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Abstract. In this paper we derive some inequalities on the existence of two-
symbol balanced arrays (B-arrays) of strength five. We then apply these
inequalities to obtain an upper bound on the number of constraints for these
arrays, and provide an illustrative example.

1 Introduction and Preliminaries

A matrix T of size (m x N) with two elements (say, 0 and 1) is called a
2-symbol balanced array (B-array) of strength ¢ (0 < ¢ < m) with m constraints
(rows), N runs (treatment-combinations, columns) if in each (¢ X N)
submatrix 7™ of T, every (¢ x 1) vector o of weight i (the weight of o is the
number of 1's in it, 0 < i < t) appears as a column of T'* exactly y; times.
Sometimes B-array T'is denoted by {m, N, t, 2; po, f1, ..., pt} where m, N,
t, and (i =0, 1, 2,..., t) are called the parameters of T. This definition can
be easily generalized to a B-array with s symbols. It is quite obvious that
¢

N=%()m

The existence and construction of B-arrays for a given m(m > t) and
an arbitrary index set p = (o, u1, -, Ut) is clearly a nontrivial problem. To
find the maximum value of m for a given ,u is an important problem both in
combinatorial mathematics and statistical design of experiments. Such
problems for orthogonal arrays (O-arrays) and B-arrays have been discussed,
among others, by Bose and Bush [1], Seiden and Zemach [13], Rafter and
Seiden [9], Saha, Mukerjee and Kageyama [11], Chopra and Dids [5], etc. etc.

It is well-known that O-arrays and the incidence matrices of
incomplete block designs as well as those of BIB designs are special cases of B-
arrays. B-arrays for various values of ¢, under certain conditions, have been
extensively used to construct balanced fractional factorial designs of various
resolutions, with rows and columns of T representing factors and treatment-
combinations respectively while the two symbols 0 and 1 representing the levels
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of the corresponding factor. In order to learn more about the applications of B-
arrays to combinatorics and statistical design of experiments, the interested
reader may consult the list of references at the end of this paper, and also
further references given therein.

In this paper we restrict ourselves to the case when ¢ = 5, and obtain
further results on the existence of such B-arrays with arbitrary values of m and
p = (po, p1, -y tt). We then describe how these resultswnbeusedto obtain
the maximum number of constraints m for a given ,u For certain situations we
will demonstrate, through an illustrative example, that the inequalities
presented here give sharper bounds on m as compared to those obtained by
applying earlier results.

2. Main Results and Their Discussion

We first state some results, which are easy to derive, for later use for arrays
with ¢.

Lemma 2.1. A B-array T with y' = (po, pa1, ..., pt) and m = talways exists.

Lemma 2.2, A B- arrayTofstrengthtandmmp = (po, 4, ..., t4)is also of
strength £ (0 < t < t) with its new index sety =(A4;t;5=0,1,2,.., ¢

t—t
with Ay = z:( ; )yi+j,whcrej =0,1,2,..t)
=0
Definition 2.1. Two columns of a B-array T' with m rows and with ' = (o,

1, ..., pe) are said to have jcoincidences (where 0 < j < m) if the symbols
appearing in the corresponding j positions are the same.

Lemma 2.3. Consider a B-array T'(m x N) with g’ = (o, p1, ..., pe). If lis
the number of 1's in some column (say, the first one) of T', then the following
(t + 1) equalities are true:

,E""i =N-
=0 k=1,2,..,t @.1)
E.Tka zbz.k Bt

where B, = E(i)(""“)(A,k 1), k=1, 2,..., t, b;are appropriate

constants and A,,k s for k = t, and z; denotes the number of columns of T',
the first column being excluded, having exactly 7 coincidences with the first
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one, The constants A; x in (2.1) are linear functions of the elements of the
vector p , and thus By's are polynomial functions involving I, m, and vector ,u
elements. Next we state some results, without proofs, from Mitrindvic [8], to be
used with (2.1) to obtain the desired inequalities.

Result; Let ag, by, cx, (k =1, 2,..., n) be non-negative reals. Then the
following are true:

@ (Cab)<YalXb? (2.2a)

®  Carbrcr) < XafXbi (e (2.2b)

©  Holder inequality: Ya? b} < (Sax)$(bx)t; where p > 1and
T+i=1 (2.20)
@ Minkowski's inequality: [Y_(ax + bx + a)P]P <
< (Tad)? + (Tb])* + (Tf)?, pbeing >1. 2.2d)
Theorem 2.1. Consider a B-array T{m, N, t=5; u' =
= (0, H1, ..., ps)}. Then the following results are t:'ue:

-2 rs - -3 -

[ 4

@) YbiaB;| < |XbisB;i| | X biaBif... (2.32)
=1 | i1 | =1 |
[ 3 12 T4 17T 2 ]

®) YhisBi| < (XbiaBif [ bi2 Bil... (2.3b)
=1 | i=1 | 1= ]
[ 3 1 TIs 1072 12

© gbi.s B;| < Elbi,s B; gbig Bl ... (2.30)
[ 2 1 5 3

@ _z;bi.z B;| <(N-1) f_‘ibi,s B; gbi,a B;|.. . 2.3d)
= = =
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3 2
(e) i:lbm Bi] < [jzlbi,s Bi:| [ébi,z Bi:| (2.3¢)

1 2 3
® Sobiy Bi+ > bia Bi+ Y bis Bi} <
= = =

4 % 2 %
< [(N— 1) gbm B,':I + [(N— 1) gbi,g B,'] +

4
+ [f:bi.z B; 24:17;.4 Bi] (2.36)
=1 =

Proof outline: We can obtain the above six results by using suitable
substitutions for a, bk, and cx in (2.2a-d), and substituting the values of Y 7z;

from (2.1). in terms of / and the parameters of the array T'. To obtain (2.3a) and

(2.3b), we use the following substitutions in (2.2a): ax = k#/zz, by = kd/z5
will lead us to (2.3a), and a; = k?,/Zx, b = k+/Zx will establish (2.3b).
Next we set ay = ki z} , by = ki z{, and c; = k} in (2.2b) to obtain (2.3¢);
while setting a; = k% z} , by = k¥ 2} , ¢, = 2} in (2.2b) will give us (2.3d).
To derive (2.3¢), we employ Holder inequality where we take p = 3 (and
therefore ¢ = 3), ax = k?ax, bx = kzx. Minkowski's inequality is used to get
(2.3f) by taking p = 2, ax = /Zx, by = k2,/xx, and ¢cx = k. /.

Remarks: 1. For computational ease, we provide the values of b; x for

0 <k <5and1 <7< koccurring in (2.1) which we obtained in the process
of deriving (2.1). Theseare (k=1; by =1), (k=2; bz =1, by = 2),
(k=3;bi3=1,by3=6,bs3=6), (k=4; by4=1, byg =14, b3 4 = 36,
b4,4 = 24), and (k = 5; bl,s = 1, ‘bz,s = 30, bs,s = 150, b4.5 = 240,

bss = 120).

2. Also, we give explicit expressions for A;,(0 < ¢ < 5) in terms of u,'s

4 3
((=0,1,..,5), Aj1 = z(;)(;‘) pipiforj=0,1; Ajo = g(';?) tivifor j =0,
= =

2 1
1,2; Ajz = z:,)(f) pirjwithj=0,1,2,3; Ajq = z%(})p;.,.jforj =0,1,
= 3=

2,3,4; and Aj's = Hj when J = 0,1, 23,45

It is not difficult to check that (2.3a-2.3f) are functions of m and I for
an array T with a given _/i" If no information on ! is available, we can always
attach a vector with ! = 0 or { = m to the B-array T under consideration which
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will only affect the values of 0 and/or us. A computer program can be easily
prepared to check these inequalities. For a given E' and /, if any of these six
inequalities is contradicted for m = m™ 4+ 1 (say), then m* is an upper bound
for the number of constraints. It means there exists no balanced array for the
given y'and l and withm > m* + 1.

Next we present an example to show the usefulness of the results
derived in this paper.

Example 1. Consider an array T'with &' = (1, 0, 1, 1, 1, 1), and, therefore,
N = 27. We take [ = 0 (say). Using (2.3a - 2.3f), we find conditions (2.3a,
2.3b, 2.3c, 2.3¢) are all contradicted for m = 7. For the sake of illustration, we
give the LHS and RHS for (2.3a): LHS=6,315,169.00 , RHS=6,206,977.00.
Clearly the (2.3a) is contradicted, and thus m < 6. Next, when we use the
corresponding condition from Chopra and Dids [5], we observe that each

m < 11 satisfy it. Thus, the conditions presented here provide sharper bounds
on min this case.

Remark: We do not claim the uniform superiority of the results given here,
and the above example is merely presented to show there can be arrays for
which we get sharper bounds on the number of constraints as compared to the
one obtained by using the result of Chopra and Dids [5].
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