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Abstract

The structure of cocyclic Hadamard matrices is such as to allow
us a much faster and more systematic search for binary, self-dual
codes. Here we consider Z3 x Z. - cocyclic Hadamard matrices for ¢
=3, 5, 7 and 9 to give binary self-dual codes of length 24, 40, 56 and
72. We show that the extended Golay code cannot be obtained as a
member of this class and also show the existence of four apparently
new codes - a [56,28,8] and three [72,36,8].

1 Introduction

In [16] Tonchev gives a general method unifying the known constructions
of binary self-orthogonal codes from designs. This work is extended by
Bussemaker and Tonchev [4, 5], and Kimura [13]. We show here that these
constructions are highly effective when used with cocyclic Hadamard matri-
ces. We present the search for binary self-dual codes using Z3 x Z, - cocyclic
Hadamard matrices for t odd. The internal structure of the Hadamard ma-
trices permits substantial cut-downs in the search time for each code found.
In addition, it avoids the need for generating entire matrices before a search
can take place.

We also look at the weight distributions of these codes. Comparing our
list to the one by Beth et al., [2], we note four apparently new codes, three
of which fit the thinned binomial Hamming weight distribution better than
the comparable codes in the list in [2].
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We assume that the reader is familiar with the basic facts of the theory
of Hadamard matrices, (see [8, 15, 17]) and of binary linear codes (see [14]).

A code C is self-dual if it equals its dual code CL. A code is doubly-even
if all codewords have weights divisible by four. The minimum distance d
of a self-dual, doubly-even code of length 7, satisfies d < 4 [224-] +4. Cis
extremal if this theoretical maximum is attained ([14]).

If G is a finite group (written multiplicatively with identity 1), a bi-
nary cocycle (over G) is a set mapping f : G x G — Zz which satisfies
f(a,b)f(ab,c) = f(a,bc)f(b,c), Ya,b,c € G. A cocycle is normalised if
f(1,1) = 1. A v x v binary matrix M is G - cocyclic (developed by
f) if there exists a set mapping g : G — Z3 and a cocycle f such that
M = [f(a,b)g(ab)], Va,b € G. For further definitions, see [1, 10].

See [1] for the theory of cocyclic matrices, in particular, Z, x Z3 - cocyclic
Hadamard matrices.

In [11], Horadam and Perera define cocyclic codes as follows: A code
over a ring R is termed cocyclic if it can be constructed using cocycles or
the rows of cocyclic matrices or is equivalent to such a code. So the codes
we obtain here are Z; x Z3 - cocyclic codes.

In Section 2, we review the construction given in [16, 4] and extend it
to include construction of [72,36,16] codes. We apply this construction to
cocyclic Hadamard matrices and present the algebraic cut downs obtained
by this application. In Section 3, we give the computational results ob-
tained, including the fact that the extended Golay code is not a Z, x Z3 -
cocyclic code.

Section 4 gives the comparison of the weight enumerators of these codes
with the thinned binomial Hamming weight distribution.

2 Construction of doubly-even codes from
Z: x Z2 - cocyclic Hadamard matrices.

iFrom [16], we have the following construction of doubly-even, self-dual
codes. Here I is the identity matrix, J is the all 1’s matrix of order = and,
given a Hadamard matrix H of order n = 8s +4, H = (H + J)/2.

If the number of +1’s in each row and column of His=3 (mod 4) then
the matrix [I, H] generates a binary, doubly-even, self-dual [2n, ] code C.
The minimum weight of C is at least 8 if and only if each row of H contains
at least 7 +1’s.

This construction was used to find extremal, doubly-even, self-dual
codes of length 24 and 40 from selected Hadamard matrices of order 12
and 20, respectively (see [16, 5]). It was extended (see [4, 13]) and used by
Kimura and Bussemaker and Tonchev, to find extremal self-dual codes of
length 56.



It is easy to extend the construction of [16, 13] to the n = 72 case, to
show that the following conditions apply:

Proposition 2.1 If the number of +1's in each row and column of H is
= 3 (mod 4) then the matriz (I, H] generates a binary, doubly-even,
self-dual [72,36) code C which would be extremal if and only if

1. Each row (and column) of H contains at least 15 +1’s.

2. Every linear combination of 3, 4, 5 or 6 rows of [I, H] and [H*,I)
has weight at least 16.

The importance of using cocyclic Hadamard matrices for the construc-
tion is that we can obtain cut downs to the search space from the listing of
the first row only of the Hadamard matrix, without computing (or storing)
the rest of the matrix.

iFrom [1] the structure of a Z; x Z2 - cocyclic matrix, ¢ odd, is ~, to
a t x t block-backcirculant matrix W with top row Wy, W,..., W;, where

M T Y %
JR— Ty An,- 2 Ayi )
Wi = vi Kz Bn; BKz; |° 1<iLt (1)

z; AKy; Bz; ABKn;

and all the variables take values in {+1}. Hence the sum of the rows is
given by

t
Z(ﬂi +zi+yi + )
i-—;l
Z(An,- +z; + Ayi + ;)
i 2
Z(Bni + BKz; +y;i + Kz;)

i=1

t
> (ABKn; + Bz; + AKy; + z)
i=1

Similar formulae hold for the sums of columns.

The “transgression” generator X appears to play the most significant
role in the behaviour of W. Clearly, W is a symmetric matrix if and only
if K = 1. If, in addition A = B = 1 then W is ~ to a group developed
matrix and, if it is to be Hadamard then ¢ must be a perfect square.

The author has previously computed lists of all Z; x Z% - cocyclic
Hadamard matrices for t = 1,3,5,7 and 9, obtaining 6, 192, 960, 6720
and 27920, respectively. Every example has A=B =K = —1.



In [1], as a consequence of this computational evidence, it has been
conjectured that there are no symmetric Z, x Z% - cocyclic Hadamard
matrices for odd t > 1.

Hence taking A, B and K = —1 and assuming that the number of n;’s
which are +1 is e, and the corresponding numbers for z;, y; and z; are b,
c and d we can simplify the four row sums.

For the existence of doubly-even self-dual codes the number of +1’s in
each row and column must be =3 (mod 4). We thus get the following set
of equations:

a + b + ¢ + d = 3 (mod4)
% — a + b - ¢c + d = 3 (mod4) 3)
% — a + b + ¢ — d = 3 (mod4) (
2% — a — b + ¢ + d = 3 (mod4)
We conclude that either a is odd and b, ¢ and d are even or a is even

and b, ¢ and d are odd.
In [1] it has been shown that if W is a Hadamard matrix then 4t is a
sum of four odd squares. Specifically,

4t = (—t+2a)%+ (=t +2b)% + (=t +2¢)% + (—t + 2d)? (4)

with a, b, c and d as above.

Putting the conditions (3) and (4) together, we can compute the values
of a, b, ¢ and d for which self-dual, doubly-even codes do exist. For example,
for t = 3, only 4 out of the 64 possible values of a,b,c and d which satisfy
(4), yield binary, doubly-even, self-dual codes.

Further W is a {£1} matrix. Rewriting W as (W + J)/2, we get a
{0,1} block back-circulant matrix, V' with top row ¥, Vz,...,V, where

ni T Yi z;
& 1+m & 1+ ‘
- y X
v G 1+%z 14w , 1£i<t (5)
Z g l1+3; 14w

and addition is modulo 2.
Also the sum of the first four rows of V is a vector of the form

(31,31,31,51,- <oy 8i,8i, 84, 8iy ...y Sty Sty St, st)

where 8; = n; + T; + 7 + ;.

For the [56, 28] code to be extremal this vector must have at least 8
+1’s. Hence at least 2 out of 7 quadruples (1;, %;, ¥, Z;) must have either
one +1 or 3 +1’s. Similarly to obtain a [72, 36, 16] code, this vector must
have at least 12 +1’s. Hence at least 3 out of 9 quadruples (7, &, %, Zi)
must have either one +1 or 3 +1's.
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3 Computational Results

Using the conditions above, the search for Z¢ x Z2%-cocyclic Hadamard
matrices, for t = 3, 5, 7 and 9, which yield self-dual, doubly-even codes,
was carried out.

In the case t = 3, there are 24 cocyclic Hadamard matrices which give
self-dual codes of which 12 are doubly-even but none of these, extremal.
Thus it is clear that the extended Golay code is not Z3 x Z2 - cocyclic. This
is not surprising as the Hadamard matrix used in the generator matrix of
the Golay code is Type 2 Paley while the Z3 x Z3 - cocyclic Hadamard
matrices are Type 1 Paley. We expcct the Golay code to be Dj2-cocyclic.
It is worth noting here that Ito [12] gives a Hadamard matrix of order 24,
Dy4-cocyclic (not D2), which gencrates the extended Golay code [24, 12,
8).

On the other hand, it will be shown elsewhere that the singly-even
Z3 x Z2-cocyclic codes obtained are equivalent to the unique “Odd Golay
code”.

For t = 5, 120 self-dual codes were found. 60 were doubly-even and
extremal and classified into one equivalence class.

In the case t= 7, there are 840 Hadamard matrices which yield self-dual
codes. Of these 420 are doubly-even - giving two distinct [56, 28, 8] codes.
Of these, one does not appear in the known lists. It has only 7 code words
of weight 8. Its weight enumerator is given below:

weight | no. of codewords
0 1
8 7
12 8232
16 621733
20 11701984
24 64905043
28 113961456
32 64905043
36 11701984
40 621733
44 8232
48 7
56 1

For t = 9, 3240 Hadamard matrices produce self-dual codes of which
1620 are doubly-even. The weight enumerators show that three new codes
are obtained. One has only 9 code words of weight 8. The weight enumer-
ators are as below:
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weight count
0 1 1 1
8 9 45 153
12 1128 1956 5088
16 242532 257472 294516
20 18153936 18099720 17979840
24 462712212 462519720 461799684
28 4398147864 | 4399546140 | 4404061728
32 16601136894 | 16597738602 | 16587030510
36 25758687584 | 25763149424 | 25777133696
40 16601136894 | 16597738602 | 16587030510
44 4398147864 | 4399546140 | 4404061728
48 462712212 462519720 461799684
52 18153936 18099720 17979840
56 242532 257472 294516
60 1128 1956 5088
64 9 45 153
72 1 1 1

4 Weight Distribution

Beth et al.,[3] have shown that binary block codes with binomially dis-
tributed Hamming distances (Hamming weights for linear codes) lie on the
Gilbert Varshamov Curve when N — oo. In the binary case, the curve
represents not only a lower bound on the maximal minimum Hamming
distance for binary block codes of rate R € (0, 1), but, also, the curve de-
termines the error exponent of the Binary Symmetric Channel (BSC) in
the interval between the critical rate Ren: and the rate R, of the BSC.

In [2], Beth et al., compare the weight distributions of some binary
doubly-even, self-dual codes to the values of the corresponding binomial
distributions. Using a variation of the [, A] construction, they tabulate
the relative error terms €(V,dy) found in the conjectured weight formula

Agy = 4.2K"N (N,dy) (1 + €(N,dy)); 0<dy=0mod4 <N,
for the first 12 examples they find.
Example 4.1 Let M be a Z; x Z}-cocyclic Hadamard matriz. For t =
3,5,7, and 9, the [8t,4t] binary doubly-even self-dual codes with genera-

tor matriz [I, M] have weight distributions which differ from the thinned
binomial Hamming distribution according to the following table of relative
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errors €(N,dy).

(N/2) £ 4 |+0.0233 | +0.0009 | +-0.0002 | —0.0007 | —4.9 x 1075 | -2.5 x 10~%| —9 x 10—*
(N/2) £ 8 | —0.4196 | —0.0015 | —0.0039 | +0.0019 | +7.8 x 1078 |+3.9 x 10™4|+1.4 x 10~3

(N/2) £12 —0.0285[+-0.0018 | —0.0094] 1.16 x 10™* [ -5.3 x 10~%|~2.1 x 10~3
(N/2) £ 16 —0.0106 | +0.0499{—5.3 x 10~¢] —0.0035 —-0.0101
(N/2) £ 20 —-0.6693 |+3.2991| 0.01223 +0.0746 +0.2291
(N/2) £ 24 +0.2614 +0.187 +4.6896
(N/2) + 28 +11.918 | +63.5913 +218.61

no. 1 2 3 4 5 6 7

N 24 40 56 56 72 72 72

wt

N/2 —0.0190| —0.0006 | —0.0001 | +0.0005 | +4.1 x 10~% | +2.1 x 1074 |+7.5 x 10~

We find that four of the codes obtained from Z; x Z2-cocyclic Hadamard

matrices do not appear in the list given in [2]. These are codes no. 3 (a
[56,28,8] code) and 5, 6 and 7 ([72,36,8] codes). Only code 4 appears in

the

list (No. 5) in [2]. Codes 3, 5 and 6 also fit the binomial distribution

better than the most comparable codes (Nos. 5, 8 and 9) given in [2].
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