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ABSTRACT. In this paper we prove that the Equitable A-Coloring
Conjecture holds for planar graphs with maximum degree A > 13.

1 Introduction

The graphs we consider are finite, simple and undirected. For a graph G,
we use V(G), |G|, E(G), &(G), A(G) and §(G) to denote respectively the
vertex set, order, edge set, size, maximum (vertex) degree and minimum
(vertex) degree of G. If U C V(G), then the subgraph of G induced by U
is denoted by G[U]. However, if u € V(G), then we use G — u to denote
the subgraph of G induced by V(G) \ {u}. We write zy € E(G) if the two
vertices z and y of G are adjacent in G. For an edge zy of G, we use G —zy
to denote the graph obtained from G by deleting zy. We use d(v) to denote
the degree of v in G and N(v) to denote the set of vertices of G adjacent
tovin G. For any U C V(G) and W C V(G), we let e(U, W) to denote
the number of edges joining vertices of U to vertices of W. In particular,
we use e(u, W) to denote e({u}, W). The complete bipartite graph with
bipartition (X,Y), where |X| = m and |Y| = n, is denoted by Kmn. Let
G U H denote the union of two vertex-disjoint graphs G and H.

We call a (proper) vertex-coloring ¢ of a graph G an equitable coloring
of G if the number of vertices in any two color classes differ by at most
one. If ¢ is an equitable coloring of G using k colors, then we say that
¢ is an equitable k-coloring of G. The least integer k for which G has an
equitable k-coloring is defined to be the eguitable chromatic number of G
and is denoted by x.(G). The least integer k for which G has an equitable
K'-coloring of G for every k' > k is denoted by x*(G). A set U C V(G) is
called an independent ¢-set if |U] = ¢ and no two vertices of U are adjacent
in G.
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Hajnal and Szemerédi [2] proved that every graph G has an equitable
k-coloring for any k > A(G) + 1. Meyer [4] proved that any tree T' has an
equitable ([A(T')/2] + 1)-coloring and he made the following conjecture:
The Equitable Coloring Conjecture (ECC): For any connected graph
G, except the complete graph and the odd cycle, x.(G) < A(G).

(A survey on equitable colorings of graphs can be found in the book
Graph Coloring Problems (3].)

In [1], Chen, Lih and Wu proved that if G is a connected graph with
A(G) 2 J%l-, and G is not the complete graph, or the odd cycle, or the
complete bipartite graph Kom+1,2m+1, then G is equitably A-colorable.
Based on this result, Chen, Lih and Wu put forth the following conjecture:
The Equitable A-Coloring Conjecture: Let G be a connected graph
with maximum degree A. Suppose G is not the complete graph, or the odd
cycle, or the complete bipartite graph Kom+1,2m+1. Then G is equitably
A-colorable.

(Note that if a graph satisfies the Equitable A-Coloring Conjecture, then
it also satisfies the ECC. Hence the Equitable A-Coloring Conjecture is
stronger than the ECC.)

In [5], we proved that if G is a connected graph of order n with 5+1<
A(G) < 2, then x*(G) < r+3s+t < A(G) for some parameters r, s and ¢ of
G. Thus the Equitable A-Coloring Conjecture is true for graphs G of order
n with A(G) > 3 + 1. In [6], we proved that the Equitable A-Coloring
Conjecture holds for outerplanar graphs.

2 Some Useful Lemmas
We need the following lemmas in the proof of our main theorem.
Lemma 1. For any planar graph G of order n, ¢(G) < 3n—6 and §(G) < 5.

(This well-known result can be found in almost every textbook on graph
theory.)

Lemma 2. Let m > 1 be a fixed integer. Suppose that any planar graph of
order mt is equitably m-colorable for any integer t > 1. Then any planar
graph is also equitably m-colorable.

Proof: We prove this lemma by induction on the order n of G. By the
assumption, we may assume that mt < n < m(t+1). If m < 5, then
n=m(t+1) —j for some 0 < j < 5. Now we consider the case that m 2> 6.
By Lemma 1, G has a vertex u of degree at most 5. By the induction
hypothesis, G — u has an equitable m-coloring ¢. Let the color classes of ¢
be Vi, V5,...,Vin, where |[V;| =t or t +1 for all i > 1. Since d(u) < 5, we
may assume that u is adjacent to only vertices in VjUVaU- - UV If V5| =t
for some i > 6, then by adding u to V;, we get an equitable m-coloring of
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G (having color classes Vi, ..., V;—1,V; U {u}, Vit1,..., V). Hence we can
assume that [V;] =¢+1 for all i > 6 and we also have n = m(t + 1) — 5,
0 <j <5. Finally, let G’ = GU K. Then &' is planar of order m(t + 1)
and thus by the assumption, G’ is equitably m-colorable (and so is G). O

Lemma 3. Let m > 4 and t > 1 be integers. Let H be a graph of order
mt with vertex chromatic number x < m. If e(H) < (m — 1)t, then H is
equitably m-colorable.

Proof: Let A be the set of all isolated vertices in H and let § = §(H — A).
We first consider the case that m < 6. Since x < m, H — A has an m-
coloring ¢ having color classes Uy,...,Un. Now e(H) < (m — 1)t < 6t
implies that |U;| < ¢ for all i =1,2,...,m. Hence we can get an equitable
m-coloring of H by adding in some isolated vertices to the color classes Uj,
i=1,...,m.

Next we consider the case that m > §+1. We prove this case by induction
on e(H). Since H has an edge zy where d(z) = §, by the induction hypothe-
sis, H—zy has an equitable m-coloring ¢ having color classes V}, V4, ..., V,,,
where [V;| =t for all i = 1,2,...,m. Clearly we need only to consider the
case that z,y € V. Let N(z) c ViUVaU-.-UV; and let V{ = W; \ {z}.
Suppose that there exists z € V; for some i > § + 1, such that e(z, V{) = 0.
Then by transferring 2 from V; to V{ and adding z to V; \ {2}, we get an
equitable m-coloring of H. Thus for each z € V541 U---UV,,, e(z, V) > 1.
Hence e(UZ ;41 Vi Vi) > (m — 8)t. Ifevery w € Vj, § € {2,...,6}, is
adjacent to some vertex in VY, then e(V;, V/) > t. Otherwise there exists
w € Vj such that e(w, V{) = 0. Then we transfer w from V; to V{ and by
the above argument, e(UZ;,, Vi, V; \ {w}) > (m — 8)t > t. Consequently
e(H) > (m —68)t + (6 — 1)t + 6 = (m — 1)t + 6, a contradiction to the
assumption. 0

Lemma 4. Let m and s be positive integers. Suppose G is a planar
graph with A(G) < m. If G has an independent s-set V' and there exists
AC V(G)\ V' such that |A| > %3) and e(w, V") > 1 for all v € A, then
A contains two nonadjacent vertices a and f which are adjacent to exactly
one and the same vertex v € V.

Proof: Let A; C A be such that each v € A, is adjacent to exactly one
vertex of V'. Let r = |A,|. Then r+2(|A| —r) < ms, from which it follows
that r > 2|A| — ms > 3s. Hence V' contains at least one vertex vy which
is adjacent to at least four vertices of A;. Since G is planar, G does not
induce K. Hence A; contains two independent vertices a and 8 which are
adjacent to +. 8]

Lemma 5. Let m > 7 and t > 1 be integers. Let H be a planar graph of
order m¢ with maximum degree A. If e(H) < (2m — 3)t — max{A - 3,1},
then H is equitably m-colorable.
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Proof: We prove this lemma by induction on e(H). As H is planar, H
has an edge xy where d(z) = § < 5. By the induction hypothesis, H — zy
has an equitable m-coloring ¢ having color classes V1,V5,...,Vn, where
|Vi] =t for all i =1,2,...,m. Clearly we need only to consider the case
that z,y € V5. Let N(z) c ViuVaU-.-UV; and V{ = V1 \ {z}. By an
argument in the proof of Lemma 3, e(Ui=s,, V4, Vi) 2 (m — 6)t.

Suppose for each v € Vo U ---UVj, e(»,V{) > 1. Then e(VaU---U
Vs, V) > (6 — 1)t. Let X =2, ViU {z}. Then e(X,V}) > (m —1)t +6.
Thus e(H[X]) < e(H) — e(X,V{) < (m — 2)t — max{A — 3,t} — §. Since
1X]=(m-1)t+1> fﬁ‘is%-(ﬂ, by Lemma 4, X contains two nonadjacent
vertices o and 8 which are adjacent to exactly one and the same vertex
v €V} Let Hy = H[(V{ \ {7}) U{a,8}] and Hy = H[(X \ {&, B}) U {~}].
Clearly e(H2) < e(H[X]) + A —2 < (m — 2)t. As |Ha| = (m — 1)¢, by
Lemma 3 and the Four Color Theorem, Hj is equitably (m — 1)-colorable.
Hence H is equitably m-colorable. '

Now we suppose that there exists v; € V; such that e(v;,V{) = 0 for
some j € {2,...,6}, say j = 2. By an argument in the proof of Lemma
3, e(Uss1 Vir V3) 2 (m — 6)t where Vi = V3 \ {vz}. Ifevery w €V},
j€{83,...,6}, is adjacent to some vertex in V{, k = 1,2, then e(V;, V}) 2 ¢,
k = 1,2. Otherwise there exists w € Vj such that e(w, V{UV;) = 0. Then by
an argument in the proof of Lemma 3, e(UZ;,, Vi, Vi \ {w}) 2 (m - 8)t >
2t. Thus e(H) > 2(m—8)t+2(6—2)t+6 > (2m—3)t—max{A-3,t} > e(H),
which is a contradiction. o

3 Proof of Main Theorem

In this section we shall prove that any planar graph G with maximium
degree A > 13 is equitably m-colorable for any m > A. By Hajanal
and Szemerédi’s theorem, we only need to prove that G is equitably A-
colorable. However, here we do not apply Hajanal and Szemerédi’s theorem
and instead we prove the general case because it does not increase the length
of the proof.

Theorem. Let G be a planar graph with maximum degree A > 13. Then
G is equitably m-colorable for any m > A.

Proof: By Lemma 2, we need only to consider the case that n = |G| = mt.
We prove this theorem by induction on e(G). As G is planar, G has an edge
zy where d(z) < 5. By the induction hypothesis, G — zy has an equitable
m~coloring ¢ having color classes V3, Va,. .., Vi, where [V;| = ¢ foralli > 1.
Clearly we need only to consider the case that z,y € V3. Let V] = V1 \ {z}
and assume that N(z) C VUV U---U V5.

It is clear now that we can assume that e(z, V{) > 1 for any z € | J;~¢ Vi-
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Consequently

(Ve Vi) = (m - 5. )

=6

Suppose there exists w € Vj, for some j = 2,3, 4,5, such that e(w, V{) =
0. Then following the proof of Lemma 3, we can assume that for any z € V;,
i 26, e(z,V}) 2 1, where V] = V; \ {w}. Consequently

(Vi V}) 2 (m -5t @

i=6

Suppose there exists v € Vj, where k € {2,3,4,5} and k # j, such that
e(v,Vy) = 0. Then by transferring v from Vj to V; and w from Vj to VY,
we can make V) = Vi \ {v} play the role of V. Thus we can assume that
e(z,V})>1forall ze V, i > 6. Hence

(V) 2 (m 5. ©
i=6

It is clear that e(Ui_g Vi U {z},V{) < A(t — 1) < m(t — 1). Hence
(m —5)t +1 < m(t — 1), from which it follows that ¢ > Z+L, Thus

t2>3.

Case 1. There exists v; € V; such that e(v;, V{) = 0, for each j = 2, 3,4, 5.
In this case, from (1) and (2), we obtain

m 5
e(U Vi U Vj) 2 5(m — 5)t, where V] = V; \ {v;}. (4)
i=6 J=1

Then 5(m — 5)t + 1 < e(G) = 3n — 6 = 3mt — 6, which is false because
m > 13. Hence G is equitably m-colorable.

Case 2. There exists v; € V; such that e(v;, V{) = 0 for each j = 2,3,4
but e(v, V{) > 1 for any v € V5.

Since e(v;, V{) = 0 for j = 2,3,4, by (1) and (2), e(Ur, Vi, U_, V) >
4(m — 5)t where V] = V; \ {v;}. Next, if there exists vs € Vs such that
e(vs, V;) = 0 for some j = 2,3,4, then by (3), e(Ug Vi, W) > (m - 5)t.
Thus (4) holds (which has been proved false). Otherwise e(Vs, V) >t for
all j = 2,3,4 and thus

m 4
e(t JVi, U V)) 2 4(m —5)t + 4t. (5)
i=5 J=1
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Let A =75 V; U {z}. Then e(G[A)) < e(G) — (4, V{ U Uj=, V3)) <
3mt — 6 — (4(m —5)t+4t+1) = (16 —m)t — 7. Since |[A] = (m-4)t +1 >
ﬁ"ﬁ%ﬂ, by Lemma 4, A contains two nonadjacent vertices o and S
which are adjacent to exactly one and the same vertex v € V{. Let

4
G1 =G[((V{\ {7}) U{e. BY U (| V3]
j=2
and

Gz = G[(A\ {e B} U{7}]-

Clearly ¢(G2) < e(G[A) +m—2 < (16 —m)t+m —9 < (m — 5)t. As
|Ga| = (m — 4)t, by Lemma 3, G is equitably (m — 4)-colorable. Hence G
is equitably m-colorable.

Case 3. There exists v; € V; such that e(v;, V{) =0 for each j = 2,3 but
e(v,V{) 21 foranyve VaUVs.

By (2), e(Ui=¢ Vi, V) = (m — 5)t for j = 2,3.

Suppose there exists vy € Vi, for some k = 4,5, such that e(vy, VJ-’ )=0
for some j = 2,3. Then by (3), e(U:2¢ Vi, Vi) 2 (m — 5)t. Hence either (4)
or (5) holds (each of which has been proved false).

It remains to settle the case that e(v,Vy) > 1 and e(v, V3) > 1 for any
v € V4UV;s. We now have e(V3 U Vs, VJUVY) > 4t. Let B=J2, ViU {z}.
Since e(V3 U Vs, VY) > 2t, by (1) and (2), we have

e(B,V{UV;UVg) > 3(m —5)t +6t+1. (6)

Then e(G[B]) < 3mt — 6 — e(B,V{ UV§UVY) < 9t — 7. Since |B| =
(m-3)t+1 > S"‘—H%i‘;ll, by Lemma 4, there exist two nonadjacent vertices
a and B in B such that o and B are adjacent to exactly one and the same
vertex v € V{. Let

G =G[((V{\ {7h u{a,Bhu VU V3]
and

G2 =G[(B\ {a, Y U {7}].

Clearly ¢(G2) < e(G[B])+m—2 < 9%t+m—9 < (2(m—3)—3)t —max{A—
3,t}, by Lemma 5, G3 is equitably (m — 3)-colorable. Consequently G is
equitably m-colorable.

Case 4. There exists va € V; such that e(vs, V{) = 0 and e(v, V{) > 1 for
anyve VaUuV;U V5.

In this case e(Va U Vy U V5, V) > 3t. Clearly e(UZa Vi U {z}, V{) <
A(t—1) < m(t—1). Hence (m —2)t+1 < m(t — 1), from which it follows
that

t>1.
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By (2), e(UiZ6 Vi, V3) 2 (m - 5)t.

Suppose there exists v; € Vj, for some j = 3,4, 5, such that e(v;, V5) = 0.
By (3), e(Uize Vi, V) = (m — 5)t. If There exists v; € Vi, for some 2 <
k # j <5, such that e(vk, V;) = 0, then by (3), e(UZs Vi, V{) = (m — 5)t.
Thus at least one of (4), (5) and (6) holds (each of which has been proved
false).

Now we suppose that for each v € V3 UV3 U Vg, e(v,Vy) > 1. In this
subcase, e(Va U V3 U V;,Vy) > 3t. Hence, e(og ViU {z},VJU V) >
2(m —5)t + 6t + 1. Let D = |J23V; U {z}. Then e(G[D]) < 3mt —6 —
e(D,V{UVJ) < (m+4)t —7. Since |D| = (m — 2)t + 1 > {431 4y
Lemma 4, there exists two nonadjacent vertices a, 8 € D such that both
a and B are adjacent to exactly one and the same vertex v € V. Let
G1 = G[((Vi\{y})U{a,B})U V2] and G2 = G[(D\ {7}) U {«, B}]. Clearly
e(G2) < e(G[D]))+m-2 < (m+4)t+m—9 < (2(m—2)-3)t—max{A-3,t},
by Lemma 5, G is eauitably (m—2)-colorable. Consequently G is equitably
m-colorable.

Case 5. Forany 2 € VUV UV, U V5, e(2,V]) > 1.

In this case e(l;_, Vi, V{) > 4t. Let I = U™, ViU{z}. By (1), (t~1)m >

(t—-1)A>e(I,V{) > (m —5)t + 4t + 1, from which it follows that

t2m+12>14.

Clearly e(G[I]) < 3mt—6—e(I,V{) < 2mt+t—7. Since |I| = (m—1)t+1 >
-('"—"'3%@)-, by Lemma 4, there exists two nonadjacent vertices ., 8 € I
such that both a and B are adjacent to exactly one and the same vertex
7 € Vi. Let Gy = G[V{\ {y}U{e, B}] and G2 = G[I \ {, B} U {7}]. Then
e(Gz) <e(G[I)+m—-2<2mt+m+¢t—09.

We shall next use induction on e(G2) to show that G is equitably (m—1)-
colorable. As G is planar, G has one edge uv where d(u) < 5. By the
induction hypothesis, G2 — uv has an equitable (m — 1)-coloring having
color classes Y1,Y3,...,Y—1, where |Y;| = ¢ for all i > 1. We assume
that u,v € Y; and N(u) e 1UY2U---UYs. Let Y{ =Y, \ {u}. By (1),
e(Uis' %, Y{) 2 (m - 6)t.

Subcase 5.1. There exist y, € Y3, y3 € Y3 and y; € Y; such that
e(y2, Y{) = e(ys, ¥{) = e(ys, Y{) = 0.

By (2), e(U:':el Y;,Y;) > (m—6)t, where Y, =Y, \{yp} foranyp =2,3,4.
If there exists y5 € Y5 such that e(ys,Y;) = 0, for some j = 1,2, 3,4,
then by (2) and (3), e(Urs' ¥i, Y5 \ {s}) > (m — 6)t > 4¢. Otherwise
e(Y5, YUY UY{UY/) > 4t. Hence e(G2) > 4(m — 6}t +4t+1 >
2mt + m+t — 9 > e(Gz), which is a contradiction.

Subcase 5.2. Thereexist y2 € Y2, y3 € Y3 such that e(ys, YY) = e(y3, YY) =
0 and for any w € Y; U Y5, e(w, Y{) > 1.
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In this subcase e(Y3 U Yz, YY) > 2t. By (2), e(Ur%' Yi, Yy) > (m —6)t
for any k = 2,3, where Y, =Yi \ {w

Suppose there exists y; € Y;, for some j = 4,5, such that e(y;,Y7) =0
or e(y;, ¥4) = 0. By (3), e(Ur5' ¥s, ) > (m — 6)¢, where Y] = Y; \ {y;}-
Then e(Gz) > 4(m—6)t+4t+1, whlch is a contradiction (see Subcase 5.1).

Now we suppose for each w € Y; UY;, e(w,Yd) > 1 and e(w, Yg) > 1.
Then e(YaUYs, YU YY) > 4¢t. Let J = U;';;‘Y.- U {u}. Then e(J,Y{ U

1UY]) > 3(m — 6)t + 6t + 1, and thus e(G2[J]) < e(Gz2) —e(J,Y{ U
YJUY!) < (13 = m)t + m — 10. Since |J| = (m —4)¢t +1 > "D
by Lemma 4, there exists two nonadjacent vertices a,f € J such that
o and B are adjacent to exactly one and the same vertex v € Y{. Let
Gz = G[Y{\ {1}U{a,f}UY2UYs] and G, = G2[J \ {@, B} U {7}]. Clearly
e(G4) < e(G2[J])) +m—2 < (13— m)t +2m — 12 < (m — 5)¢, by Lemma 3,
G, is equitably (m —4)-colorable. Consequently G is equitably m-colorable.
Subcase 5.3. There exists yo € Ya such that e(yz,Y{) = 0 and for any
weY3UYUYs, e(w,Y)) 2 1.

In this subcase e(YaUY;UYz, Y7) > 3t. By (2), e(Us! Yi, ¥9) > (m—6)t,
where Yy = Y2 \ {y2}.

Suppose there exists y; € Yj, for some j = 3,4, 5, such that e(y;, ¥7) = 0.
By (3), e(Ur5' Yi, Y)) > (m — 6)t, where Y/ = Y;\ {y;}. Thus e(G2) >

iy
3(m — 6)t + 6t + 1, which is a contradiction (see Subcase 5.2).

Now we suppose for each w € Y3U Y, UY;, e(w,Y]) > 1. Then e(Yz U
Y UYs, YY) > 3t. Let K =I5 Y U {z}. Then e(K,Y{UYy) > 2(m—
6)t + 6t + 1, and thus e(G2[K]) < e(G2) — e(K,Y{UY3) < m+ 7t —10.
By Lemma 4, there exists two nonadjacent vertices a,8 € J such that
a and B are adjacent to exactly one and the same vertex vy € Y{. Let
Gs = GIY{\ {7} U{e, B} U Y2 and Gy = G2[K \ {a, B} U {7}]. Clearly
e(Gy) < e(G2[K])) +m—2 < 2m + 7t —12 < (m — 4)t. By Lemma 3, G4 is
equitably (m — 3)-colorable. Consequently G is equitably m-colorable.
Subcase 5.4. For any w € ;_, ¥;, e(w, Y{) > 1.

In this subcase e((J?_, ¥;, Yy) > 4¢. Then e(Up;' Yi U {z},Y]) > (m -
6)t + 4t + 1. Let L =J™;!Y; U {z}. Then e(Gz[L]) < &(G2) —e(L,Y]) <
(m + 3)t +m —10.

By Lemma 4, there exists two nonadjacent vertices a, 8 € K such that
both a and B are adjacent to exactly one and the same vertex vy € Y{. Let
Gs = Go[Y{ \ {1} U {e, B}] and G4 = G3[L \ {a, B} U {7}]. Then &(G4) <
e(Ga[L)+m—2 < (m+3)t+2m—12 < (2(m—2) - 3)t —max{A-3,t}. By
Lemma 5, G4 is equitably (m — 2)-colorable. Consequently G is equitably
m-~colorable. O
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