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ABSTRACT. An array A[f,j],1 < <n,1<j <n has a period
Alp, p] of dimension p x p if Ali,j] = Ali +p,j +p] for i,j =
1---n—p. The period of Alp, p] is the shortest such p. We study
two dimensional pattern matching, and several other related
problems all of which depend on finding the period of an array.
In summary finding the period of an array in parallel using p
processors for general alphabets has the following bound

) ("—:) if p < b n > 17° (L1)
O(loglogn) if H’,‘-:H <p<nin>17 (1.2)
© (loglogzp p if n? < p<nilog’n,n> 173 1.3)

© (loglogz p) if n?logZn < p < n%, n large enough (1.4)

1 Introduction

An alphabet denoted by, ¥, is a set of symbols. An unbounded or general
alphabet is an alphabet where the set of symbols is variable. A fized alphabet
is an alphabet where the set of symbols is bounded by a constant. A string
is a sequence of zero or more symbols from an alphabet ¥. A string z is of
length n, where there are n symbols in z.
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The string zy is a concatenation of two strings z and y. A string w is a
prefizof z if z = wu for v € X*, where £* is the set of all strings over an
alphabet . Similarly a string u is a suffix of z if z = wu. A period u of
the string z is a prefix of = constructed by concatenations of u. The period
of the string z is the shortest such u. e.g. The period of abaabaabaaba
is aba, and the period of aabaaabaab is aaba. If z has a period v,z #
then z is periodic. A string w;...w,, is a substring of z = z;...z, if
W)... Wnm =Ti...Tym—i—1 fOr some 2.

A string z is said to be a square if there exists a substring u of z such
that = uu. e.g. abab, abcabc. A string is called square free, if it has no
square as a substring. An array is square free, if the horizontal, and vertical
strings making up that array also have no square as a substring.

We define the problem of string pattern matching as follows. Given a
string p, of length m, called the pattern, and a string ¢, of length n, called
the text, find all occurrences of the pattern in the text.

As yet, there is no established text book covering all the algorithms for
the string pattern matching problem. For surveys the reader is referred to
Aho’s survey paper, see [A], which covers some efficient RAM algorithms.
Also to Iliopoulos’ survey, see [I] and [GS], for efficient parallel RAM algo-
rithms. A history of string pattern matching is to be found in a leading
paper on the problem by Knuth, Morris, and Pratt, see [KMP)]. There also,
is a linear time (O(m+n)) sequential RAM algorithm, which superseded an
almost linear time algorithm by Karp, Miller, and Rosenberg, see [KMR].
This algorithm, however proved to be parallelizable, see [AILSV],[CR]. In
another leading paper on string pattern matching, Boyer, and Moore gave a
linear expected time algorithm, with O(mn + |X]) worst case running time,
in [BM].

Galil’s [Ga] parallel algorithm for string matching was optimal, and re-
quired O(logn) time, for fixed alphabets. Vishkin in [V] introduced an
algorithm with the same complexity, but applicable to general alphabets,
using the witness idea.

Both of these were improved by Breslauer-Galil in [BG2], with an O(log log
n) time complexity for linear cost. In their analysis of the parallel com-
putation of the string pattern matching problem in [BG], Breslauer-Galil
had two phases of computation. Firstly the pattern is pre-processed with
no access to the text required. (This pattern pre-processing phase is useful
on its own, when one pattern is to be matched with several texts. Each
text can be processed independently, in this case, thus reducing the overall
cost, by pre-processing the single pattern only once.) Secondly the text is
processed. The lower bound in [BG] refers to the pattern pre-processing.
Hence our improvements also apply to this pattern pre-processing.

The two dimensional pattern matching problem is defined as follows.
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Given a pattern P where |[P| = m x m and a text T where |T'| =n x n to
which it is required to match P, where both are arrays of characters from
an alphabet X, compute all occurrences of the pattern array in the text
array.

In [G],[GI] we showed a lower bound on the problem of computing the
period length of a string. This problem of computing the period length of
a string is shown, in [ABG], to be equivalent to the problem of computing
the initial palindromes of a string. Both problems have two-dimensional
generalizations, which will be considered here. The following definitions
are associated with these computational problems.

A string S[0.--k] is a palindrome if S[i] = S[k —i] for i = 0---k. A
string S[1 - - - n] is said to have an initial palindrome of length k if the prefix
S[0---k — 1] is a palindrome.

An array A[¢,j],1 < i < n,1 < j <n has a period Alp, p] of dimension
pxpif Afi,j] = Ali+p,j+p]fori,j=1..-n—p. An array A[k,k] is a
palindromic array if A[i,j] = Alk — 4,k —j] for i,j = 1---k. An array is
said to have an initial palindrome of dimension k x k if the prefixes in both
directions A[0---k —1,0...k — 1] are palindromes.

We define the problem of finding all repetitions in a string z as follows.
Compute all the positions of squares within z. Main and Lorentz in [ML]
provided an O(nlogn) algorithm for finding all repetitions in a string, of
length n, for general alphabets. Given that only comparisons of symbols
are allowed by any algorithm, this complexity becomes ©(nlogn). In [C]
Crochemore found that all repetitions of a string, of length n, could be
found, for fixed alphabets, also in ©(nlogn). We define the problem of
recognition of a square free string as follows. Given a string z, of length n,
test if z contains any squares. If z does not, then it is said to be square free.
For fixed alphabets, it was shown in [ML2] that recognition of a square free
string, of length n, could be done in O(n) time. For general alphabets in
[ML2] an algorithm was provided for recognition of a square free string, of
length =, in O(nlogn) time.

Given a string, S[1---n], we define the output of the computation of
all periods of S, to be a Boolean array P[1---n] such that P[i] = true
if and only if ¢ is a period length of S. We further define the output of
the computation of all initial palindromes of a string w, where w does
not contain the symbol 8, to be the Boolean array P derived from the
string w3w®. Here we denote as w?, the string w reversed. An early
result on initial palindromes can be found in [FP], where the equivalence
of computation of palindromes, and periods was shown. The constant of
the lower bound for the computation of all periods and initial palindromes
in [ABG] is improved, by reducing the gap in the range of length of string,
n, covered by that proof. This is achieved by a similar proof to that in
[GLIGI.

79



The result is very similar to that in the improvement of the lower bound
for pattern matching in parallel on the CRCW PRAM, (see [G],[GI]), except
there are several new constant factors involved in the derivation of the
bound.

In the following we refer to a function computed in the pattern processing
step of the Knuth-Morris-Pratt algorithm, which is known as the KMP fail-
ure function, see [KMP). This function represents an automaton containing
separate branches, from a single root, for each substring of a string = with
a common non-trivial prefix of z. We define the problem of string prefiz
matching to be as follows. Given a text string T'[1---n], and a pattern
string P[1---m], compute the longest prefix of P that occurs starting at
any position of T'.

Given the number of processors in the computation of the KMP failure
function and string prefix matching of O(mlog m/loglogm) by Breslauer
in [B], we can show a similar improvement to that shown here (in 2.13.1), for
the lower bound of Q(loglog m) time in [B]. This computation of the KMP
failure function, and string prefix matching by Breslauer in [B] requires the
sub-computation of string pattern matching.

The existing lower bounds for periodicity related string problems as in
[BG], and [ABG] left no gap in the parallel complexity of those problems,
but there are possibilities resulting from generalizing the single dimensional
case to two, or possibly more, dimensions. The first proof by Breslauer and
Galil was ingenious in the use of induction, with invariants on any algo-
rithm, and this proof convinced those working on parallel string matching
at the time, of the fact that O(log log m) pre-processing is the best possible.

Subsequent improvements to string matching algorithms concentrated
on reaching constant time processing for ©(loglogm) pre-processing as in
[Ga2], and [CC], and [GZ]. Some new open problems arose from the pattern
matching proof in [BG], in that the range of length of text was restricted,
for the constant of 1/4. Also a condition of n = 2m was required by their
bound. With the new lower bounds in [ABG] only the range restriction
remained relevant. For the proof in [ABG] to hold, the length of string
required is vastly greater, than the already long string required in [BG].

In this paper we generalize the results obtained in [G},[GI] for one di-
menssional pattern matching. Here we study the same problems in a two-
dimensional setting. In particular we show, improved by a constant factor,
lower bounds for two dimensional pattern matching. Moreover, we show a
lower bound for recognition of square freeness, and computing all squares
of an array. Similarly this bound applies to two dimensions.

The techniques used in this paper are similar to, or extensions of, the ones
used in the previous paper, see [G],[GI]. There we showed it was possible
to count multiples that forced a comparison in a way which allowed the

80



count to grow, depending on a variable k for k up to 3. This variable
determined the number of partitions where we can form products of primes.
To generalize the lower bound in [G],[GI] to two dimensional period lengths,
k = 3 is enough. To further generalise this technique it would be necessary
to show k > 3 forces a comparison for some function of k.

The results obtained are as follows :

(1) An improved constant factor, and smaller restriction on the size of
array for which the proof holds, for the Q(loglog m) time, linear (in
O(m?) ) work lower bound for two dimensional pattern matching.
The constant is 0.26 for m > 173 = 4913,

(2) Lower bounds for finding all periods, and initial palindromes, the
KMP failure function, and other problems related to finding the pe-
riod of an array with the same complexity, to within a constant, as

Q).

(3) Given an n x n array, a lower bound for recognition of square freeness,
and computing all squares, of Q(loglogn) time for O(n2log® n) work.

In summary finding the period of an array in parallel using p processors
for general alphabets has the following bound

2 . 2
e ("7) ifp <2W,n >173 (1.1)
O(loglogn) if Ghegm <P <n%n>17° (1.2)
O (loglogzg p) ifn®<p< n2log’n,n > 173 (1.3)

© (loglogap p) if n2log?n < p < n4,n large enough (1.4)

(The algorithm in [CC] may be used in (1.2) directly, and in (1.3)-(1.4)
with a redundant processors, and a in (1.1) with a slow down.)

In the next section, the proofs of the lower bounds for two-dimensional
pattern matching for linear work are presented. These proofs also apply
to finding all periods, and initial palindromes, and other problems on two
dimensional arrays requiring only linear work to solve. In Section 3 we study
the problem of recognition of square freeness, and computing all squares of
two-dimensional arrays. In this section the proofs of the lower bounds from
Section 2 are extended to O(n2log®n) work for two dimensional arrays.

2 Structure of the proof in two dimensions

The following definition replaces the relatively prime multiples used in [BG].
If either end of the vectors we call prime vectors, defined below, are pro-
jected on to either axis, the set of multiples generated is a subset of that
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of relatively prime multiples from n/2 to n in [BG]. Hence it is possible to
claim that the one dimensional proof is a special case of the two dimensional
proof that follows.

Definition 2.1. A vector (z1,y1) — (22,¥2) is a prime vector iff

(i) {z1,3}, {z2,y2} both force a comparison in one dimension (i.e. both
sets satisfy the conditions for p,q in Lemma 2.2-2.4 below)

(i) P € {z1,%1,%2,y2} is such that V P m/2 < P < m where m is the
length of one edge of the pattern array we are pre-processing.

(iii) Py € {z1,1} is such that m/2 < P, < 3m/4.

(iv) P € {z2,y2} is such that 3m/4 < P, < m. (u}

In the one dimensional case it was sufficient to denote the testing of
equality, or non-equality, of two symbols, from an alphabet %, in a string,
as a comparison. In the two-dimensional case, such a comparison is referred
to as a symbol comparison. Given two symbols, from an alphabet, X, in an
array, the testing for equality, or non-equality, of those symbols, is referred
to as a symbol comparison. Moreover, the simultaneous comparison of the
symbols at both ends of a vector, in an array, with the symbols at both ends
of another vector, in the same array, is referred to as a vector comparison.

Consider the problem of finding the period length of an array, where a
period u of the string z is a prefix of = constructed by concatenations of u,
and the period of the string z is the shortest such u. In the two dimensional
case, where an array A[i,j],1 <i < n,1 < j < n has a period Ap,p] of
dimension p x p if A[t,5] = A[i+p,5+p] fori,j =1...n—p, and the period
of the array is Alp, p] for the shortest such p.

We use the following strategy, which is a generalization of that used in
one dimension by Breslauer and Galil. Given an adversary, he could answer

Q (loglogm)

iterations of vector comparisons in such a way that there is still a choice of
fizing the input array A in two different ways. One way is that the output
array has a period of length smaller than Z'. The other way is that the
output array does not have such a period. This implies that any algorithm
using less iterations than this will be erroneous.

We continue with some definitions used in [BG]. An integer k is a possible
period length of A if the array A can be fixed consistently using the output
from previous vector comparisons in such a way that k is a period length of
A. For k to be a period length it is necessary that each residue equivalence
class modulo k is fixed to the same symbol. Thus if l; = j; mod k, and
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la = j2 mod k then A[l;] = A[j1], and A[la] = A[j2] where A[44] is the z
co-ordinate, and A[ip] is the y co-ordinate, of elements of a two dimensional
array A.

At the start of iteration ¢ Breslauer-Galil’s adversary will maintain an
integer, k;, which is a possible period length. During iteration ¢ this ad-
versary answers vector comparisons such that some k;1 is also a possible
period length, and some symbols of A are fixed. Moreover, given a pattern
array bounded by m?, the following Lemma from the Breslauer-Galil proof
is critical to what follows.

Lemma 2.2. [BG] If p,q > \/77";- are relatively prime, then a symbol

comparison is forced by at most one of the multiples pk; and gk;. O

Lemma 2.3. Let p = p1p2, 9 = q142, With

/m /m
— < pg . < —_—
2k"_PJ,‘b_ k"

where pj,q;j,5 = 1,2 are prime numbers. A symbol comparison is forced
by at most one of pk; and gk;.

Proof: The lemma holds when gcd(p, ¢) = 1, see [BG].

Assume w.l.o.g. that ged(p,q) = p1 = q1, I = k mod pk; and | = k mod
gk; for 1 <!,k < m. Then we have | = k mod pagp1 k; and ¢ > 2, which
implies pogap1 k; > m; this implies ! = k, a contradiction. o

Lemma 2.4. Let p = p1paps, ¢ = q19293, With

1/3 1/3
m m
—_— <p: Qi < —
(2’0‘) SPihq; & (k‘)

where pj;, qj,1 = 1,2, 3 are prime numbers. A symbol comparison is forced
by at most one of pk; and qk;.

Proof: The lemma holds when the gcd(p, q) = 1, see [BG].
Assume ged(p, q) > 1, I = k mod pk; and ! = k mod gk; for 1 < I,k < m.
If the ged(p, q) is just one prime number and w.l.o.g gcd(p,q) = p; = qi,
then we have | = k mod pap3gagap1 ki and

P2pP3q293P1ki > m

this implies ! = k, a contradiction.
If the gcd(p, q) is a product of two primes and w.l.o.g let gcd(p,q) =
P1P2 = q1q2 then we have | = k mod pagspip2k; and

pagap1pek; > m
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this implies { = k, a contradiction. O

In the one dimensional case, as above, k; is a candidate for the period
length of a string of length n. However in the two dimensional case which
follows, k; is a candidate for the period length of an n x n array.

We also need the following three theorems from [GI] which improve the
bound by counting comparison forcing multiples.

Theorem 2.5. [RS] For n > 17 the number of prime integers between 1
and n denoted by w(n) satisfies the following

n 5n
—< -
Inn ~ m(n) < 4Inn
a
Corollary 2.8. There are at least
_ (1%
Pe=\Tinnt
distinct prime integers in the range [(n/Z)i',n*] for k > 1.
Proof: Let r = 1/k then from Theorem 2.5 we have
5_(3)
w(n" < 2
(@) <52
which implies that
. 1
) - (rlnn 2"4r1n( ))
v L _
~ r \Inn 4(lnn. 1)
n"
o (4lnn)
a

Lemma 2.7. There are at least
3 2
H Pk n
(k) > Blog
ot og” n

pairs (p,q) of distinct integers, with p = p1p2...pk, ¢ = q192...qx and, p;,q;
are prime numbers in the range [(n/2)§,ni‘], where

1 nt

= Tingal)
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Proof: From Corollary 2.6 there are px primes in the range [(n/2)*,n';=‘].
One can choose k primes, p;, q; € [(n/2)f,ni], 1 <t < k, then p = p1p2..px,
and q = ¢142...qx seem to satisfy the conditions required to force a compar-
ison. Unfortunately only p up to p = p1paps can be shown to do this (see
Lemmata 2.3 and 2.4). Now considering k = 2 and k = 3, one can see that

there are at least (p;) (‘;3) (2.7.1)

such pairs. By (2.7.1) it follows that

(pzz) (I;a) _ (- l)pzps(g —1)(p3-2)

1
> 75(p303 — 36363 + 20303 — p263 + 3p3p2 — 20203)

n2

2 ;
15log’n

o

In the two dimensional case we apply the same analysis as in [BG], but

here p and ¢ are prime vectors, and the lower bound, which follows in a
similar fashion, requires developing a calculation based on the size of the
set of these prime vectors.
Lemma 2.8. Given an m x m array, and two arbitrary vectors ¥ =
(111 12) - (13:14)3 and 4 = (.1'1,.1'2) - (j3$j4): 1 < li < m, and 1 S ji S m,
and a prime vector, (see Definition 2.1), @ = (z1,y1) — (z2,%2), then a
vector comparison ¥ = # is forced by the prime vector .

Proof: Assume j; =!; mod (z2) and j; = I mod (y2).

By two counts of Lemmata 2.2-2.4, a symbol comparison at (j;,72) to
(11, lg) is forced.

Assume j3 = I3 mod (z;) and j4 = I3 mod (y;).

Again by two applications of Lemmata 2.2-2.4, a symbol comparison at
(4s, ja) to (I3, 14) is forced.

As both ends of the prime vector, w5, force a symbol comparison at both
ends of ¥, and # a vector comparison is forced. In other words we force the
symbol at (I3, l2) to be compared with the symbol at (5, j2), and we force
the symbol at (I3, 1s) to be compared with the symbol at (43, 54). That is

(jl:j?) - 03:j4)

is forced by
(11,12) - (l3v l4)

The lemma follows O
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Lemma 2.9. There are at least

1 ( cn? )4
64 \log°n

prime vectors i in the range n/2 < @ < n for both co-ordinates, where

1

61=E

Proof: From Lemma 2.7 there are at least

c n.2

log®n

pairs (p, g) of distinct integers such that n/2 < (p, q) < n so there are

c1n2 2
o n (2.9.1)

of these pairs in both co-ordinates. To form the vectors we take

(z1,1) € {m/2---3m/4} and (z2,32) € {3Mm/4---m}

each giving . )
can
8 (log"' n)

thus there are

1 (_Tcl"z )2 (2.9.2)

64 \log”n hh
on consideration of both ends of each prime vector. Considering the product
of 2.9.1 and 2.9.2 the lemma follows. O

The proof continues in much the same way as in [BG], but the invariants
that are involved differ in the following ways:

o k; is a prime vector multiple as in Lemma 2.8,
e modular residues are in both co-ordinates,

e K; is the square of the function in [BG], that is
e 2
K= (ml"‘ ¢ 1))

Thus an adversary to any algorithm maintains the following invariants
at iteration i:
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(1) 3Ki < ks < K

(2) Given an m x m array, then for each symbol fixed to (I, l2) — (I3, 1),
for every ji = l; mod (z2), and for every j2 = l» mod (y2), and for
every j3 = I3 mod (z), and for every j4 = Iy mod (y;);

(41, 32) = (3, Ja)
is fixed to the same symbol, where z,, 22, y1, and y; are components

of a prime vector.

(3) If a symbol comparison is equal then both symbols compared were
fixed to the same symbol.

(4) If a symbol comparison is unequal then

(a) it is between different residues modulo z;, z2,1, and ya
(b) if the symbols were fixed to values then those values are different

(5) The number of fixed symbols satisfies f; < K;.

A candidate denotes a possible new period length after an iteration of
any algorithm. Next to be considered are the candidates for k;..,, which are
prime vector multiples of k;, which also, as a check, satisfy the condition
of Lemmata 2.2-2.4 in both co-ordinates. As mentioned earlier this enables
us to claim that the one dimensional proof is a special case of our two
dimensional version.

Lemma 2.10. There are the following candidates for k;,1 which are prime
vector multiples of k;, and satisfy the invariant held by the adversary that
1K1 < ki1 < Kiy1, and the pair (k, kiy) satisfy the conditions of
Lemmata 23-24:

4
1 clK52+1 ) 1—4-G-1\2
—|——=),Ki=(m
64 (log5 mK}? ! ( )
(Where we define a vector multiple as the conjunction of the co-ordinate

scalar multiples.)

Proof: These candidates are of the form 7k; for a prime vector 7. The
count of these follows from Lemma 2.9. (]

Lemma 2.11. Each such candidate satisfies the condition of Lemmata
2.2-2.4 for both co-ordinates.

Proof: As z1yk; > K.'+1/2, zoyzk; 2> Kit1, and k; < K; then
2

1-4-%\*
1 Kl+l 1 (m ) _1__ 2m4.4—‘ > m
= ki 4K; k.4(m1—4 <i—1>) k; 4 Tk

(z11 )2
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1KY, 1 (ml_‘ﬂ)4

. m2
3 2 4,4—: >
ki 4K; k; 4 (m1_4—(i-1))2 _—

L
_ki4 Tk

(z212)? 2

O
Lemma 2.12. There exists a candidate for ki, in therange 1K1 -+ Ki11

that forces at most 4
64md (K,2 lo%5 m)
akii,
vector comparisons. (Recall a vector comparison is defined as the simulta-

neous comparison of the symbols to be found at the co-ordinates of both
ends of the vector.)

Proof: By Lemma 2.10 there are at least

i ()
64 \ log® mK?
such candidates that are prime vector multiples of k;. By Lemma 2.8 each

of the m? vector comparisons (m? for each end of each vector) is forced by
at most one of them. u]

Theorem 2.13. Any comparison based algorithm for finding the period
length, smaller than (m/2)? = m2/4, of an array of size m x m using m?
symbol comparisons in each iteration requires 0 - 26(log log m) iterations.

Proof: The proof is similar to that in [BG] except in the number of fixed
elements which follows, and in that the invariants hold at iteration i+ 1 as
follows :-

The basis for induction follows from the Breslauer-Galil proof, as there
are no changes from their proof at that stage. By Lemma 2.12 k;;; exists

and it forces at most . 4
Klog®m
64m* (—-T' )
aKi,
vector comparisons.

These vector comparisons are equal iff ), z2,y1, and yo modulo k;;; fix
the residue class modulo k;;; to the same symbol. All others are unequal.
ki1 is a prime vector multiple of k; as in Lemma 2.8, so each residue class
modulo k; has four scalar residue classes modulo z2,z1,%2, and y; which
split into

kiy1/x2, kiv1/z1, kiv1/y2, ki1 /n1
residue classes modulo k;;;. If two indices are in different (respectively
the same) residue classes modulo k;, i.e. all four scalar residue classes,
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then they are also in different (respectively the same) all four scalar residue
classes modulo k; ;.
The invariants can now be itemized

(1) By Lemma 2.10, 1K;;1 < kiy1 < Kiy1, as the prime vector multiples
are in the required range.

(2) By the argument above, each symbol is still fixed as before.
(3) Likewise, by the argument above, for equal symbols.

(4) (i) Residue classes of any of the four points may differ to produce an
unequal answer.
(ii) Any previous differing class is maintained, by consistency of the
calculation. Two relative prime multiples composed will not produce
a common factor.

(5) By induction f;y1 < ki+1. Here we must consider the induction in
each co-ordinate in order to validate the proof. Where f7,, is the
z co-ordinate of fi41, and likewise f}. , is the y co-ordinate of f;41,
then let the prime vector z; — z2 fix f7 ;, and let the prime vector

y1 — y2 fix f¥,;, each having two scalar residue classes. Given that we

show in the following proof that fi+1 < kit = .-’;,1‘"“’ V< kf_;_{'“d v

and both sets of co-ordinate vectors are of the same size, this implies
that f%, <k, and ff}; < Ky,

Each residue class modulo k;; has, at most,
([m1)*/4kis1 < (2m)4/ ki1 = 16m* [kiy1 < 32m*/Kiys

elements and

) 4 5 4
fon < K, [1+32 64m? (Kflog m) ]
K iy

32.64 K?
< K, [l+ £ _m8lo m] < K;
[T e S K
32-64 464t

14— mélog®m < K—;{"'l-
i )

32. 64)“’ R

(1+ B)V5) = (1 +mSlog®m
1

and finally
loglog((1 + B)'/52) < (1 — 0 - 48) loglogm
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log((1+ B)Y/52) < 4%%618 108 m |05 1 (2.13.1)

(1 + B)1/52 S m4—0'26(loglogm) < m4—i

so after 0 - 26loglog m iterations

2

_g-0-28 lcgbgm)z < ‘m.T

firnr kiv1 < (ml
and the theorem follows.

O
Note: The inequality in 2.13.1 is true for m > 4913 = 173,

We can also improve the lower bound for finding all periods and initial
palindromes of an string, of length n, in parallel, from [ABG], with similar
results to Theorem 2.13. There is a factor of four difference in the approx-
imation to the linear work Q(loglogn) time lower bound for the parallel
computation of all periods, and initial palindromes of a string of length n
([ABG]), from that in the string matching lower bound, ([BG]). In other
words

loglog(1 + 64logn) replaces loglog(1 + 161log m)

(Here n, and m are equivalent for the purposes of comparison.)

3 Ramifications of the structure

Following the previous proofs we now present our improvements to Apos-
tolico, Breslauer, and Galil’s lower bound for recognition of square freeness,
and hence for computing all squares, and its generalization to two dimen-
sions. We begin with a reminder of some definitions.

A string z is said to be a square if there exists a substring u of z such
that £ = uu. e.g. abab, abcabc. A string is called square-free if it has no
square as a substring. An array has no square, if the horizontal and vertical
strings making up that array also have no square as a substring. Similarly
to compute all squares in an array, requires the computation of all squares
in the horizontal, and vertical strings which make up that array.

The best possible sequential algorithm for computing all squares in a
string by Main and Lorentz, see [ML], runs in O(n) time for fixed alpha-
bets. For general alphabets O(nlog n) time is required. Hence any optimal
parallelization, for general alphabets, has an O(nlogn) cost, as in [ABG].
In [ABG] it is shown that the string generated by the adversary in [BG] has
a period smaller than half of its length if and only if it has a square. Hence,
Apostolico et al show, the time complexity of Q(loglogn) is required for
O(nlogn) cost.

A summary of the changes to the proof from those already provided
are given here. We are using essentially the same techniques, with some
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substitutions for the extra O(logn) factor used in the case of recognition
of square freeness, and computing all squares. The results are unchanged
even with the extra O(logn) processors required in this case, and the lower
bounds for computing the period length are still strong enough to cover an
extra O(logn) factor to the number of processors for each dimension, which
is needed in recognition of square freeness, and computing all squares. The
first change to the previous proof occurs at Lemma 2.12, which is now as
follows.

Lemma 3.1. There exists a candidate that forces at most

K? 1og5n)“

64nlogin (
¢ alK?,

vector comparisons.

Proof: By Lemma 2.8 and Lemma 2.10, as earlier, except there now are
nlog? n vector comparisons. 0

Consider the one dimensional case. In [ABG] it is shown that the lower
bound in [BG] extends to O(rlogn) comparisons, and their proof at this
stage is such that:-

loglog(1 + 16 log®n) < -;-log logn
which only holds when n > 103%°. Here we improve this, by counting
nlogn elements in each residue equivalence class modulo k;;1, before the

fixed elements are bounded, and substituting n log n comparisons in the one
dimensional case of Lemma. 2.12, so the function at this point is

(4log ") < (n4 Hlomtos ) < ptirses (3.1.1)

51

Below we include the lower bound approximations for pattern matching
from [BG] in (3.1.2), and from [GI] in (3.1.3) for completeness.

loglog(1 +16logm) < %Iog]ogm (3.1.2)

1/3

loglog (41°g5 "‘) < Lioglogm (3.1.3)
C 2

The two-dimensional proof has similar improvements. Consider the prob-
lem of ﬁndmg the period length of an array. The array we consider is
bounded by n2, and we use n2log? n symbol comparisons in each iteration.
The lower bound and its improvement, holds for testing whether such an
array has a period of length smaller than %

91



We use the same strategy as before, a generalization of that used in one
dimension by Breslauer and Galil. Given an adversary, he could answer

Q (loglogn)

iterations of symbol comparisons in such a way that there is still a choice of
fizing the input array A in two different ways. One way is that the output
array has a period of length smaller than 2. The other way is that the
output array does not have such a period. This implies that any algorithm
using less iterations than this will be erroneous, even with the extra symbol
comparisons in each iteration.

We repeat some definitions used in [BG]. An integer k is a possible period
length of A if the array A can be fixed consistently using the output from
previous vector comparisons in such a way that k is a period length of A.
For k to be a period length it is necessary that each residue equivalence
class modulo k is fixed to the same symbol. Thus if l; = j; mod k, and
la = jo mod k then A[l;] = Alj1], and A[la) = A[ja] where A[4;] is the z
co-ordinate, and A[ip] is the y co-ordinate, of elements of a two dimensional
array A.

At the start of iteration ¢ Breslauer-Galil’s adversary will maintain an
integer, k;, which is a possible period length. During iteration i this ad-
versary answers vector comparisons such that some k;; is also a possible
period length, and some symbols of A are fixed.

The two-dimensional case includes n?log?n symbol comparisons, and
n?log® n elements in each residue equivalence class modulo k;..1, before the
fixed elements are bounded.

Given a constant of (1/6) the details of the calculations for a 1024 x 1024
array are as follows: Here we have

i= %loglogn

and the figures obtained for n = 1024 in relation 2.13.1 (with an extra

factor of log®%2n) were 21.29 < 24.96. We have therefore the following
theorem.

Theorem 8.2. Any comparison based algorithm for finding the period
length, smaller than (n/2)? = n2/4, of an n x n array using O(n?log?n)
symbol comparisons in each iteration requires

%(loglog n)

iterations. 0

At the time of writing it was an open problem whether there is an algo-
rithm which matches this complexity in Theorem 3.2, for the computation
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of all squares, or recognition of square freeness. The result in one dimension
in [ABG] had yet to be generalized to many dimensions on the PRAM.

A (finite) Fibonacci string, F,, is defined as follows.
Fy=b, 1 =a, F,=F,_1F,_2 for every integer n > 2

A primitive square is a square, which itself is not repetitive. Theorem
3.2 is not surprising when we consider that there are

Q(n%log?n)

primitive squares in an array of single shifted Fibonacci strings. The array
consists of Fibonacci strings in both directions, see Figure 1. For details
of the one dimensional case of this, where it is shown there are Q(nlogn)
squares in the Fibonacci string, see [C].

a b a b a a b a a b a
a b a b a a b a a b a
a b a b a a b a a b a
a b a b a a b a a b a
a b a b a a b a a b a
a b a b a a b a a b a
a b a b a a b a a b a
Figure 1. A Fibonacci array
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