0:-(hn—1),0- kn,..,0: (hn+k — 1)),
and the last k elements of the first column are filled by g, i.e.,
g=(hn-0,..,(kn+k-1)-0).
The entire L is constructed from e, f and g as follows:
1. ForseGand t € G,

0-t)+s if (0-t)eCG
s-(s+1) ={ EO-t; :)th(erwi)se.

2. ForseG,te X,s-t=(0-t)+s.
3. ForseX,teG,s-t=(s-0)+t.

Note that + is the one in the Abelian group (G, +).

There are obviously conditions that the vectors e,f and g must satisfy
in order to produce a (3,1,2)-HCOLS(h"k') and they are given in the
following lemma.

Lemma 2.1 Let L be a square generaied by the cyclic construction using
the Abelian group (G,+). L is a (3,1,2)-HCOLS(K™k*) if and only if

1. foranyz€G,0-z=0ifand only ifz € H;
2 foranyz ¢ H,0-z ¢ H, and either 0.z € G orz-0 € G;
3. the following difference conditions hold:

{©0-z)+—(0:3122) |0-2€ G,0-32z€ G,z € S\ H}U
{(z-0)+ —(z-3120) |z € X}
= G\H,

where —(z) is the inverse of = in the Abelian group (G, +).

Example 2.2 Let G = Zg,H = {0,3}, X = {z,y}. e = (0,2,7,0,3,4),
f = (1,5) and g = (4,2). The square constructed by the cyclic group
construction is given below, where the elements of e are underlined and
those of f and g are in bold lype.
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<10 2 8 4 5 z vy
0 2 z ¥y 4 1 5
1156 S =z y 2 0
2|y 0 4 z 8 1
3 y 1 5 z 4 2
4| = y 2 5 3
5|11 =z y 3 0 4
z|{4 5 0 1 2 8

y|l2 8 4 5 0 1

It is easy to check that all the conditions are satisfied for the square. a

Note that the hole of size k of L in the above lemma is indexed by X x X,
and the n holes of size k are indexed by (g + H) x (g + H), where g+ H
runs over all cosets of H in G.

In the following, unless specified explicitly, we always use the Abelian
group Zny in the cyclic group construction to construct (3, 1,2)-HCOLS(h"k!).

Lemma 2.3 (Product construction) Suppose there ezists a (3,1,2)-HCOLS
(hT*h3? ---h2*), then there exists a (3,1,2)-HCOLS((mhy)™ (mhp)™2 - ..
(mhy)™*), where m # 2,6.

Lemma 2.4 (Filling in holes)

(1) Suppose there exists a (3,1,2)-HCOLS of type {s; : 1 < i < n}. Let
a > 0 be an integer. For each i, 1 < i < n — 1, suppose there ezists a
(3,1,2)-HCOLS of type {si5 : 1 < j < k(i)} U {a}, where 5; = 338 ;5.
Then there ezists a (3,1,2)-HCOLS of type {85 : 1 < j < k(3),1 < i <
n—l}U{a+3n}.

(2) Suppose there ezists a (3,1,2)-HCOLS of type {s; : 1 < i < n}.
Suppose there is also a (3,1,2)-HCOLS of type {t; : 1 < j < k)}, where
8n = 351 t;. Then there erists a (3,1,2)-HCOLS of type {s; : 1 <i <
n—1}U{t;:1<j <k}

2.2 Stein’s Third Law

Let (S,-) be a quasigroup. It is well-known that the Stein’s third law
(y-x)-(z-y) = z is conjugate-equivalent to the identity (y-(z-y))-z = v, using
(1,3, 2)-conjugate operation. This means that the (1,3,2)—conjugate of a
quasigroup satisfying Stein’s third law satisfies the identity (y-(z-y)) -z =
y. It is not difficult to check that an idempotent quasigroup satisfying
(v - (z-y)) -z =y is orthogonal to its (2,3, 1)-conjugate. As mentioned in
Section 1, the existence of (2, 3, 1)-COILS implies the existence of (3,1, 2)-
COILS and vice versa. So, the existence of a quasigroup satisfying Stein’s
third law implies the existence of (3, 1,2)-COILS of the same type.
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Let us remark that an idempotent quasigroup (Q, -) of order v satisfying
the identity (y-(z-y)) -z = y is equivalent to a (v, 4, 1)-perfect Mendelsohn
design, where the cyclically ordered blocks of size four are given by {(z,y, z-
v,y (z-9) T, yz #y} [2, 3, 4, 5. That is, let v, k be positive integers. A
(v, k, 1)-Mendelsohn design, briefly (v, k,1)-MD, is a pair (X, B), where X
is a v-set (of points) and B is a collection of cyclically ordered k-subsets of
X (called blocks) such that every ordered pair of points of X are consecutive
in exactly one block of B, where a cyclically ordered block (a1,a2, -, ak)
means ¢ < ag < +-- < ap < ay. Ifforalt=12-.--,k—1, every
ordered pair of points of X are t-apart in exactly one block of B, then the
(v, k,1)-MD is called perfect and is denoted by (v, k, 1)-PMD.

In [4], the following result is essentially established using (v, 4, 1)-HPMDs
and Stein’s third law:

Lemma 2.5 A (3,1,2)-HCOLS(h™) ezists if and only if n > 4 and n(n —
1)h2 = 0 (mod 4), except (n,k) = (4,1),(4,2),(8,1) and ezcept possibly
(n,h) = (4,2t +1) fort > 1.

Note that this lemma removes all the cases in Theorem 1.1 where h is
even. It also removes the cases where (n, k) = (12,1), (12, 3).

Using the same technique, the following result is established in [3].

Lemma 2.6 A (3,1,2)-HCOLS(2"3!) ezists if and only if n > 4.

2.3 Recursive Constructions

The weighting construction uses group divisible designs (7, 6, 9]. A group
divisible design (GDD) is a triple (X, G, B), which satisfies the following
properties:

1. G is a partition of X into subsets called groups.

2. Bis a set of subsets of X, called blocks, such that a group and a block
contain at most one common point.

3. Every pair of points from distinct groups occurs in a unique block.

The following construction is used in [7]; see also [5, 9].

Lemma 2.7 (Weighting) Let (X,G, B) be a GDD and let w : X — Z+U{0}
be a weighting. Suppose that there ezists a (3,1,2)-HCOLS of type w(B)
for every B € B. Then there exists a (3,1,2)-HCOLS of type {3_.ccw(z) :
G e gG}.
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For our recursive constructions, we will make use of transversal designs.
A transversal design TD(k,n) is a GDD with kn points, k groups of size n,
and n? blocks of size k. It is well known that a TD(k,n) is equivalent to
k — 2 MOLS of order n.

Lemma 2.8 ([1]) There erists a TD(6,m) for all m >

> 5, where m ¢
{6,10, 14,18, 22}.

3 (3,1,2)-HCOLS
3.1 (3,1,2)-HCOLS(h") for h<4

Lemma 3.1 There ezists a (3,1,2)-HCOLS(1") for n = 14, 15.

Proof: It is sufficient to give the vectors e, f and g, as shown below. 0O

type e f g
17 [(#129z10684115137) OB
15 | (03962141127131185410) | () | ()

Lemma 3.2 There exists a (3,1,2)-HCOLS(3"™) for n € {6,10,14}.

Proof: For n = 14, we obtain it by the product construction from (3,1, 2)—
HCOLS(114) and (3 1,2)-COLS(3). For the other two cases, we give the
vectors e, f and g, as shown in Table 1, which.satisfy Lemma 2.1. For 319,
the Abelian group Zs x Z3 x Z3 is used instead of Zy7. Each element (3, 4, k)
in Z3 x Z3 x Z3 is encoded by 9 + 35 + k. o

3.2 (3,1,2)-HCOLS(h™) for n= 6,15
The remaining outstanding cases for n = 6 are when h is odd.
Lemma 3.3 There ezists a (3,1,2)-HCOLS(h®) for h € {3,5,7,9}.

Proof: The case of h = 3 is covered by Lemma 3.2. For h = 9, we obtain
it by the product construction from (3,1,2)-HCOLS(3%) in Lemma 3.2
and (3, 1,2)-COLS(3).. We list the vectors e, f and g of the cyclic group
construction for the other two cases in Table 1.

Lemma 3.4 (a) If there exists a TD(6, m), then there ezists a (3,1,2)—
HCOLS(2m +1)8.

(b) If there exists a TD(6,m) and m # 5, then there exists a (3,1,2)-
HCOLS(2m —1)5.
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type ef,g

(5°) | 02324192, 013112221017614120 2294 30 23 18 x5 2),
(17816 24), (18 213 8 24)

(7°) | (0322117081822, 0z61127302223266013349 25017
z2 z7 12 0 24 z, 14 16), (4 19 23 28 29 31 33), (9231 13 7 32 4)

type e f g

35 [(01292, 8074112022 33 1) (13614) | (91314)
3° | (082,1762102270311925214
2213014 16 24 3 12 5 20 11) (231526) | (24111)

Table 1. Vectors for some (3, 1,2)-HCOLS(kAS).

Proof: For (a), we select a block B of the TD(6, m) and give every point
of B weight three. We then give all the remaining points of the TD weight
two and apply the Weighting Construction, using as input designs (3,1, 2)-
HCOLS of the types 28, 28, (253!) and 3%, to obtain the desired (3,1, 2)-
HCOLS of type (2m + 1)8. For the proof of (b), we take a slightly different
approach. Here we select two disjoint blocks B and B’ of the TD(6,m),
which is possible since m # 5. We give each point of the block B weight
zero and give each point of the block B’ weight three. We then give all
of the remaining points of the TD weight two and apply the Weighting
Construction to get a (3,1,2)-HCOLS(2m — 1)%, using (3,1,2)-HCOLS
of types 25, 26, (2¢31), (253!) and 3%. This completes the proof of the
lemma. O

We are now in a position to prove the following:
Lemma 3.5 There ezists a (3,1,2)-HCOLS(h®) for all odd h > 3.

Proof: For h < 9, the proof is given in Lemma 3.3. For all odd ~ > 11,

we apply Lemmas 2.8 and 3.4 with the appropriate values of m to get the
desired results. o

For n = 15, the remaining outstanding cases are when h = 1 or 5 (mod 6).

Lemma 3.6 There exists a (3,1,2)-HCOLS(h'®) for all odd h > 3.

Proof: The lemma is easily established by the product construction, be-
cause of the existence of (3, 1,2)-HCOLS(11%) and (3, 1, 2)-COLS(k) for all
odd h > 3.

Combining Theorem 1.1 with Lemmas 2.5, 3.3-3.6, we have proved
Theorem 3.7 There ezists a (3,1,2)-HCOLS(h™) if and only if h > 1

and n > 4, ezcept (n,h) = (6,1), and ezcept possibly (n,h) = (10,1) and
(4,2t +1) fort > 1.



4 (3,1,2)-ICOILS

Recall that (3, 1,2)-ICOILS(v, k) denotes an idempotent (3, 1,2)—COILS of
order v with a hole of size k and is equivalent to a (3, 1,2)~-HCOLS(1*~*k!).
The nonexistence of (3, 1, 2)-ICOILS(8, 2) was confirmed by an exhaustive
computer search [8].

By the property of Stein’s third law, the following lemma can be easily
established using the results provided in [2, 11]:

Lemma 4.1 There exists a (3,1,2)-ICOILS(v, k) for

k=2  ve{l4,18},

k=3, ve{15,19,23,27},

k=4, ve{20,24,25,28, 32 34,3637},
k=5 ve{24,28,32 33}

Using the cyclic group construction, we are able to prove the following
lemma.

Lemma 4.2 There ezists a (3,1,2)-ICOILS(v, k) for

k=2, ve{12,16,17,20,21},

k=3, wve{17,20,21,24,25,29},
k=4, ve{18,19,22 23, 26,27,30,31},
k=5 ve {2326}

Proof: We list in Tables 2 and 3 the vectors e, f and g for these cases. O
Using the fill-in-hole construction, we can establish the following lemma.

Lemma 4.8 There ezxists a (3,1,2)-ICOILS(v, k) for (v, k) = (28, 3), (34,4)
and
k=5,v € {30, 31, 34, 38, 39}.

Plgo?f: For (v, k) = (28, 3), we fill (3,1, 2)-COILS(5) into (3, 1,2)-HCOLS
(5°3%).

For (v, k) = (34,4), we fill (3, 1,2)-COILS(5) into (3, 1, 2)-HCOLS(5641).

We obtain (3, 1, 2)-ICOILS(31, 5) from (3, 1,2)-HCOLS(4%6!) by adjoin-
ing one point to it and then filling it with (3,1, 2)-COILS(5) and (3,1, 2)-
ICOILS(7,1). Similarly, we obtain (3,1,2)-ICOILS(30,5) from (3,1,2)-
HCOLS(5); (3,1,2)-ICOILS(34, 5) from (3, 1,2)-HCOLS(5°91); (3,1,2)-
ICOILS(38, 5) from (3, 1,2)-HCOLS(5%8!); and (3, 1, 2)-ICOILS(39, 5) from
(3,1,2)-HCOLS(5%9!).

The vectors e, f and g of the required designs for the fill-in-hole con-
structions are listed in Table 4. o
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type e f g
"(12,2) | 02236110z, 2115) 47 49

(16,2) | (0821, 5131012119647 22 2) (13) (12 13)
(17,2) | (07126913 x; 14112822 14 3) (5 10) (13 14)
(20,2) | (016948101731 1513222 765111) (14 12) (16 17)
(21,2) | (02, 121091481529 175166 17 1131813) | (42) (17 18)
(07,3) | (071211 2322810913165 z;) (234) (11 12 13)
(20,3) | (0821131510911 224223114166 12) (753) (14 15 16)
(21,3) | (05411715172 13322619216 z3 8) (10 14 12) | (1516 17)
(24,3) | (041121 61913201222187185917223

3 10) (15 16 14) | (18 19 20)
(25,3) | (0181142017161 1513 22 14523 196 12

1102197) (283) (19 20 21)
(29,3) | (0211325211023 19234171157222818

203241429 6 12 5) (9 11 16) (23 24 25)

Table 2. Vectors for some (3,1, 2)-ICOILS(v, 2) and
(3,1,2)-ICOILS(v, 3).

type e f g
(18,4) | (0222151123 1012924 1336 8) (1247) (1011 12 13)
(19,4) | (082117141322 122321111615

6 18 10 z4) (53974) (15 16 17 18)
(22,4 | (01021 471517221411516x33

8 z4 2 6) (113912) (141516 17)
(23,4) | (082117141322 122321111615

6 18 10 z4 5) (3974) (15 16 17 18)
(26,4) | (0213151710169121 22 1421 8

7Tz3311244605) (18192021) | (18192021)
(27,4) | (019156 11 x4 10 13 23 18 22 16 20

zo 817721 512219 14) (1234) (19 20 21 22)
(30,4) | (0109161211 228191z 41517

2521620314713 18 24 z3) (22 23 24 25) (22 23 24 25)
(31,4) | (01236222118 =z 1317203 16

1512397105 14 24 211194 8) (23 24 25 26) (23 24 25 26)
(23,5) | (018111 1022 17239 x4 14164

15 3 5 z5 2) (867112) (13141516 17)
(26,5) | (0521 1312818209224 23196

16 3 1 z4 2 25 10) (11715 17 14) | (16 17 18 19 20)

Table 8. Vectors for some (3, 1, 2)-ICOILS(v,4) and
(3,1, 2)-ICOILS(v, 5).
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typo efg

(s53T) 923 ) 296010141021 071 =2317090312110221348), (182 24), (234 24
(5°47) | P =22254d4z) 2024 2323261020131927 150102017 147 0 28 21 16 11 9),
(35822), (82517)
(4®s1) @ 1507 x4 x3 04 o5 2302205178 =3 190 10 16 2 =g 21), (1 3 11 13 14 23),
(9138119 33)
(3591) | (@325 251101027 21 2 B 231814 24 B 8 zg 221 8 17 16 =9 22),
(13467912132¢),(16111418123481324)
(s%81) | (9282317202 @ =3 =3 25 2515021 1310 x4 220 2 =7 1 14 26 0 27 19 16 = xg),

(345789 1120), (7112001 17 26 28)

(5%91) | (P28 =3 =g 17 2) © 1610 25 24 22 =y =5 20 T3 25 @ 14 11 1 23 26 § 21 19 13 27 =),
(23487609 1529), (14 19 4 20 7 15 17 22 28)

Table 4. Vectors for some fill-in-hole constructions.

Combining Theorem 1.3 with Lemmas 4.1-4.3, we have essentially proved
the following result.

Theorem 4.4 For2 <k <5, o (3,1,2)-ICOILS(v,k) exists if and only if
v > 3k + 1, except possibly when k =4 and v € {35, 38}.
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