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ABSTRACT. Let G(p) denote the class of simple graphs of order
p. For a graph G, the complement of G is denoted by G. For a
positive integer n, the n-path-chromatic number x(G) is the
least number of colours that can be associated to the vertices
of G such that not all the vertices on any path of length n
receive the same colour. The Nordhaus-Gaddum Problem for
the n-path-chromatic number of G is to find bounds for x»(G)+
xn(G) and xn(G) - X (G) over the class G(p). In this paper we
determine sharp lower bounds for the sum and the product of
Xn(G) and xa(G). Furthermore, we provide weak upper bounds

for x2(G) + x2(G) and xa2(G) - x2(C).

1 Introduction

All graphs considered in this paper are undirected, finite, loopless and have
no multiple edges. For a graph G, we denote the vertex set and the edge set
of G by V(G) and E(G) respectively. Let G(p) denote the class of graphs
of order p. The complement of G is denoted by G. A set U C V(G) is
said to be n-independent if G[U], the subgraph induced on U, has no paths
of length n. Note that a l-independent set is an independent set in the
usual sense. For the most part, our notation and terminology follow that
of Bondy and Murty [1].

Chartrand, Geller and Hedetniemi [2] defined the n-path-chromatic num-
ber xn(G) of G to be the least number of colours needed to colour the ver-
tices of G so that not all the vertices on any path of length n are coloured the
same. We refer to such a colouring as an n-path-colouring of G. Note that
x1(G) = x(G), the usual chromatic number of G. Thus x»(G) is a general-
ization of x(G). In this paper we consider the Nordhaus-Gaddum problem
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[4] of determining sharp bounds for x5, (G) + xn(G) and xx(G) - xn(G) over
the class G(p).

Let P, denote a path of length n. The Ramsey number R(P,,, P,,) is the
smallest integer p such that for every graph G € G(p) either G contains a
path P, or G contains a path P,. For a real number z, the largest integer
less than or equal to z is denoted by |z]. Similarly [z] denotes the smallest
integer greater than or equal to z. The following theorem by Gerencsér and
Gyérfés [3] determines R(Pp, P,).

Theorem 1. For positive integers m and n withm >n>1,

R(Pn,Pa) = m+ l"—;“lJ .
a

The following theorem by Chartrand, Geller and Hedetniemi [2] deter-
mines the n-path-chromatic number of the complete graph K.

Theorem 2. For positive integers p and n, xn(Kp) = [2]. a
In the next section we will show that

X(6) 1@ 2 | 725

Xn(G) + xa(G) > [2 [—RL_I-}

where R = R(P,,P,). We will also establish the sharpness of the above
bounds. Furthermore, we shall derive a weak upper bound for the sum and
the product of x2(G) and x2(G).

2 Main Results

The lower bounds for Xy (G)+xx(G) and x(G)-xn(G) are dependent on the
Ramsey number R(P,, P,). From Theorem 1, it follows that R(Py,, P,) =
| 222 |. For notational convenience we denote R(P,, P,) by R, understand-
ing the value of » from the context.

Lemma 1. Let H € G(p) with xn(H) = 1. Then x»(H) > £25.

Proof: Suppose that x,(H) = t. Let V1, Va,...,V; be a partition of V (H)
induced by a valid n-path-chromatic colouring of the vertices of H. From
the properties of this partition and the fact that x,(H) = 1, it follows that

neither H[V;] nor H[V;] has a path of length n, for 1 < i < ¢. Thus from
the definition of the Ramsey number R = R(P,, P,), we have

[ViI<R-1, 1<igt.
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Now, summing over all i, we get
t
p=)Y_ [Vil<t(R-1).
i=1

Thus xn(H) =t > &&5. o

From the definition of the Ramsey number R = R(P,, P,,), it follows that
for a positive integer ¢ < R — 1, there exists a graph H of order ¢ such that
neither H nor H contains a path of length n. We refer to such a graph as a
Ramsey graph and denote it by Ht]. An example of such a graph is given
below:

K., ifl1<t<n,
Hlt)| = KnVKL("_l)/QJ, ift=R-1,
KnV Ki_n, otherwise.

Using these Ramsey graphs we develop a method to construct a graph G
such that x,(G) and x»(G) are equal to specified positive integers. The
method of constructing a graph G such that x,,(G) = k and x,(G) = k' is
briefly described below.

Start with a 0 — 1 matrix A of order kk’ with a ones. Furthermore we
assume that all the entries in the first row and the first column are equal
to 1. From this matrix A, we construct a graph G’ of order a such that
x(G’) = k and x(G") = k’. Next we construct a graph G by replacing every
vertex of G’ by a suitable Ramsey graph. More precisely, the following
procedure describes the method of constructing G in three phases.

Procedure 1.

Phase 1: Let a, k and k' be given positive integers such that o > k+&'—1.
Suppose that A = ((as;)) is a 0—1 matrix with k rows and k’ columns
such that:

(i) ay=1,ifi=1lorj=1.
(ii) The number of 1’s in A is a.

Phase 2: Using the matrix A, we construct a graph G’ as follows:
() V(&) ={(#): a5 =1}
(ii) The adjacency in G’ is defined as follows:

- Any two vertices of G’ coming from the same column of A
are adjacent.

- No two vertices of G’ coming from the same row of A are
adjacent.
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- Any two vertices coming from distinct rows and distinct
columns of A may be adjacent.

Phase 3: For1 <i<kand1<j<¥,let z;; be integers satisfying the
following conditions:

aj <zij < (R—1)aij, 1<i<k, 1<j<K )
k'

Yoz 2 (R-1D(K -1)+1 (2
=1
k

Y za = (R-1)(k-1)+1 (3)

i=1

Using these z;;’s and the graph G’ of Phase 2, we construct a graph G of
order Y°F 2;;1 zi; as follows:

(i) Every vertex (ij) of G’ is replaced by a Ramsey graph H;; = H{z;;].

(ii) If the vertex (i7) is adjacent to the vertex (st) in G’, then every vertex
of H;; is joined to every vertex of H,; in G. Otherwise, no vertex of
H;; is joined to any vertex of H,¢ in G.

For given positive integers k, k'’ and a with k4+ k' — 1 < a < kk/, we
define the set T,(k, k', ) of graphs as the set of all graphs G produced by
the above procedure. From Phase 2 of the procedure, it is easy to see that
G’ € G(a), X(G") = k and x(T") = ¥'.

Lemma 2. If G € Ty(k, ', ), then xn(G) = k and x(G) = ¥'.

Proof: Let G € Tu(k,k',a) and z;5, 1 < i < k, 1 < j < K be the
corresponding integers satisfying (1), (2) and (3) of Phase 3. We define a
subgraph F; of G for 1 < i < k as follows:

F, = H[:l:u] UH[:I:,-z]U . --UH[::W].

Since H[z;;] is a Ramsey graph, F; is free of paths of length n. Thus
we can assign the same colour to all the vertices of F;. Now note that
V(G) = U{‘=1 V(F;) and hence xn(G) < k. Next consider the subgraph
G = H[:L'u] VH[z'n] V--. VH[$k1] of G. Clearly Xn(él) = 1. From (3), it
follows that the order of G is at least (k—1)(R—1)+1. Now from Lemma
1, we have xn(G1) 2 k. Thus xn(G) = xn(G1) = k. Combining this with
the inequality xn(G) < k, we have x»(G) = k.

Proceeding along similar lines, one can easily show that x,(G) =k’. O
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In the next theorem, we establish a sharp lower bound for xn(G) - x(G)
over the class G(p).

Theorem 3. Let G € G(p). Then xn(G) - xn(G) > I—-R;Ll.l where R =
R(P,, P,)). Furthermore, this lower bound is sharp.

Proof: Let x,(G) = t. Consider an n-path-colouring of G which uses ¢
colours. Let V3, V3,...,V; be the partition of V(G) induced by the above
n-path-colouring. Without any loss of generality, let [V} = max [Vi|. Then

Vil £, ()

Note that x,(G[V1]) =1 and hence by Lemma 1,
Vi
xn(@IVi]) 2 L.

Therefore x(G[V1]) > sy by (4)-
Since xn(G) > | Xn(G[V1)), it follows that

- P
xn(G) 2 m

Therefore xn(G) - Xn(G) > ['R;Ll-l .

To establish the sharpness, let us assume that a = [Ta{T] and let k and

K’ be integers such that k k' = a. Now consider a graph G* in T, (k, k', a)
of order p given by Procedure 1 where z;; are chosen such that

zi;zj;x..,:p.

In the following, we show the existence of such z;;s.

Let m and s be non-negative integers such that p = m(R — 1) + s and
0 £ 8 < R—1. Note that « = m or m + 1 according as s = 0 or not. Now

define
R-1, if (if) # (kK'),
zi5={ R—1, if(if) = (kk') and s =0,
s, otherwise.
It is easy to see that 37,5, zi; = p and the inequalities (1), (2) and (3)

are satisfied. Now from Lemma 2, xn(G*) = k and x,(G") = k’. This
completes the proof. m]

In the next theorem, we determine a lower bound for xy, (G)+xn (G) over
the class G(p).

111



Theorem 4. Let G € G(p). Then

xn(6) +xa(B) 2 [2 |22 |-

Furthermore, this bound is sharp.

Proof: The above inequality follows from the inequality in Theorem 3 and
the arithmetic mean-geometric mean inequality.

The sharpness of the above inequality is easily established in the case
p < R —1 by choosing G to be the Ramsey graph H([p]. To establish the
sharpness when p > R — 1, let k and k’ be integers such that

k+k = [2 [%] : (5)
ez 7] ©

and
p>(R-1)(k+k —3)+2. )

The existence of integers k and k' satisfying (5), (6) and (7) is guaranteed
by the numbers

2y ]

2 2

Now let a = I—T{ﬁ] and consider a graph G* of order p from the class
Tw(k, k', @) defined along the same lines as in the proof of Theorem 3. From

Lemma 2, it follows that xn(G*) + Xa (@) =k + k' = [2 [ﬁ’;—l] . O

The problem of determining a sharp upper bound for x,(G) + x»(G)
seems to be difficult. Hence we will restrict our attention to n = 2 and
present an upper bound for x2(G) + x2(G).

Theorem 5. Let G € G(p). Then

x2(G) + x2(G) <

2p+4
3 M (8)
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Proof: Let G € G(p). We first provide a 2-path-colouring of G with k
colours by partitioning V' (G) as follows:

Set V; as the largest 2-independent set in the graph induced on V(G) —
(UsZi V2), 1 < i < k. Note that [Vi| > [Va| > --- > [Vi| and [Ve—a| > 2.
From this valid 2-path-colouring of G, it follows that

x2(G) £ k. )

Note that if & < 2, then the inequality (8) follows easily. Thus we assume
k > 3. Next we prove that

x2(@) < #. (10)

From the construction of V;, observe that for i > 2, if z; € V;, then there
exist two vertices y_1 and 2z_; in V;_; such that G has a path M; of
length 2 on the set V(M;) = {=:,%-1,2-1}. Otherwise, V;_; U {z;} is a
2-independent set in the graph induced on V(G) — (U;;f Vi), contradicting
the maximality of V;_,. '
Case (l) |Vk_1| =>3.

Note that, in G we can collect (k—1) vertex disjoint paths M; of length 2,
for i =2,...,k by choosing z; to be different from 3; and z; since |V;]| > 3,
1 <i<k—1. Now we provide a 2-path-colouring of G as follows:

- Colour the vertices of V/(M;) with colour ¢, 2 < i < k.

- Colour the remaining p — 3(k — 1) vertices with [ tzs'-“"—s] colours.
Thus

@ shots [E2R4) ook

2 2
and this proves (10) under Case (1).

Case (2) |[Va_y| = 2.

Let r be the smallest integer such that |[V.| = 2. Clearly r < k — 1,
Vil23,1<i<r-1and |V|=2r<i<k~-1. As before, in G we can
start with a vertex z. in V; and collect (r — 1) vertex disjoint paths M; of
length 2, 2 < i < r by choosing z; to be different from y; and 2. Note that
this choice is possible since |[V;| > 3,1 <i<r—-1.

Subcase (2a) r <k —2.

From the construction of V; and the definition of r, note that_uL,. Veisa

2-independent set in G. Now we provide a 2-path-colouring of Gas follows:

- Colour the vertices of V(M;) with colour ¢, 2<i < r.
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- Colour the vertices of Uf=,. Ve — {z,} with colour (r +1).

- Colour the remaining a =p —3(r — 1) — |Uf=,. Vel + 1 vertices with
[%] colours.

Using the facts that |-} V| = (k — )2 and |Vk| = 1 or 2, note that
a=p—r— 2k+2orp—r—2k+3.Thus

a -r—2k+3 +r—2k+4
xz(@)5r+[515r+[p . ]s” e

Now since r < k — 2, we have

and this proves (10) in Subcase (2a).
Subcase (2b) r=k —1 and |Vy_2| > 4.

Consider the set X = V(G) - Ue—z (M;). Clearly X contains |V;| —
vertices of Vj, at least one vertex of Vi_a, exactly one vertex of Vi_; a.nd
all the vertices of V. Thus |X| > |V1]| + 1. Since |V}] is the largest 2-
independent set in G, it follows that there is a path M; of length 2 in
G[X]. Using the vertex disjoint paths Ma, M3, ..., M of G, once again it
is easy to check that

x2(G) < #
This proves (10) in Subcase (2b).
Subcase (2c) r =k —1 and |[Vi_2| = 3.

Let Vi_2 = {y,v,w}, Vi—1 = {a,b} and c € Vi. Note that G[Vx—; U{c}]
has a path P of length 2. Without loss of generality, assume that (a,b) €
E(G) and (b,c) € E(G). We claim that there is a cycle C of length 4 in G
on the set Vi_a U Vi_1 U Vi which does not involve at least one vertex of
Vk—2'

If Vi—2 is independent in G, then it follows that each of a,b,c is joined
to at least 2 vertices of Vi_o. In this case, trivially we have a cycle C
of length 4 without involving at least one vertex of Vi_2. Now suppose
that Vi_5 is not independent in G. Without any loss of generality, let us
assume that (u,v) € E(G). From the definition of Vi_2, it follows that
every vertex of Vx—1 UV, must be joined to at least one of the two vertices
u and v. If a and ¢ have a common neighbour in Vj_,, then our claim is
easily proved. Thus without loss of generality, we assume that (a,u) and
(c,v) are edges of G. Now if (b,u) € E(G), then {u,v,c,b} forms a cycle
of length 4 without involving w of Vi—2. Similarly, if (b,v) € E(G), then
{u,v,b,a} is the required cycle.
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Let C be a cycle of length 4 on the set Vx_s U Vi_; U Vi which does not
involve a vertex zy_s of Vj_s. Start with z;_5 of V;_5 and collect vertex
disjoint paths M; of length 2 in G, for 2 < i < k — 2 by choosing z; to be
different from y; and z. Now provide a 2-path-colouring of G as follows:

- Colour the vertices of V(M;) with colour ¢, 2<i < k—2.
- Colour the vertices of C with colour k — 1.
- Colour the remaining (p — 3k + 5) vertices with I-t:’ﬁ'is-l colours.

Thus x5(G) < k—2+ [E%Eﬂ] < B=k42 establishing (10) in this subcase.
Combining (9) and (10), we have

x2(G) +2x2(G) <p+2.
Similarly, reversing the roles of G and G, we have

x2(C) + 2x2(G) < p+2.
Combining the above two inequalities, we have

- _ 2p+4
x2(G) +x2(G) < TL=.

This completes the proof Theorem 5. (]

It is easy to verify that the inequality (8) is sharp for p < 9. For p > 10,
it seems that 32;'—4 is a weak upper bound for x2(G) + x2(G).

Using (28) we can easily arrive at the following inequality: x2(G)-x2(G) <
(=)
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