Equitable Colorings of Planar Graphs

Yi Zhang and Hian-Poh Yap
Department of Mathematics
National University of Singapore
10 Kent Ridge Crescent
Singapore, 119260

ABSTRACT. In this paper we prove that the Equitable Δ -Coloring Conjecture holds for planar graphs with maximum degree $\Delta \geq 13$.

1 Introduction

The graphs we consider are finite, simple and undirected. For a graph G, we use V(G), |G|, E(G), e(G), $\Delta(G)$ and $\delta(G)$ to denote respectively the vertex set, order, edge set, size, maximum (vertex) degree and minimum (vertex) degree of G. If $U \subseteq V(G)$, then the subgraph of G induced by U is denoted by G[U]. However, if $u \in V(G)$, then we use G - u to denote the subgraph of G induced by $V(G) \setminus \{u\}$. We write $xy \in E(G)$ if the two vertices x and y of G are adjacent in G. For an edge xy of G, we use G - xy to denote the graph obtained from G by deleting xy. We use d(v) to denote the degree of v in G and N(v) to denote the set of vertices of G adjacent to G in G. For any G in G and G in G and G in G i

We call a (proper) vertex-coloring ϕ of a graph G an equitable coloring of G if the number of vertices in any two color classes differ by at most one. If ϕ is an equitable coloring of G using k colors, then we say that ϕ is an equitable k-coloring of G. The least integer k for which G has an equitable k-coloring is defined to be the equitable chromatic number of G and is denoted by $\chi_e(G)$. The least integer k for which G has an equitable k'-coloring of G for every $k' \geq k$ is denoted by $\chi^*(G)$. A set $U \subseteq V(G)$ is called an independent t-set if |U| = t and no two vertices of U are adjacent in G.

Hajnal and Szemerédi [2] proved that every graph G has an equitable k-coloring for any $k \geq \Delta(G) + 1$. Meyer [4] proved that any tree T has an equitable ($\lceil \Delta(T)/2 \rceil + 1$)-coloring and he made the following conjecture: The Equitable Coloring Conjecture (ECC): For any connected graph G, except the complete graph and the odd cycle, $\chi_e(G) \leq \Delta(G)$.

(A survey on equitable colorings of graphs can be found in the book Graph Coloring Problems [3].)

In [1], Chen, Lih and Wu proved that if G is a connected graph with $\Delta(G) \geq \frac{|G|}{2}$, and G is not the complete graph, or the odd cycle, or the complete bipartite graph $K_{2m+1,2m+1}$, then G is equitably Δ -colorable. Based on this result, Chen, Lih and Wu put forth the following conjecture: The Equitable Δ -Coloring Conjecture: Let G be a connected graph with maximum degree Δ . Suppose G is not the complete graph, or the odd cycle, or the complete bipartite graph $K_{2m+1,2m+1}$. Then G is equitably Δ -colorable.

(Note that if a graph satisfies the Equitable Δ -Coloring Conjecture, then it also satisfies the ECC. Hence the Equitable Δ -Coloring Conjecture is stronger than the ECC.)

In [5], we proved that if G is a connected graph of order n with $\frac{n}{3}+1 \le \Delta(G) \le \frac{n}{2}$, then $\chi^*(G) \le r+s+t \le \Delta(G)$ for some parameters r, s and t of G. Thus the Equitable Δ -Coloring Conjecture is true for graphs G of order n with $\Delta(G) \ge \frac{n}{3}+1$. In [6], we proved that the Equitable Δ -Coloring Conjecture holds for outerplanar graphs.

2 Some Useful Lemmas

We need the following lemmas in the proof of our main theorem.

Lemma 1. For any planar graph G of order n, $e(G) \leq 3n-6$ and $\delta(G) \leq 5$.

(This well-known result can be found in almost every textbook on graph theory.)

Lemma 2. Let $m \ge 1$ be a fixed integer. Suppose that any planar graph of order mt is equitably m-colorable for any integer $t \ge 1$. Then any planar graph is also equitably m-colorable.

Proof: We prove this lemma by induction on the order n of G. By the assumption, we may assume that mt < n < m(t+1). If $m \le 5$, then n = m(t+1) - j for some 0 < j < 5. Now we consider the case that $m \ge 6$. By Lemma 1, G has a vertex u of degree at most 5. By the induction hypothesis, G - u has an equitable m-coloring ϕ . Let the color classes of ϕ be V_1, V_2, \ldots, V_m , where $|V_i| = t$ or t+1 for all $i \ge 1$. Since $d(u) \le 5$, we may assume that u is adjacent to only vertices in $V_1 \cup V_2 \cup \cdots \cup V_5$. If $|V_i| = t$ for some $i \ge 6$, then by adding u to V_i , we get an equitable m-coloring of

G (having color classes $V_1, \ldots, V_{i-1}, V_i \cup \{u\}, V_{i+1}, \ldots, V_m$). Hence we can assume that $|V_i| = t+1$ for all $i \geq 6$ and we also have n = m(t+1) - j, 0 < j < 5. Finally, let $G' = G \cup K_j$. Then G' is planar of order m(t+1) and thus by the assumption, G' is equitably m-colorable (and so is G). \square

Lemma 3. Let $m \ge 4$ and $t \ge 1$ be integers. Let H be a graph of order mt with vertex chromatic number $\chi \le m$. If $e(H) \le (m-1)t$, then H is equitably m-colorable.

Proof: Let A be the set of all isolated vertices in H and let $\delta = \delta(H - A)$. We first consider the case that $m \leq \delta$. Since $\chi \leq m$, H - A has an m-coloring ϕ having color classes U_1, \ldots, U_m . Now $e(H) \leq (m-1)t < \delta t$ implies that $|U_i| < t$ for all $i = 1, 2, \ldots, m$. Hence we can get an equitable m-coloring of H by adding in some isolated vertices to the color classes U_i , $i = 1, \ldots, m$.

Next we consider the case that $m \geq \delta+1$. We prove this case by induction on e(H). Since H has an edge xy where $d(x) = \delta$, by the induction hypothesis, H-xy has an equitable m-coloring ϕ having color classes V_1, V_2, \ldots, V_m , where $|V_i| = t$ for all $i = 1, 2, \ldots, m$. Clearly we need only to consider the case that $x, y \in V_1$. Let $N(x) \subset V_1 \cup V_2 \cup \cdots \cup V_{\delta}$ and let $V_1' = V_1 \setminus \{x\}$. Suppose that there exists $z \in V_i$ for some $i \geq \delta+1$, such that $e(z, V_1') = 0$. Then by transferring z from V_i to V_1' and adding x to $V_i \setminus \{z\}$, we get an equitable m-coloring of H. Thus for each $z \in V_{\delta+1} \cup \cdots \cup V_m$, $e(z, V_1') \geq 1$. Hence $e(\bigcup_{i=\delta+1}^m V_i, V_1') \geq (m-\delta)t$. If every $w \in V_j$, $j \in \{2, \ldots, \delta\}$, is adjacent to some vertex in V_1' , then $e(V_j, V_1') \geq t$. Otherwise there exists $w \in V_j$ such that $e(w, V_1') = 0$. Then we transfer w from V_j to V_1' and by the above argument, $e(\bigcup_{i=\delta+1}^m V_i, V_j \setminus \{w\}) \geq (m-\delta)t \geq t$. Consequently $e(H) \geq (m-\delta)t + (\delta-1)t + \delta = (m-1)t + \delta$, a contradiction to the assumption.

Lemma 4. Let m and s be positive integers. Suppose G is a planar graph with $\Delta(G) \leq m$. If G has an independent s-set V' and there exists $A \subseteq V(G) \setminus V'$ such that $|A| > \frac{s(m+3)}{2}$ and $e(v,V') \geq 1$ for all $v \in A$, then A contains two nonadjacent vertices α and β which are adjacent to exactly one and the same vertex $\gamma \in V'$.

Proof: Let $A_1 \subseteq A$ be such that each $v \in A_1$ is adjacent to exactly one vertex of V'. Let $r = |A_1|$. Then $r + 2(|A| - r) \le ms$, from which it follows that $r \ge 2|A| - ms > 3s$. Hence V' contains at least one vertex γ which is adjacent to at least four vertices of A_1 . Since G is planar, G does not induce K_5 . Hence A_1 contains two independent vertices α and β which are adjacent to γ .

Lemma 5. Let $m \ge 7$ and $t \ge 1$ be integers. Let H be a planar graph of order mt with maximum degree Δ . If $e(H) \le (2m-3)t - \max\{\Delta - 3, t\}$, then H is equitably m-colorable.

Proof: We prove this lemma by induction on e(H). As H is planar, H has an edge xy where $d(x) = \delta \leq 5$. By the induction hypothesis, H - xy has an equitable m-coloring ϕ having color classes V_1, V_2, \ldots, V_m , where $|V_i| = t$ for all $i = 1, 2, \ldots, m$. Clearly we need only to consider the case that $x, y \in V_1$. Let $N(x) \subset V_1 \cup V_2 \cup \cdots \cup V_\delta$ and $V_1' = V_1 \setminus \{x\}$. By an argument in the proof of Lemma 3, $e(\bigcup_{i=\delta+1}^m V_i, V_1') \geq (m-\delta)t$.

Suppose for each $v \in V_2 \cup \cdots \cup V_\delta$, $e(v,V_1') \geq 1$. Then $e(V_2 \cup \cdots \cup V_\delta,V_1') \geq (\delta-1)t$. Let $X = \bigcup_{i=2}^m V_i \cup \{x\}$. Then $e(X,V_1') \geq (m-1)t + \delta$. Thus $e(H[X]) \leq e(H) - e(X,V_1') \leq (m-2)t - \max\{\Delta - 3,t\} - \delta$. Since $|X| = (m-1)t+1 > \frac{(m+3)(t-1)}{2}$, by Lemma 4, X contains two nonadjacent vertices α and β which are adjacent to exactly one and the same vertex $\gamma \in V_1'$. Let $H_1 = H[(V_1' \setminus \{\gamma\}) \cup \{\alpha,\beta\}]$ and $H_2 = H[(X \setminus \{\alpha,\beta\}) \cup \{\gamma\}]$. Clearly $e(H_2) \leq e(H[X]) + \Delta - 2 \leq (m-2)t$. As $|H_2| = (m-1)t$, by Lemma 3 and the Four Color Theorem, H_2 is equitably (m-1)-colorable. Hence H is equitably m-colorable.

Now we suppose that there exists $v_j \in V_j$ such that $e(v_j, V_1') = 0$ for some $j \in \{2, \dots, \delta\}$, say j = 2. By an argument in the proof of Lemma 3, $e(\bigcup_{i=\delta+1}^m V_i, V_2') \geq (m-\delta)t$ where $V_2' = V_2 \setminus \{v_2\}$. If every $w \in V_j$, $j \in \{3, \dots, \delta\}$, is adjacent to some vertex in V_k' , k = 1, 2, then $e(V_j, V_k') \geq t$, k = 1, 2. Otherwise there exists $w \in V_j$ such that $e(w, V_1' \cup V_2') = 0$. Then by an argument in the proof of Lemma 3, $e(\bigcup_{i=\delta+1}^m V_i, V_j \setminus \{w\}) \geq (m-\delta)t \geq 2t$. Thus $e(H) \geq 2(m-\delta)t + 2(\delta-2)t + \delta > (2m-3)t - \max\{\Delta-3, t\} \geq e(H)$, which is a contradiction.

3 Proof of Main Theorem

In this section we shall prove that any planar graph G with maximium degree $\Delta \geq 13$ is equitably m-colorable for any $m \geq \Delta$. By Hajanal and Szemerédi's theorem, we only need to prove that G is equitably Δ -colorable. However, here we do not apply Hajanal and Szemerédi's theorem and instead we prove the general case because it does not increase the length of the proof.

Theorem. Let G be a planar graph with maximum degree $\Delta \geq 13$. Then G is equitably m-colorable for any $m \geq \Delta$.

Proof: By Lemma 2, we need only to consider the case that n=|G|=mt. We prove this theorem by induction on e(G). As G is planar, G has an edge xy where $d(x) \leq 5$. By the induction hypothesis, G-xy has an equitable m-coloring ϕ having color classes V_1, V_2, \ldots, V_m , where $|V_i| = t$ for all $i \geq 1$. Clearly we need only to consider the case that $x, y \in V_1$. Let $V_1' = V_1 \setminus \{x\}$ and assume that $N(x) \subset V_1 \cup V_2 \cup \cdots \cup V_5$.

It is clear now that we can assume that $e(z, V_1') \ge 1$ for any $z \in \bigcup_{i=6}^m V_i$.

Consequently

$$e(\bigcup_{i=6}^{m} V_i, V_1') \ge (m-5)t. \tag{1}$$

Suppose there exists $w \in V_j$, for some j = 2, 3, 4, 5, such that $e(w, V_1') = 0$. Then following the proof of Lemma 3, we can assume that for any $z \in V_i$, $i \geq 6$, $e(z, V_j') \geq 1$, where $V_i' = V_j \setminus \{w\}$. Consequently

$$e(\bigcup_{i=6}^{m} V_i, V_j') \ge (m-5)t \tag{2}$$

Suppose there exists $v \in V_k$, where $k \in \{2, 3, 4, 5\}$ and $k \neq j$, such that $e(v, V'_j) = 0$. Then by transferring v from V_k to V'_j and w from V_j to V'_1 , we can make $V'_k = V_k \setminus \{v\}$ play the role of V'_1 . Thus we can assume that $e(z, V'_k) \geq 1$ for all $z \in V_i$, $i \geq 6$. Hence

$$e(\bigcup_{i=5}^{m} V_i, V_k') \ge (m-5)t. \tag{3}$$

It is clear that $e(\bigcup_{i=6}^m V_i \cup \{x\}, V_1') \leq \Delta(t-1) \leq m(t-1)$. Hence $(m-5)t+1 \leq m(t-1)$, from which it follows that $t \geq \frac{m+1}{5}$. Thus

$$t > 3$$
.

Case 1. There exists $v_j \in V_j$ such that $e(v_j, V_1') = 0$, for each j = 2, 3, 4, 5. In this case, from (1) and (2), we obtain

$$e(\bigcup_{i=6}^{m} V_i, \bigcup_{j=1}^{5} V_j') \ge 5(m-5)t, \text{ where } V_j' = V_j \setminus \{v_j\}.$$

$$\tag{4}$$

Then $5(m-5)t+1 \le e(G) = 3n-6 = 3mt-6$, which is false because $m \ge 13$. Hence G is equitably m-colorable.

Case 2. There exists $v_j \in V_j$ such that $e(v_j, V_1') = 0$ for each j = 2, 3, 4 but $e(v, V_1') \ge 1$ for any $v \in V_5$.

Since $e(v_j, V_1') = 0$ for j = 2, 3, 4, by (1) and (2), $e(\bigcup_{i=6}^m V_i, \bigcup_{j=1}^4 V_j') \ge 4(m-5)t$ where $V_j' = V_j \setminus \{v_j\}$. Next, if there exists $v_5 \in V_5$ such that $e(v_5, V_j') = 0$ for some j = 2, 3, 4, then by (3), $e(\bigcup_{i=6}^m V_i, V_5') \ge (m-5)t$. Thus (4) holds (which has been proved false). Otherwise $e(V_5, V_j') \ge t$ for all j = 2, 3, 4 and thus

$$e(\bigcup_{i=5}^{m} V_i, \bigcup_{j=1}^{4} V'_j) \ge 4(m-5)t+4t.$$
 (5)

Let $A = \bigcup_{i=5}^{m} V_i \cup \{x\}$. Then $e(G[A]) \le e(G) - e(A, V_1' \cup (\bigcup_{j=2}^{4} V_j)) \le 3mt - 6 - (4(m-5)t + 4t + 1) = (16 - m)t - 7$. Since $|A| = (m-4)t + 1 > \frac{(m+3)(t-1)}{2}$, by Lemma 4, A contains two nonadjacent vertices α and β which are adjacent to exactly one and the same vertex $\gamma \in V_1'$. Let

$$G_1 = G[((V_1' \setminus \{\gamma\}) \cup \{\alpha, \beta\}) \cup (\bigcup_{j=2}^4 V_j)]$$

and

$$G_2 = G[(A \setminus \{\alpha, \beta\}) \cup \{\gamma\}].$$

Clearly $e(G_2) \leq e(G[A]) + m - 2 \leq (16 - m)t + m - 9 \leq (m - 5)t$. As $|G_2| = (m - 4)t$, by Lemma 3, G_2 is equitably (m - 4)-colorable. Hence G is equitably m-colorable.

Case 3. There exists $v_j \in V_j$ such that $e(v_j, V_1') = 0$ for each j = 2, 3 but $e(v, V_1') \ge 1$ for any $v \in V_4 \cup V_5$.

By (2), $e(\bigcup_{i=6}^{m} V_i, V_j') \ge (m-5)t$ for j=2,3.

Suppose there exists $v_k \in V_k$, for some k = 4, 5, such that $e(v_k, V'_j) = 0$ for some j = 2, 3. Then by (3), $e(\bigcup_{i=6}^m V_i, V'_k) \ge (m-5)t$. Hence either (4) or (5) holds (each of which has been proved false).

It remains to settle the case that $e(v, V_2') \ge 1$ and $e(v, V_3') \ge 1$ for any $v \in V_4 \cup V_5$. We now have $e(V_4 \cup V_5, V_2' \cup V_3') \ge 4t$. Let $B = \bigcup_{i=4}^m V_i \cup \{x\}$. Since $e(V_4 \cup V_5, V_1') \ge 2t$, by (1) and (2), we have

$$e(B, V_1' \cup V_2' \cup V_3') \ge 3(m-5)t + 6t + 1.$$
 (6)

Then $e(G[B]) \leq 3mt - 6 - e(B, V_1' \cup V_2' \cup V_3') \leq 9t - 7$. Since $|B| = (m-3)t+1 > \frac{(m+3)(t-1)}{2}$, by Lemma 4, there exist two nonadjacent vertices α and β in B such that α and β are adjacent to exactly one and the same vertex $\gamma \in V_1'$. Let

$$G_1 = G[((V_1' \setminus \{\gamma\}) \cup \{\alpha, \beta\}) \cup V_2 \cup V_3]$$

and

$$G_2 = G[(B \setminus \{\alpha, \beta\}) \cup \{\gamma\}].$$

Clearly $e(G_2) \le e(G[B]) + m - 2 \le 9t + m - 9 \le (2(m-3)-3)t - \max\{\Delta - 3, t\}$, by Lemma 5, G_3 is equitably (m-3)-colorable. Consequently G is equitably m-colorable.

Case 4. There exists $v_2 \in V_2$ such that $e(v_2, V_1') = 0$ and $e(v, V_1') \ge 1$ for any $v \in V_3 \cup V_4 \cup V_5$.

In this case $e(V_3 \cup V_4 \cup V_5, V_1') \geq 3t$. Clearly $e(\bigcup_{i=3}^m V_i \cup \{x\}, V_1') \leq \Delta(t-1) \leq m(t-1)$. Hence $(m-2)t+1 \leq m(t-1)$, from which it follows that

$$t > 7$$
.

By (2), $e(\bigcup_{i=6}^{m} V_i, V_2') \ge (m-5)t$.

Suppose there exists $v_j \in V_j$, for some j = 3, 4, 5, such that $e(v_j, V_2') = 0$. By (3), $e(\bigcup_{i=6}^m V_i, V_j') \ge (m-5)t$. If There exists $v_k \in V_k$, for some $2 < k \ne j \le 5$, such that $e(v_k, V_j') = 0$, then by (3), $e(\bigcup_{i=6}^m V_i, V_k') \ge (m-5)t$. Thus at least one of (4), (5) and (6) holds (each of which has been proved false).

Now we suppose that for each $v \in V_3 \cup V_4 \cup V_5$, $e(v,V_2') \geq 1$. In this subcase, $e(V_3 \cup V_4 \cup V_5, V_2') \geq 3t$. Hence, $e(\bigcup_{i=3}^m V_i \cup \{x\}, V_1' \cup V_2') \geq 2(m-5)t+6t+1$. Let $D=\bigcup_{i=3}^m V_i \cup \{x\}$. Then $e(G[D]) \leq 3mt-6-e(D,V_1' \cup V_2') \leq (m+4)t-7$. Since $|D|=(m-2)t+1>\frac{(m+3)(t-1)}{2}$, by Lemma 4, there exists two nonadjacent vertices $\alpha,\beta \in D$ such that both α and β are adjacent to exactly one and the same vertex $\gamma \in V_1'$. Let $G_1=G[((V_1' \setminus \{\gamma\}) \cup \{\alpha,\beta\}) \cup V_2]$ and $G_2=G[(D \setminus \{\gamma\}) \cup \{\alpha,\beta\}]$. Clearly $e(G_2) \leq e(G[D])+m-2 \leq (m+4)t+m-9 \leq (2(m-2)-3)t-\max\{\Delta-3,t\}$, by Lemma 5, G_2 is equitably (m-2)-colorable. Consequently G is equitably m-colorable.

Case 5. For any $z \in V_2 \cup V_3 \cup V_4 \cup V_5$, $e(z, V_1') \ge 1$.

In this case $e(\bigcup_{i=2}^5 V_i, V_1') \ge 4t$. Let $I = \bigcup_{i=2}^m V_i \cup \{x\}$. By (1), $(t-1)m \ge (t-1)\Delta \ge e(I, V_1') \ge (m-5)t + 4t + 1$, from which it follows that

$$t \geq m+1 \geq 14$$
.

Clearly $e(G[I]) \leq 3mt - 6 - e(I, V_1') \leq 2mt + t - 7$. Since $|I| = (m-1)t + 1 > \frac{(m+3)(t-1)}{2}$, by Lemma 4, there exists two nonadjacent vertices $\alpha, \beta \in I$ such that both α and β are adjacent to exactly one and the same vertex $\gamma \in V_1'$. Let $G_1 = G[V_1' \setminus \{\gamma\} \cup \{\alpha, \beta\}]$ and $G_2 = G[I \setminus \{\alpha, \beta\} \cup \{\gamma\}]$. Then $e(G_2) \leq e(G[I]) + m - 2 \leq 2mt + m + t - 9$.

We shall next use induction on $e(G_2)$ to show that G_2 is equitably (m-1)-colorable. As G_2 is planar, G_2 has one edge uv where $d(u) \leq 5$. By the induction hypothesis, $G_2 - uv$ has an equitable (m-1)-coloring having color classes $Y_1, Y_2, \ldots, Y_{m-1}$, where $|Y_i| = t$ for all $i \geq 1$. We assume that $u, v \in Y_1$ and $N(u) \in Y_1 \cup Y_2 \cup \cdots \cup Y_5$. Let $Y_1' = Y_1 \setminus \{u\}$. By (1), $e(\bigcup_{i=6}^{m-1} Y_i, Y_1') \geq (m-6)t$.

Subcase 5.1. There exist $y_2 \in Y_2$, $y_3 \in Y_3$ and $y_4 \in Y_4$ such that $e(y_2, Y_1') = e(y_3, Y_1') = e(y_4, Y_1') = 0$.

By (2), $e(\bigcup_{i=6}^{m-1} Y_i, Y_p') \ge (m-6)t$, where $Y_p' = Y_p \setminus \{y_p\}$ for any p = 2, 3, 4. If there exists $y_5 \in Y_5$ such that $e(y_5, Y_j') = 0$, for some j = 1, 2, 3, 4, then by (2) and (3), $e(\bigcup_{i=6}^{m-1} Y_i, Y_5 \setminus \{y_5\}) \ge (m-6)t > 4t$. Otherwise $e(Y_5, Y_1' \cup Y_2' \cup Y_3' \cup Y_4') \ge 4t$. Hence $e(G_2) \ge 4(m-6)t + 4t + 1 > 2mt + m + t - 9 \ge e(G_2)$, which is a contradiction.

Subcase 5.2. There exist $y_2 \in Y_2$, $y_3 \in Y_3$ such that $e(y_2, Y_1') = e(y_3, Y_1') = 0$ and for any $w \in Y_4 \cup Y_5$, $e(w, Y_1') \ge 1$.

In this subcase $e(Y_4 \cup Y_5, Y_1') \ge 2t$. By (2), $e(\bigcup_{i=6}^{m-1} Y_i, Y_k') \ge (m-6)t$ for any k = 2, 3, where $Y_k' = Y_k \setminus \{y_k\}$.

Suppose there exists $y_j \in Y_j$, for some j = 4, 5, such that $e(y_j, Y_2') = 0$ or $e(y_j, Y_3') = 0$. By (3), $e(\bigcup_{i=6}^{m-1} Y_i, Y_j') \ge (m-6)t$, where $Y_j' = Y_j \setminus \{y_j\}$. Then $e(G_2) \ge 4(m-6)t+4t+1$, which is a contradiction (see Subcase 5.1).

Now we suppose for each $w \in Y_4 \cup Y_5$, $e(w,Y_2') \geq 1$ and $e(w,Y_3') \geq 1$. Then $e(Y_4 \cup Y_5,Y_2' \cup Y_3') \geq 4t$. Let $J = \bigcup_{i=4}^{m-1} Y_i \cup \{u\}$. Then $e(J,Y_1' \cup Y_2' \cup Y_3') \geq 3(m-6)t+6t+1$, and thus $e(G_2[J]) \leq e(G_2)-e(J,Y_1' \cup Y_2' \cup Y_3') \leq (13-m)t+m-10$. Since $|J|=(m-4)t+1>\frac{(m+3)(t-1)}{2}$, by Lemma 4, there exists two nonadjacent vertices $\alpha,\beta \in J$ such that α and β are adjacent to exactly one and the same vertex $\gamma \in Y_1'$. Let $G_3 = G[Y_1' \setminus \{\gamma\} \cup \{\alpha,\beta\} \cup Y_2 \cup Y_3]$ and $G_4 = G_2[J \setminus \{\alpha,\beta\} \cup \{\gamma\}]$. Clearly $e(G_4) \leq e(G_2[J])+m-2 \leq (13-m)t+2m-12 \leq (m-5)t$, by Lemma 3, G_4 is equitably (m-4)-colorable. Consequently G is equitably g-colorable. Subcase 5.3. There exists $g_2 \in Y_2$ such that $e(g_2, Y_1') = 0$ and for any $g \in Y_3 \cup Y_4 \cup Y_5$, $g(g, Y_1') \geq 1$.

In this subcase $e(Y_3 \cup Y_4 \cup Y_5, Y_1') \ge 3t$. By (2), $e(\bigcup_{i=6}^{m-1} Y_i, Y_2') \ge (m-6)t$, where $Y_2' = Y_2 \setminus \{y_2\}$.

Suppose there exists $y_j \in Y_j$, for some j = 3, 4, 5, such that $e(y_j, Y_2') = 0$. By (3), $e(\bigcup_{i=6}^{m-1} Y_i, Y_j') \ge (m-6)t$, where $Y_j' = Y_j \setminus \{y_j\}$. Thus $e(G_2) \ge 3(m-6)t+6t+1$, which is a contradiction (see Subcase 5.2).

Now we suppose for each $w \in Y_3 \cup Y_4 \cup Y_5$, $e(w,Y_2') \geq 1$. Then $e(Y_3 \cup Y_4 \cup Y_5, Y_2') \geq 3t$. Let $K = \bigcup_{i=3}^{m-1} Y_i \cup \{x\}$. Then $e(K,Y_1' \cup Y_2') \geq 2(m-6)t+6t+1$, and thus $e(G_2[K]) \leq e(G_2) - e(K,Y_1' \cup Y_2') \leq m+7t-10$. By Lemma 4, there exists two nonadjacent vertices $\alpha, \beta \in J$ such that α and β are adjacent to exactly one and the same vertex $\gamma \in Y_1'$. Let $G_3 = G[Y_1' \setminus \{\gamma\} \cup \{\alpha,\beta\} \cup Y_2]$ and $G_4 = G_2[K \setminus \{\alpha,\beta\} \cup \{\gamma\}]$. Clearly $e(G_4) \leq e(G_2[K]) + m - 2 \leq 2m + 7t - 12 \leq (m-4)t$. By Lemma 3, G_4 is equitably (m-3)-colorable. Consequently G is equitably m-colorable.

Subcase 5.4. For any $w \in \bigcup_{i=2}^{5} Y_i$, $e(w, Y_1') \ge 1$.

In this subcase $e(\bigcup_{i=2}^{5} Y_i, Y_1') \ge 4t$. Then $e(\bigcup_{i=2}^{m-1} Y_i \cup \{x\}, Y_1') \ge (m-6)t+4t+1$. Let $L=\bigcup_{i=2}^{m-1} Y_i \cup \{x\}$. Then $e(G_2[L]) \le e(G_2)-e(L,Y_1') \le (m+3)t+m-10$.

By Lemma 4, there exists two nonadjacent vertices $\alpha, \beta \in K$ such that both α and β are adjacent to exactly one and the same vertex $\gamma \in Y_1'$. Let $G_3 = G_2[Y_1' \setminus \{\gamma\} \cup \{\alpha, \beta\}]$ and $G_4 = G_2[L \setminus \{\alpha, \beta\} \cup \{\gamma\}]$. Then $e(G_4) \le e(G_2[L]) + m - 2 \le (m+3)t + 2m - 12 \le (2(m-2)-3)t - \max\{\Delta - 3, t\}$. By Lemma 5, G_4 is equitably (m-2)-colorable. Consequently G is equitably m-colorable.

References

- [1] B.L. Chen, K.W. Lih and P.L. Wu, Equitable coloring and the maximum degree, *Europ. J. Combinatorics* 15 (1994), 443-447.
- [2] A. Hajnal and E. Szemerédi, Proof of a conjecture of Erdos, in Combinatorial Theory and its Applications, II pp. 601-623. (Eds. P. Erdös, A. Rényi, and V.T. Sós), Colloq. Math. Soc. János Bolyai 4, North-Holland, Amsterdam, 1970.
- [3] T.R. Jensen and B. Toft, Graph Coloring Problems, John Wiley & Sons (1994), 89.
- [4] M. Meyer, Equitable coloring, Amer. Math Monthly 80 (1973), 920–922.
- [5] H.P. Yap and Y. Zhang, On Equitable colorings of graphs, *Europ. J. Combinatorics*, submitted.
- [6] H.P. Yap and Y. Zhang, Equitable Δ-Coloring Conjecture holds for outerplanar graphs, Bulletin of the Institute of Mathematics, Academia Sinica, to appear.